

Introduction to Supervised Learning

Dr. Josif Grabocka

ISMLL, University of Hildesheim

Deep Learning

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning ・ロット 御マ キョット 中国 うくの

Outline

Preliminaries

Introduction

Prediction Models

Loss Function and Optimization

Overfitting, Underfitting, Capacity

Probabilistic Interpretation

Machine Learning

- ► A branch of Artificial Intelligence:
 - Learning to solve a task
 - ► Learn to correctly estimate a target variable
 - Use previous contextualized data to infer future variable's values
 - Context is expressed through features

Figure 1 : Face Recognition, Courtesy of www.nec.com

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

Supervised and Unsupervised Learning

► Supervised learning:

- Data is labeled by an expert (ground-truth)
- Classification, Regression, Ranking
- Unsupervised learning:
 - ► Data contain no explicit labels apart the context features
 - ► Clustering, Dimensionality reduction, Anomaly/Outlier Detection

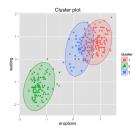


Figure 2 : Clustering illustration, Courtesy of www.sthda.com

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

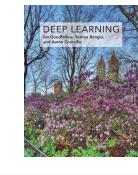
Deep Learning ...

- ... refers to a family of supervised and unsupervised methodologies involving:
 - ► Neural Network (NN) architectures
 - ► Specialized architectures, e.g. CNN, ...
 - ► Novel regularizations, e.g. Dropout, ...
 - ► Large-scale optimization approaches, e.g. GPU-s, ...

Figure 3 : Illustration of a neural network, Courtesy of www.extremetech.com

Course Description

- ► Course name: Deep Learning, Course code: 3107
- ► Credits: 6, SWS: 2
- ► Location: A102, Time: Wednesday 10:00 12:00 c.t.
- Book: "Deep Learning" by Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press 2016, Online: www.deeplearningbook.org



Outline

Preliminaries

Introduction

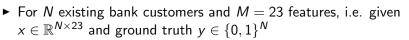
Prediction Models

Loss Function and Optimization

Overfitting, Underfitting, Capacity

Probabilistic Interpretation

Example



y :	Default credit card payment (Yes = 1, No = 0)
x:,1	Amount of the given credit (NT dollar)
x:,2	Gender (1 = male; 2 = female).
X:,3	Education $(1=$ graduate; $2=$ univ.; $3 =$ high school; $4 =$ others).
x:,4	Marital status (1 = married; 2 = single; 3 = others).
x:,5	Age (year)
$x_{:,6} - x_{:,11}$	Past Delays (-1=duly,, 9=delay of nine months)
$x_{:,12} - x_{:,17}$	Amount of bill statements
$x_{:,18} - x_{:,23}$	Amount of previous payments

Table 1 : Yeh, I. C., & Lien, C. H. (2009).

► Goal: Estimate the default of a new (*N* + 1)-th customer, i.e. given $x_{N+1,:} \in \mathbb{R}^{23}$, estimate $y_{N+1} = ?$

San

Estimating the Target Variable

- \blacktriangleright Given a training data of N recorded instances, composed of
 - features variables $x \in \mathbb{R}^{N \times M}$ and
 - target variable $y \in \mathbb{R}^N$.
- Predict the target variable of a future instance $x^{test} \in \mathbb{R}^M$?
- Need to have a function f(x) that predicts the target $\hat{y} := f(x)$
 - Known as "Prediction Model"
- ► How to find a good function? Answer:
 - Parametrize through learn-able parameters θ as $f(x, \theta)$
 - Learn parameters θ using the training data
 - But, according to which criteria should we learn θ ?

Difference to Ground Truth

- The quality of a prediction model $f(x, \theta)$
 - Difference between the estimated target \hat{y} and ground-truth target y
 - Defined as a loss function $\mathcal{L}(y, \hat{y}) : \mathbb{R} \times \mathbb{R} \leftarrow \mathbb{R}$
 - ► The term loss is used for minimization tasks, e.g. regression
- Note: sometimes a maximization of $\mathcal{L}(y, \hat{y})$ is needed

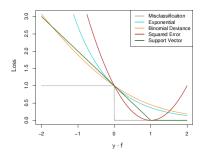


Figure 4 : Loss types, (Hastie et al., 2009, The Elements of Statistical Learning)

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

Archetype of a Machine Learning Method

- ► Data dimensions: N instances having M features
- Features: $x \in \mathbb{R}^{N \times M}$ and Target: $y \in \mathbb{R}^N$
- A prediction model: having parameters $\theta \in \mathbb{R}^{K}$ is $f : \mathbb{R}^{M} \times \mathbb{R}^{K} \to \mathbb{R}$

$$\hat{y}_n := f(x_n, \theta)$$

- Loss function: $\mathcal{L}(y_n, \hat{y}_n) : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$
- Regularization: $\Omega(\theta) : \mathbb{R}^K \to \mathbb{R}$
- Objective function:

$$\underset{\theta}{\operatorname{argmin}}\sum_{n=1}^{N}\mathcal{L}(y_n,\hat{y}_n) + \Omega(\theta)$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

Outline

Preliminaries

Introduction

Prediction Models

Loss Function and Optimization

Overfitting, Underfitting, Capacity

Probabilistic Interpretation

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

<ロト < 団 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

10 / 26

Prediction Models - I

► Linear Model

$$\bullet \quad \hat{y}_n = \theta_0 + \theta_1 x_{n,1} + \theta_2 x_{n,2} + \dots + \theta_M x_{n,M} = \theta_0 + \sum_{m=1}^M \theta_m x_{n,m}$$

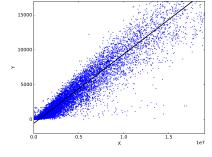


Figure 5 : Linear regression, $\theta = [-540, 0.001]$

. .

Prediction Models - II

► Polynomial Regression

$$\hat{y}_n = \theta_0 + \sum_{m=1}^M \theta_m x_{n,m} + \sum_{m=1}^M \sum_{m'=1}^M \theta_{m,m'} x_{n,m} x_{n,m'} + \dots$$

Figure 6 : Polynomial regression, Source: www.originlab.com

Decision Trees

Neural Networks

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

11 / 26

Decision Tree as a Prediction Model

A prediction model $\hat{y}_n := f(x_n, \theta)$ can be also a tree:

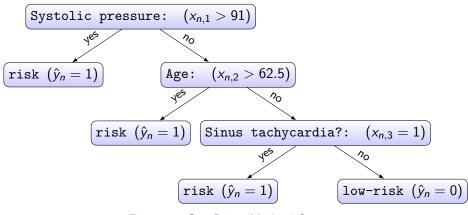
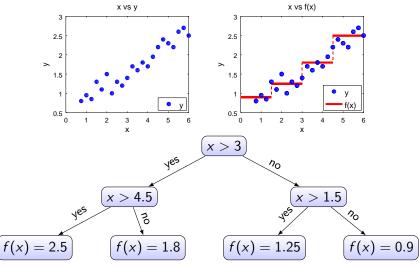


Figure 7 : San Diego Medical Center

<ロト < 同ト < 三ト < 三ト < 三ト < ○への</p>

Decision Tree as a Step-wise Function



Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

3. → 3.

< 🗇 🕨

-

Neural Network Model

- A neuron indexed *i* is a non-linear function $f_i(x, \theta_i)$
- ▶ If neuron *i* is connected to neuron *j* the model is $f_j(f_i(x, \theta_i), \theta_j)$

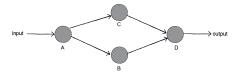


Figure 8 : One layer network, Courtesy of Shiffman 2010, The Nature of Code

$$\hat{y}_n := f_D(\theta_0 + \theta_{D1}f_C(f_A(x_n, \theta_A), \theta_C) + \theta_{D2}f_B(f_A(x_n, \theta_A), \theta_B))$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

Neural Network Regression

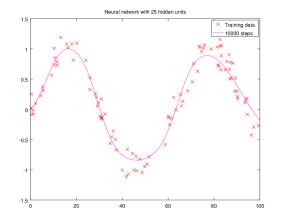


Figure 9 : Regression using Neural Network, Courtesy of dungba.org

Outline

Preliminaries

Introduction

Prediction Models

Loss Function and Optimization

Overfitting, Underfitting, Capacity

Probabilistic Interpretation

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

<ロ> < 団> < 団> < 三> < 三> < 三</p>

16 / 26

Loss Functions

- Regression (target is real-values $y_n \in \mathbb{R}$)
 - Least-squares:

$$\mathcal{L}(y_n, \hat{y}_n) := (y_n - \hat{y}_n)^2$$

► L1:

$$\mathcal{L}(y_n, \hat{y}_n) := |y_n - \hat{y}_n|$$

- Binary Classification $y_n \in \{0, 1\}$
 - Logistic loss:

$$\mathcal{L}(y_n, \hat{y}_n) := -y_n \log(\hat{y}_n) - (1-y_n) \log(1-\hat{y}_n)$$

Hinge loss:

$$\mathcal{L}(y_n, \hat{y}_n) := max(0, y_n \hat{y}_n)$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

Multi-class loss - Softmax

▶ Re-express targets $y_n \in \{1, ..., C\}$ as one-vs-all, i.e.

$$y_{n,c} := \begin{cases} 1 & y_n = C \\ 0 & y_n \neq C \end{cases}$$

- Learn model parameters per class $\theta \in \mathbb{R}^{C \times K}$
- Estimations expressed as probabilities among classes

$$\hat{y}_{n,c} = \frac{e^{f(x_n,\theta_c)}}{\sum\limits_{q=1}^{C} e^{f(x_n,\theta_q)}}$$

Logloss:

$$\mathcal{L}(y_{n,:}, \hat{y}_{n,:}) := -\sum_{c=1}^{C} y_{n,c} \log(\hat{y}_{n,c})$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

Gradient Descent

Find the optimal parameters $\theta^* \in \mathbb{R}^K$ that minimize an objective function \mathcal{F} , given data $\mathcal{D} \in \bigcup_{j=1}^{J} \mathcal{D}_j$, i.e.:

$$egin{array}{ccc} heta^* & := & rgmin & \mathcal{F}(\mathcal{D}, heta) & & \ heta & & \ heta & & \ heta & & \ eta & \ eta & \ eta & \ eta & \ eta$$

Algorithm 1: Gradient Descent Optimization

Require: Data $\mathcal{D} \in \bigcup_{j=1}^{J} \mathcal{D}_{j}$, Learning rate $\eta \in \mathbb{R}^{+}$, Iterations $\mathcal{I} \in \mathbb{N}^{+}$ **Ensure:** $\theta \in \mathbb{R}^{K}$ 1: $\theta \sim \mathcal{N}(0, \sigma^{2})$ 2: for $1, \dots, \mathcal{I}$ do 3: $\theta \leftarrow \theta - \eta \frac{\partial \mathcal{F}(\mathcal{D}, \theta)}{\partial \theta}$ 4: return θ

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning 3

イロン 人間 と イヨン イヨン

Stochastic Gradient Descent

Divide the objective function according to J data partitions $\mathcal{D} \in \bigcup \mathcal{D}_j$

$$\mathcal{F}(\mathcal{D}, heta) := \sum_{j=1}^{J} \mathcal{F}(\mathcal{D}_j, heta) := \sum_{j=1}^{J} \mathcal{F}_j$$

Algorithm 2: Stochastic Gradient Descent Optimization

Require: Data $\mathcal{D} \in \bigcup_{j=1}^{J} \mathcal{D}_{j}$, Learning rate $\eta \in \mathbb{R}^{+}$, Iterations $\mathcal{I} \in \mathbb{N}^{+}$ **Ensure:** $\theta \in \mathbb{R}^{K}$ 1: $\theta \sim \mathcal{N}(0, \sigma^{2})$ 2: for $1, \ldots, \mathcal{I}$ do 3: for each $j \in \{1, \ldots, J\}$ in random order do 4: $\theta \leftarrow \theta - \eta \frac{\partial \mathcal{F}_{j}}{\partial \theta}$ 5: return θ

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

Э

Outline

Preliminaries

Introduction

Prediction Models

Loss Function and Optimization

Overfitting, Underfitting, Capacity

Probabilistic Interpretation

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning <ロト < 団 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

20 / 26

Overfitting, Underfitting

- ► Underfitting (High model bias): Unable to capture complexity
- ► Overfitting (High model variance): Capturing noise

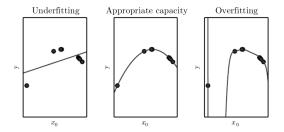


Figure 10 : Overfitting, Underfitting, Source: Goodfellow et al., 2016, Deep Learning

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

イロト イボト イヨト イヨト

Capacity

- Expressiveness of a model
- ► Often expressed as the number of model parameters
- ► In Neural Networks is the number of neurons

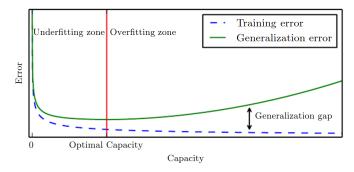


Figure 11 : Capacity, Source: Goodfellow et al., 2016, Deep Learning

Regularization

- Fights overfitting
- Penalize the parameter values

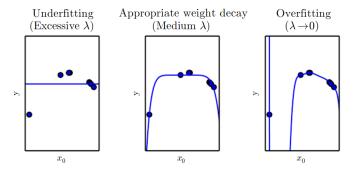


Figure 12 : Regularizing a polynomial regression, Source: Goodfellow et al., 2016, Deep Learning

Outline

Preliminaries

Introduction

Prediction Models

Loss Function and Optimization

Overfitting, Underfitting, Capacity

Probabilistic Interpretation

Generative Model

Considering a linear model

$$\hat{y} = \theta_0 + \sum_{m=1}^M \theta_m x_m$$

► Assume the error in predicting the ground truth y_n is normally distributed

$$\epsilon | x \sim \mathcal{N}(0, \sigma^2)$$

► In other words, the models generates estimations

$$\hat{y} \sim \mathcal{N}\left(\theta_0 + \sum_{m=1}^{M} \theta_m x_m, \sigma^2\right)$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

Maximum Likelihood Estimation

- Let p̂(y|x, θ) be the probability density function for the target y given features x and parameters θ
- The likelihood of observing the target $y \in \mathbb{R}^N$ is

$$L(\theta) = \prod_{n=1}^{N} \hat{p}(y_n | x_n, \theta)$$

- \blacktriangleright What values of θ make our observed target more likely to occur?
- Aim: **Estimate** the θ -s which **maximize** the **likelihood**.

イロト イポト イヨト イヨト 三日

Maximum Likelihood Estimation - II

Remember

$$\begin{split} \log(a \, b) &= \log(a) + \log(b) \\ \max_{\theta} \ g(\theta) &= \max_{\theta} \ \log(g(\theta)) \end{split}$$

Taking the logarithm of the likelihood

$$\log \prod_{n=1}^{N} \hat{p}(y_n \mid \theta) = \sum_{n=1}^{N} log(\hat{p}(y_n \mid \theta))$$

• Assuming \hat{p} is normally distributed we derive the log-likelihood:

$$\log L(\theta) = \sum_{n=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\hat{\sigma}}} e^{-\frac{(y_n - \hat{y}_n)^2}{2\hat{\sigma}^2}} \right)$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

 \exists

イロト 不得 トイヨト イヨト

Maximum Likelihood Estimation - III

• Deriving further:

$$\log L(\theta) = \sum_{n=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\hat{\sigma}}} e^{-\frac{(y_n - \hat{y}_n)^2}{2\hat{\sigma}^2}} \right)$$
$$= \sum_{n=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\hat{\sigma}}} \right) + \log \left(e^{-\frac{(y_n - \hat{y}_n)^2}{2\hat{\sigma}^2}} \right)$$

• Omitting the constant term above with respect to the parameters θ :

$$\operatorname{argmax}_{\theta} \log L(\theta) \approx \operatorname{argmax}_{\theta} \frac{1}{2\hat{\sigma}^2} \sum_{n=1}^{N} - \left(y_n - \left(\theta_0 + \sum_{m=1}^{M} \theta_m x_m \right) \right)^2$$
$$\approx \operatorname{argmin}_{\theta} \sum_{n=1}^{N} \left(y_n - \left(\theta_0 + \sum_{m=1}^{M} \theta_m x_m \right) \right)^2$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning Э

・ロト ・ 同ト ・ ヨト ・ ヨト