

Introduction to Supervised Learning

Dr. Josif Grabocka

ISMLL, University of Hildesheim

Deep Learning

Outline

Preliminaries

Introduction

Prediction Models

Loss Function and Optimization

Overfitting, Underfitting, Capacity

Probabilistic Interpretation

Machine Learning

- ► A branch of Artificial Intelligence:
 - ► Learning to solve a task
 - ► Learn to correctly estimate a target variable
 - ► Use previous contextualized data to infer future variable's values
 - Context is expressed through features

Figure 1: Face Recognition, Courtesy of www.nec.com

Supervised and Unsupervised Learning

- ► **Supervised** learning:
 - Data is labeled by an expert (ground-truth)
 - Classification, Regression, Ranking
- Unsupervised learning:
 - ▶ Data contain no explicit labels apart the context features
 - ► Clustering, Dimensionality reduction, Anomaly/Outlier Detection

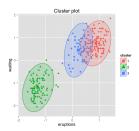


Figure 2: Clustering illustration, Courtesy of www.sthda.com

Deep Learning ...

- refers to a family of supervised and unsupervised methodologies involving:
 - Neural Network (NN) architectures
 - ► Specialized architectures, e.g. CNN, ...
 - ► Novel regularizations, e.g. Dropout, ...
 - ► Large-scale optimization approaches, e.g. GPU-s, ...

Figure 3: Illustration of a neural network, Courtesy of www.extremetech.com

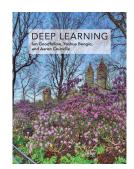
Course Description

► Course name: Deep Learning, Course code: 3107

► *Credits*: 6. *SWS*: 2

► Location: K Musiksaal, Time: Wednesday 10:00 - 12:00 c.t.

Book: "Deep Learning" by Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press 2016, Online: www.deeplearningbook.org



Outline

Preliminaries

Introduction

Prediction Models

Loss Function and Optimization

Overfitting, Underfitting, Capacity

Probabilistic Interpretation

Example

▶ For *N* existing bank customers and M = 23 features, i.e. given $x \in \mathbb{R}^{N \times 23}$ and ground truth $y \in \{0,1\}^N$

<i>y</i> :	Default credit card payment (Yes $=1$, No $=0$)
X:,1	Amount of the given credit (NT dollar)
X:,2	Gender $(1 = male; 2 = female)$.
X:,3	Education (1=graduate; 2=univ.; $3 = \text{high school}$; $4 = \text{others}$).
X:,4	Marital status ($1 = \text{married}$; $2 = \text{single}$; $3 = \text{others}$).
X:,5	Age (year)
$x_{:,6} - x_{:,11}$	Past Delays (-1=duly,, 9=delay of nine months)
$x_{:,12} - x_{:,17}$	Amount of bill statements
$x_{:,18} - x_{:,23}$	Amount of previous payments

Table 1: Yeh, I. C., & Lien, C. H. (2009).

▶ Goal: Estimate the default of a new (N+1)-th customer, i.e. given $x_{N+1,:} \in \mathbb{R}^{23}$, estimate $y_{N+1} = ?$

Estimating the Target Variable

- ► Given a training data of *N* recorded instances, composed of
 - ► features variables $x \in \mathbb{R}^{N \times M}$ and
 - ▶ target variable $y \in \mathbb{R}^N$.
- ▶ Predict the target variable of a future instance $x^{test} \in \mathbb{R}^{M}$?
- ▶ Need to have a function f(x) that predicts the target $\hat{y} := f(x)$
 - ► Known as "Prediction Model"
- ► How to find a good function? Answer:
 - Parametrize through learn-able parameters θ as $f(x, \theta)$
 - ightharpoonup Learn parameters θ using the training data
 - ▶ But, according to which criteria should we learn θ ?

Difference to Ground Truth

- ightharpoonup The quality of a prediction model $f(x,\theta)$
 - ightharpoonup Difference between the estimated target \hat{y} and ground-truth target y
 - ▶ Defined as a loss function $\mathcal{L}(y, \hat{y}) : \mathbb{R} \times \mathbb{R} \leftarrow \mathbb{R}$
 - ► The term loss is used for minimization tasks, e.g. regression
- ▶ Note: sometimes a maximization of $\mathcal{L}(y, \hat{y})$ is needed

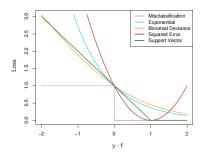


Figure 4: Loss types, (Hastie et al., 2009, The Elements of Statistical Learning)

Shiners/tag

Archetype of a Machine Learning Method

- ► Data dimensions: N instances having M features
- ► Features: $x \in \mathbb{R}^{N \times M}$ and Target: $y \in \mathbb{R}^{N}$
- ▶ A prediction model: having parameters $\theta \in \mathbb{R}^K$ is $f : \mathbb{R}^M \times \mathbb{R}^K \to \mathbb{R}$

$$\hat{y}_n := f(x_n, \theta)$$

- ▶ Loss function: $\mathcal{L}(y_n, \hat{y}_n) : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$
- Regularization: $\Omega(\theta) : \mathbb{R}^K \to \mathbb{R}$
- ► *Objective function*:

$$\underset{\theta}{\operatorname{argmin}} \sum_{n=1}^{N} \mathcal{L}(y_n, \hat{y}_n) + \Omega(\theta)$$

Outline

Preliminaries

Introduction

Prediction Models

Loss Function and Optimization

Overfitting, Underfitting, Capacity

Probabilistic Interpretation

Prediction Models - I

▶ Linear Model

$$\hat{y}_n = \theta_0 + \theta_1 x_{n,1} + \theta_2 x_{n,2} + \dots + \theta_M x_{n,M} = \theta_0 + \sum_{m=1}^{M} \theta_m x_{n,m}$$

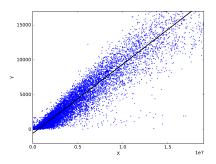


Figure 5: Linear regression, $\theta = [-540, 0.001]$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

Prediction Models - II

Polynomial Regression

$$\hat{y}_n = \theta_0 + \sum_{m=1}^{M} \theta_m x_{n,m} + \sum_{m=1}^{M} \sum_{m'=1}^{M} \theta_{m,m'} x_{n,m} x_{n,m'} + \dots$$

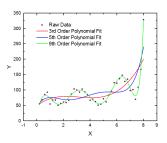


Figure 6: Polynomial regression, Source: www.originlab.com

- Decision Trees
- Neural Networks

Decision Tree as a Prediction Model

A prediction model $\hat{y}_n := f(x_n, \theta)$ can be also a tree:

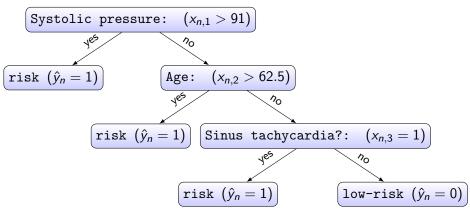
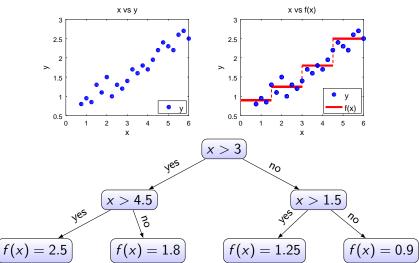


Figure 7: San Diego Medical Center

Jrivers/

Decision Tree as a Step-wise Function



Neural Network Model

- ▶ A neuron indexed *i* is a non-linear function $f_i(x, \theta_i)$
- ▶ If neuron *i* is connected to neuron *j* the model is $f_j(f_i(x,\theta_i),\theta_j)$

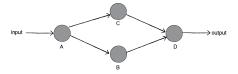


Figure 8: One layer network, Courtesy of Shiffman 2010, The Nature of Code

$$\hat{y}_n := f_D(\theta_0 + \theta_{D1}f_C(f_A(x_n, \theta_A), \theta_C) + \theta_{D2}f_B(f_A(x_n, \theta_A), \theta_B))$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

Neural Network Regression

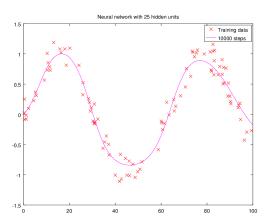


Figure 9: Regression using Neural Network, Courtesy of dungba.org

Preliminaries

Introduction

Prediction Models

Loss Function and Optimization

Overfitting, Underfitting, Capacity

Probabilistic Interpretation

Loss Functions

- ightharpoonup Regression (target is real-values $y_n \in \mathbb{R}$)
 - ► Least-squares:

$$\mathcal{L}(y_n, \hat{y}_n) := (y_n - \hat{y}_n)^2$$

▶ 11:

$$\mathcal{L}(y_n,\hat{y}_n):=|y_n-\hat{y}_n|$$

- ▶ Binary Classification $y_n \in \{0, 1\}$
 - Logistic loss:

$$\mathcal{L}(y_n, \hat{y}_n) := -y_n \log(\hat{y}_n) - (1 - y_n) \log(1 - \hat{y}_n)$$

Hinge loss:

$$\mathcal{L}(y_n, \hat{y}_n) := max(0, y_n \hat{y}_n)$$

Multi-class loss - Softmax

▶ Re-express targets $y_n \in \{1, ..., C\}$ as one-vs-all, i.e.

$$y_{n,c} := \begin{cases} 1 & y_n = C \\ 0 & y_n \neq C \end{cases}$$

- ▶ Learn model parameters per class $\theta \in \mathbb{R}^{C \times K}$
- Estimations expressed as probabilities among classes

$$\hat{y}_{n,c} = \frac{e^{f(x_n,\theta_c)}}{\sum\limits_{q=1}^{C} e^{f(x_n,\theta_q)}}$$

► Logloss:

$$\mathcal{L}(y_{n,:}, \hat{y}_{n,:}) := -\sum_{c=1}^{C} y_{n,c} \log(\hat{y}_{n,c})$$

Gradient Descent

Find the optimal parameters $\theta^* \in \mathbb{R}^K$ that minimize an objective function \mathcal{F} , given data $\mathcal{D} \in \bigcup_{i=1}^J \mathcal{D}_j$, i.e.:

$$heta^* := \mathop{\mathsf{argmin}}_{ heta} \ \mathcal{F}(\mathcal{D}, heta)$$

Algorithm 1: Gradient Descent Optimization

Require: Data $\mathcal{D} \in \bigcup_{j=1}^{\mathcal{J}} \mathcal{D}_j$, Learning rate $\eta \in \mathbb{R}^+$, Iterations $\mathcal{I} \in \mathbb{N}^+$

Ensure: $\theta \in \mathbb{R}^K$

- 1: $\theta \sim \mathcal{N}(0, \sigma^2)$
- 2: for $1, \ldots, \mathcal{I}$ do
- 3: $\theta \leftarrow \theta \eta \frac{\partial \mathcal{F}(\mathcal{D}, \theta)}{\partial \theta}$
- 4: return θ

Stochastic Gradient Descent

Divide the objective function according to J data partitions $\mathcal{D} \in \bigcup_{i=1}^J \mathcal{D}_j$

$$\mathcal{F}(\mathcal{D}, \theta) := \sum_{j=1}^{J} \mathcal{F}(\mathcal{D}_j, \theta) := \sum_{j=1}^{J} \mathcal{F}_j$$

Algorithm 2: Stochastic Gradient Descent Optimization

Require: Data $\mathcal{D} \in \bigcup_{j=1}^{\mathcal{J}} \mathcal{D}_j$, Learning rate $\eta \in \mathbb{R}^+$, Iterations $\mathcal{I} \in \mathbb{N}^+$

Ensure: $\theta \in \mathbb{R}^K$

- 1: $\theta \sim \mathcal{N}(0, \sigma^2)$
- 2: for $1, \ldots, \mathcal{I}$ do
- 3: **for each** $j \in \{1, ..., J\}$ *in random order* **do**
- 4: $\theta \leftarrow \theta \eta \frac{\partial \mathcal{F}_j}{\partial \theta}$
- 5: **return** θ

Outline

Overfitting, Underfitting, Capacity

Overfitting, Underfitting

- Underfitting (High model bias): Unable to capture complexity
- Overfitting (High model variance): Capturing noise

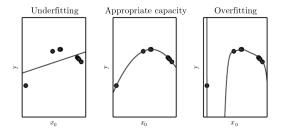


Figure 10: Overfitting, Underfitting, Source: Goodfellow et al., 2016, Deep Learning

Capacity

- Expressiveness of a model
- ▶ Often expressed as the number of model parameters
- In Neural Networks is the number of neurons

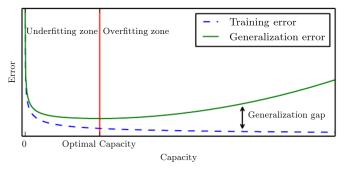


Figure 11: Capacity, Source: Goodfellow et al., 2016, Deep Learning

Regularization

- ► Fights overfitting
- Penalize the parameter values

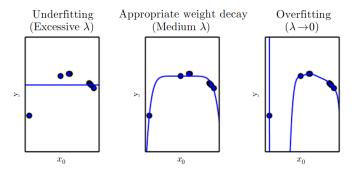


Figure 12: Regularizing a polynomial regression, Source: Goodfellow et al., 2016, Deep Learning

Outline

Probabilistic Interpretation

Generative Model

Considering a linear model

$$\hat{y} = \theta_0 + \sum_{m=1}^{M} \theta_m x_m$$

 \triangleright Assume the error in predicting the ground truth y_n is normally distributed

$$\epsilon | x \sim \mathcal{N}(0, \sigma^2)$$

► In other words, the models generates estimations

$$\hat{y} \sim \mathcal{N} \left(\theta_0 + \sum_{m=1}^{M} \theta_m x_m, \sigma^2 \right)$$

Maximum Likelihood Estimation

- Let $\hat{p}(y|x,\theta)$ be the probability density function for the target y given features x and parameters θ
- ▶ The likelihood of observing the target $y \in \mathbb{R}^N$ is

$$L(\theta) = \prod_{n=1}^{N} \hat{p}(y_n | x_n, \theta)$$

- ▶ What values of θ make our observed target more likely to occur?
- \blacktriangleright Aim: **Estimate** the θ -s which **maximize** the **likelihood**.

Stivers/take

Maximum Likelihood Estimation - II

► Remember

$$\log(a \, b) = \log(a) + \log(b)$$
 argmax $g(\theta) = \underset{\theta}{\operatorname{argmax}} \log(g(\theta))$

► Taking the logarithm of the likelihood

$$\log \prod_{n=1}^{N} \hat{p}(y_n \mid \theta) = \sum_{n=1}^{N} log(\hat{p}(y_n \mid \theta))$$

ightharpoonup Assuming \hat{p} is normally distributed we derive the log-likelihood:

$$\log L(\theta) = \sum_{n=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\hat{\sigma}}} e^{-\frac{(y_n - \hat{y}_n)^2}{2\hat{\sigma}^2}} \right)$$

Maximum Likelihood Estimation - III

► Deriving further:

$$\log L(\theta) = \sum_{n=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\hat{\sigma}}} e^{-\frac{(y_n - \hat{y}_n)^2}{2\hat{\sigma}^2}} \right)$$
$$= \sum_{n=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\hat{\sigma}}} \right) + \log \left(e^{-\frac{(y_n - \hat{y}_n)^2}{2\hat{\sigma}^2}} \right)$$

Omitting the constant term above with respect to the parameters θ :

4 D > 4 A > 4 B > 4 B >