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Introduction to Supervised Learning Preliminaries

Machine Learning
I A branch of Artificial Intelligence:

I Learning to solve a task
I Learn to correctly estimate a target variable
I Use previous contextualized data to infer future variable’s values
I Context is expressed through features

Figure 1 : Face Recognition, Courtesy of www.nec.com
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Introduction to Supervised Learning Preliminaries

Supervised and Unsupervised Learning

I Supervised learning:
I Data is labeled by an expert (ground-truth)
I Classification, Regression, Ranking

I Unsupervised learning:
I Data contain no explicit labels apart the context features
I Clustering, Dimensionality reduction, Anomaly/Outlier Detection

Figure 2 : Clustering illustration, Courtesy of www.sthda.com
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Introduction to Supervised Learning Preliminaries

Deep Learning ...
I ... refers to a family of supervised and unsupervised methodologies

involving:
I Neural Network (NN) architectures
I Specialized architectures, e.g. CNN, ...
I Novel regularizations, e.g. Dropout, ...
I Large-scale optimization approaches, e.g. GPU-s, ...

Figure 3 : Illustration of a neural network, Courtesy of www.extremetech.com
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Introduction to Supervised Learning Preliminaries

Course Description

I Course name: Deep Learning, Course code: 3107

I Credits: 6, SWS : 2

I Location: A102, Time: Wednesday 10:00 - 12:00 c.t.

I Book: ”Deep Learning” by Ian Goodfellow, Yoshua Bengio and Aaron
Courville, MIT Press 2016, Online: www.deeplearningbook.org
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Introduction to Supervised Learning Introduction

Example
I For N existing bank customers and M = 23 features, i.e. given

x ∈ RN×23 and ground truth y ∈ {0, 1}N

y: Default credit card payment (Yes = 1, No = 0)

x:,1 Amount of the given credit (NT dollar)
x:,2 Gender (1 = male; 2 = female).
x:,3 Education (1=graduate; 2=univ.; 3 = high school; 4 = others).
x:,4 Marital status (1 = married; 2 = single; 3 = others).
x:,5 Age (year)

x:,6 − x:,11 Past Delays (-1=duly, . . . , 9=delay of nine months)
x:,12 − x:,17 Amount of bill statements
x:,18 − x:,23 Amount of previous payments

Table 1 : Yeh, I. C., & Lien, C. H. (2009).

I Goal: Estimate the default of a new (N + 1)-th customer, i.e. given
xN+1,: ∈ R23, estimate yN+1 =?
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Introduction to Supervised Learning Introduction

Estimating the Target Variable

I Given a training data of N recorded instances, composed of
I features variables x ∈ RN×M and
I target variable y ∈ RN .

I Predict the target variable of a future instance x test ∈ RM?

I Need to have a function f (x) that predicts the target ŷ := f (x)
I Known as ”Prediction Model”

I How to find a good function? Answer:
I Parametrize through learn-able parameters θ as f (x , θ)
I Learn parameters θ using the training data

I But, according to which criteria should we learn θ?
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Introduction to Supervised Learning Introduction

Difference to Ground Truth
I The quality of a prediction model f (x , θ)

I Difference between the estimated target ŷ and ground-truth target y
I Defined as a loss function L(y , ŷ) : R× R← R
I The term loss is used for minimization tasks, e.g. regression

I Note: sometimes a maximization of L(y , ŷ) is needed

Figure 4 : Loss types, (Hastie et al., 2009, The Elements of Statistical Learning)
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Introduction to Supervised Learning Introduction

Archetype of a Machine Learning Method

I Data dimensions: N instances having M features

I Features: x ∈ RN×M and Target: y ∈ RN

I A prediction model : having parameters θ ∈ RK is f : RM × RK → R

ŷn := f (xn, θ)

I Loss function: L(yn, ŷn) : R× R→ R

I Regularization: Ω(θ) : RK → R
I Objective function:

argmin
θ

N∑
n=1

L(yn, ŷn) + Ω(θ)
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Introduction to Supervised Learning Prediction Models

Prediction Models - I

I Linear Model

I ŷn = θ0 + θ1xn,1 + θ2xn,2 + · · ·+ θMxn,M = θ0 +
M∑

m=1
θmxn,m

Figure 5 : Linear regression, θ = [−540, 0.001]
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Introduction to Supervised Learning Prediction Models

Prediction Models - II

I Polynomial Regression

I ŷn = θ0 +
M∑

m=1
θmxn,m +

M∑
m=1

M∑
m′=1

θm,m′xn,mxn,m′ + . . .

Figure 6 : Polynomial regression, Source: www.originlab.com

I Decision Trees

I Neural Networks
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Introduction to Supervised Learning Prediction Models

Decision Tree as a Prediction Model

A prediction model ŷn := f (xn, θ) can be also a tree:

Systolic pressure: (xn,1 > 91)

risk (ŷn = 1)

yes

Age: (xn,2 > 62.5)

risk (ŷn = 1)

yes

Sinus tachycardia?: (xn,3 = 1)

risk (ŷn = 1)

yes

low-risk (ŷn = 0)

no

no

no

Figure 7 : San Diego Medical Center
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Introduction to Supervised Learning Prediction Models

Decision Tree as a Step-wise Function
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Introduction to Supervised Learning Prediction Models

Neural Network Model

I A neuron indexed i is a non-linear function fi (x , θi )

I If neuron i is connected to neuron j the model is fj(fi (x , θi ), θj)

Figure 8 : One layer network, Courtesy of Shiffman 2010, The Nature of Code

ŷn := fD(θ0 + θD1fC (fA(xn, θA), θC ) + θD2fB(fA(xn, θA), θB))
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Introduction to Supervised Learning Prediction Models

Neural Network Regression

Figure 9 : Regression using Neural Network, Courtesy of dungba.org
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Introduction to Supervised Learning Loss Function and Optimization

Loss Functions

I Regression (target is real-values yn ∈ R)
I Least-squares:

L(yn, ŷn) := (yn − ŷn)2

I L1:

L(yn, ŷn) := |yn − ŷn|

I Binary Classification yn ∈ {0, 1}
I Logistic loss:

L(yn, ŷn) := −yn log(ŷn)− (1− yn) log(1− ŷn)

I Hinge loss:

L(yn, ŷn) := max(0, ynŷn)
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Introduction to Supervised Learning Loss Function and Optimization

Multi-class loss - Softmax
I Re-express targets yn ∈ {1, . . . ,C} as one-vs-all, i.e.

yn,c :=

{
1 yn = C

0 yn 6= C

I Learn model parameters per class θ ∈ RC×K

I Estimations expressed as probabilities among classes

ŷn,c =
ef (xn,θc )

C∑
q=1

ef (xn,θq)

I Logloss:

L(yn,:, ŷn,:) := −
C∑

c=1

yn,c log(ŷn,c)
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Introduction to Supervised Learning Loss Function and Optimization

Gradient Descent
Find the optimal parameters θ∗ ∈ RK that minimize an objective function

F , given data D ∈
J⋃

j=1
Dj , i.e.:

θ∗ := argmin
θ

F(D, θ)

Algorithm 1: Gradient Descent Optimization

Require: Data D ∈
J⋃

j=1
Dj , Learning rate η ∈ R+, Iterations I ∈ N+

Ensure: θ ∈ RK

1: θ ∼ N (0, σ2)
2: for 1, . . . , I do
3: θ ← θ − η ∂F(D,θ)

∂θ
4: return θ
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Introduction to Supervised Learning Loss Function and Optimization

Stochastic Gradient Descent

Divide the objective function according to J data partitions D ∈
J⋃

j=1
Dj

F(D, θ) :=
J∑

j=1

F(Dj , θ) :=
J∑

j=1

Fj

Algorithm 2: Stochastic Gradient Descent Optimization

Require: Data D ∈
J⋃

j=1
Dj , Learning rate η ∈ R+, Iterations I ∈ N+

Ensure: θ ∈ RK

1: θ ∼ N (0, σ2)
2: for 1, . . . , I do
3: for each j ∈ {1, . . . , J} in random order do

4: θ ← θ − η ∂Fj

∂θ
5: return θ
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Introduction to Supervised Learning Overfitting, Underfitting, Capacity

Overfitting, Underfitting

I Underfitting (High model bias): Unable to capture complexity

I Overfitting (High model variance): Capturing noise

Figure 10 : Overfitting, Underfitting, Source: Goodfellow et al., 2016, Deep
Learning
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Introduction to Supervised Learning Overfitting, Underfitting, Capacity

Capacity

I Expressiveness of a model
I Often expressed as the number of model parameters
I In Neural Networks is the number of neurons

Figure 11 : Capacity, Source: Goodfellow et al., 2016, Deep Learning
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Introduction to Supervised Learning Overfitting, Underfitting, Capacity

Regularization

I Fights overfitting

I Penalize the parameter values

Figure 12 : Regularizing a polynomial regression, Source: Goodfellow et al., 2016,
Deep Learning
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Introduction to Supervised Learning Probabilistic Interpretation

Generative Model

I Considering a linear model

ŷ = θ0 +
M∑

m=1

θmxm

I Assume the error in predicting the ground truth yn is normally
distributed

ε|x ∼ N (0, σ2)

I In other words, the models generates estimations

ŷ ∼ N

(
θ0 +

M∑
m=1

θmxm, σ
2

)
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Introduction to Supervised Learning Probabilistic Interpretation

Maximum Likelihood Estimation

I Let p̂(y |x , θ) be the probability density function for the target y given
features x and parameters θ

I The likelihood of observing the target y ∈ RN is

L(θ) =
N∏

n=1

p̂(yn | xn, θ)

I What values of θ make our observed target more likely to occur?

I Aim: Estimate the θ-s which maximize the likelihood.
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Introduction to Supervised Learning Probabilistic Interpretation

Maximum Likelihood Estimation - II

I Remember

log(a b) = log(a) + log(b)

max
θ

g(θ) = max
θ

log(g(θ))

I Taking the logarithm of the likelihood

log
N∏

n=1

p̂(yn | θ) =
N∑

n=1

log(p̂(yn | θ))

I Assuming p̂ is normally distributed we derive the log-likelihood:

log L(θ) =
N∑

n=1

log

(
1√
2πσ̂

e−
(yn−ŷn)2

2σ̂2

)
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Introduction to Supervised Learning Probabilistic Interpretation

Maximum Likelihood Estimation - III

I Deriving further:

log L(θ) =
N∑

n=1

log

(
1√
2πσ̂

e−
(yn−ŷn)2

2σ̂2

)

=
N∑

n=1

log

(
1√
2πσ̂

)
+ log

(
e−

(yn−ŷn)2

2σ̂2

)
I Omitting the constant term above with respect to the parameters θ:

argmax
θ

log L(θ) ≈ argmax
θ

1

2σ̂2

N∑
n=1

−

(
yn −

(
θ0 +

M∑
m=1

θmxm

))2

≈ argmin
θ

N∑
n=1

(
yn −

(
θ0 +

M∑
m=1

θmxm

))2
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