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Deep Forward Networks Introduction

What is a Deep Forward Network (DFN)?

I Feedforward networks, feedforward neural networks or multilayer
perceptrons

I Given a function y = f∗(x) that maps input x to category y

I A DFN defines a parametric mapping ŷ = f(x, θ) with parameters θ

I Aim is to learn θ such as f(x, θ) best approximates f∗(x)!
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Deep Forward Networks Introduction

Why Feedforward?

I Given a Feedforward Network ŷ = f(x, θ)
I Input x, then pass through a chain of steps before outputting y

I No feedback exists between the chains of steps
I Feedback connections yield the Recurrent Neural Network

I Example f 1(x), f 2(x) and f 3(x) can be chained as:

I f (x) = f 3(f 2(f 1(x)))

I f 1 is the first layer, or the input layer
I f 2 is the second layer, or a hidden layer
I f 3 is the last layer, or the output layer

I Number of hidden layers define the depth of the network

I Dimensionality of the hidden layers defines the width of the network
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Deep Forward Networks Introduction

Why Neural?

I Loosely inspired by neuroscience, hence Artificial Neural Network

I Each hidden layer node resembles a neuron

I Input to a neuron are the synaptic connections from the previous
attached neuron

I Output of a neuron is an aggregation of the input vector

I Signal propagates forward in a chain of ”Neuron”-to-”Neuron”
transmissions

I However, modern Deep Learning research is steered mainly by
mathematical and engineering principles!
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Deep Forward Networks Introduction

Why Network?
I A feed-forward network is an acyclic directed graph, but

I Graph nodes are structured in layers
I Directed links between nodes are parameters/weights
I Each node is a computational functions
I No inter-layer and intra-layer connections (but possible)
I Input to the first layer is given (the features x)
I Output is the computation of the last layer (the target ŷ)

Figure 1 : FNN, Source www.analyticsvidhya.com
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Deep Forward Networks Introduction

Nonlinear Mapping
I We can easily solve linear regression, but not every problem is linear.
I Can the function f (x) = (x + 1)2 be approximated through a linear

function?

I Yes, but only if we map the feature x into a new space:
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Figure 2 : Mapping feature x into a new dimensionality x → φ(x) = (a, b)
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Deep Forward Networks Introduction

Nonlinear Mapping (II)

I Which mapping φ(x) is the best?

There are various ways of designing φ(x):

1. Hand-craft (manually engineer) φ(x)

2. Use a very generic φ(x), RBF or polynomial expansion

3. Parametrize and learn the mapping f(x; θ,w) := φ(x, θ)Tw

Deep Forward Networks follow the third approach, where:

I the hidden layers (weights θ) learn the mapping φ(x , θ)T

I the output layer (weights w) learns the function f (x ; θ,w)
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Deep Forward Networks Feedforward Computations

An example - Learn XOR

I XOR is a function:

x1 x2 y = f ∗(x)

0 0 0
0 1 1
1 0 1
1 1 0

I Can we learn a DFN ŷ = f(x, θ) such that f resembles f ∗?

I Our dataset X = {[0, 0]T , [1, 0]T , [0, 1]T , [1, 1]T}
I Leading to the optimization:

argmax
θ

J(θ)

J(θ) =
1

4

∑
x∈X

(f ∗(x)− f (x , θ))2
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Deep Forward Networks Feedforward Computations

An example - Learn XOR (2)
I We will learn a simple DFN with one hidden layer:

Figure 3 : Left: Detailed, Right: Compact, Source: Goodfellow et al., 2016

I Two functions are chained h = f 1(x ;W , c) and y = f 2(y ,w , b)

I For n-th instance: Hidden-layer h
(n)
i = g

(
W T

:,i x
(n) + ci

)
I For n-th instance: output layer: ŷn = wTh(n) + b
I W ∈ R2×2, c ∈ R2×1,w ∈ R2×1, b ∈ R
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Deep Forward Networks Feedforward Computations

Rectified Linear Unit

The rectified linear unit (ReLU) is defined by the activation function
g(z) = max{0, z}, i.e.:

Figure 4 : The ReLU activation, Source: Goodfellow et al., 2016

Yielding the overall function:

ŷ = wT max
{

0,W T x + c
}

+ b
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Deep Forward Networks Feedforward Computations

”Deus ex machina” solution?

Suppose I magically found out that:

W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

We would later on see an optimization technique called back-propagation
to learn the network parameters.
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Deep Forward Networks Feedforward Computations

XOR Solution - Hidden Layer Computations
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= g (1) = 1

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 12 / 35



Deep Forward Networks Feedforward Computations

XOR Solution - Output Layer Computations

ŷ (1) = wTh(1) + b =
[
1 −2

] [0
0

]
+ 0 = 0

ŷ (2) = wTh(2) + b =
[
1 −2

] [1
0

]
+ 0 = 1

ŷ (3) = wTh(3) + b =
[
1 −2

] [1
0

]
+ 0 = 1

ŷ (4) = wTh(4) + b =
[
1 −2

] [2
1

]
+ 0 = 0

The computations of the final layer match exactly those of the XOR function.
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Deep Forward Networks Output and Hidden Units

Gradient-Based Learning - Maximum Likelihood

The loss/cost can be expressed in probabilistic terms as

J(θ) = −Ex ,y∼p̂data log pmodel(y | x)

We early saw that assuming normality pmodel(y | x) = N (y ; f (x , θ), I )

J(θ) =
1

2
Ex ,y∼p̂data ||y − f (x , θ)||2 + const

Solving for the optimal DFN parameters:

θopt =: argmax
θ

Ex ,y∼p̂data ||y − f (x , θ)||2

Yields a function that outputs the mean: f (x , θopt) = Ex ,y∼p̂data(y |x)[y ]
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Deep Forward Networks Output and Hidden Units

Output Units - Gaussian Output Distribution

I Affine transformation with no nonlinearity

I Given features h, produces ŷ = wTh + b

I Used to produce the mean of a conditional Gaussian distribution

I p(y | x) = N (y ; ŷ , I )

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 15 / 35



Deep Forward Networks Output and Hidden Units

Bernoulli Output Distributions

I Binary target variables follow a Bernoulli distribution
P(y = 1) = p, P(y = 0) = 1− p

I Train a DFN such that ŷ = f (x , θ) ∈ [0, 1]

I Naive Option: Clip a linear output layer:
I P(y = 1 | x) = max

{
0,min

{
1,wTh + b

}}
I What is the problem with the clipped linear output layer?
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Deep Forward Networks Output and Hidden Units

Bernoulli Output Distributions (2)

I Use a smooth sigmoid output unit:

ŷ = σ (z) =
ez

ez + 1

z = wTh + b

I The loss for a DFN f (x , θ) with a sigmoid output is:

J(θ) =
N∑

n=1

−yn log(f (xn, θ))− (1− yn) log(1− f (xn, θ))

I Also called as Cross-entropy Cost Function
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Deep Forward Networks Output and Hidden Units

Multinoulli Output Distribution
I For multi-category targets ŷi = P(y = i |x), i ∈ {1, . . . ,C}
I Let the unnormalized log probability be defined as

zi = wT
i h + b

zi = logP̃(y = i |x)

I Yielding the normalized probability estimation:

P(y = i |x) ≈ softmax(zi ) =
ezi∑
j
ezj

I Minimizing the log-likelihood loss:

J(θ) =
N∑

n=1

−1yn=i logP(y = i |x)

J(θ) = −
N∑

n=1

1yn=i

zi − log
∑
j

ezj
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Deep Forward Networks Output and Hidden Units

Types of Hidden Units

I Question: Can we use a linear activation h = W T x + b?

I Remember the most used hidden layer is ReLU:

h = g(W T x + b) = max(0,W T x + b)

I Alternatively, the sigmoid function:

h = σ(z)

I or, the hyperbolic tangent:

h = tanh(z) = 2σ(2z)− 1
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Deep Forward Networks Output and Hidden Units

Architecture of Hidden Layers

A DFN with L hidden layers:

h(1) = g (1)(W (1)T x + b(1))

h(2) = g (2)(W (2)Th(1) + b(2))

. . .

h(L) = g (L)(W (L)Th(L−1) + b(L))

Different layers can have different activation functions.
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Deep Forward Networks Back-propagation

Computational Graphs

Figure 5 : a) multiplication, b) logistic regression prediction, c) ReLU, d) linear
regression prediction and regularization, Source: Goodfellow et al., 2016
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Deep Forward Networks Back-propagation

Chain-rule of Calculus

I Suppose y = g(x) and z = f (g(x)) = f (y), then

dz

dx
=

dz

dy

dy

dx

I In the vector case, suppose x ∈ Rm, y ∈ Rn, and
y = g(x), g : Rm → Rn together with z = f (y), f : Rn → R:

∂z

∂xi
=

n∑
j=1

∂z

∂yj

∂yj
∂xi

I Compactly written using the Jacobian matrix ∂y
∂x ∈ Rn×m as

∇xz =

(
∂y

∂x

)T

∇yz
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Deep Forward Networks Back-propagation

Backpropagation in Computational Graphs

Figure 6 : x=f(w), y=f(x), z=f(y), Source: Goodfellow et al., 2016

Subexpression f (w) is repeated:

∂z

∂w
=

∂z

∂y

∂y

∂x

∂x

∂w

= f ′(y)f ′(x)f ′(w)

= f ′(f (f (w)))f ′(f (w))f ′(w)
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Deep Forward Networks Back-propagation

Backpropagation in Computational Graphs (2)

I Assume we want to compute a scalar u(n), e.g. loss of an instance

I Need to compute gradient w.r.t. ni input nodes u(1), . . . , u(ni ), i.e.

I Need to compute ∂u(n)

∂u(i)
, i ∈ {1, . . . , ni}

I We assume the nodes are ordered such that the computations are
sequential, i.e. starting from u(ni+1) until u(n)

I Let A(i) be the set of parent/predecessor nodes to u(i):
I A(i) ← {u(j) | j ∈ Pa(u(i))}
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Deep Forward Networks Back-propagation

Backpropagation in Computational Graphs (3)

The feed-forward steps are:

Figure 7 : Feedforward in Computational Graphs, Source: Goodfellow et al., 2016
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Deep Forward Networks Back-propagation

Backpropagation in Computational Graphs (4)

I The back-propagation is based on the chain-rule:

∂u(n)

∂u(j)
=

∑
i :j∈Pa(u(i))

∂u(n)

∂u(i)
∂u(i)

∂u(j)

I However, to avoid repeated computations, each node i computes and

stores ∂u(n)

∂u(i)
in a table.

I In that way, gradients of final node with respect to successor nodes
are not re-computed
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Deep Forward Networks Back-propagation

Back-propagation in Computational Graphs (5)

Figure 8 : Back-propagation in Computational Graphs, Source: Goodfellow et al.,
2016
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Deep Forward Networks Back-propagation

From Computational Graphs to MLP - An example
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Output
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I How can we compute ŷ?
I How about ∂L(y ,ŷ)

W
(`)
q,r

and ∂L(y ,ŷ)
b
(`)
q

, ` ∈ {1, 2, 3}, q ∈ {1, 2}, r ∈ {1, 2}?
I Lets derive on the board ...
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Deep Forward Networks Back-propagation

Motivating Back-propagation

W(2)
1,1

= 1

W (1)
1,1 = 0.5

W
(1)

2,1
= 0.5

x
1
=0

x
2
=1

ReLU Linear

y=-1

b
(1

) 1
= 

1

b
(2

) 1
= 

1

I Apply one gradient descent update on W
(1)
2,1 with a learning rate 0.5.

I Lets see the reduction of loss on the board
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Deep Forward Networks Back-propagation

Forward Computations in MLP

Figure 9 : Forward Computations for MLP, Source: Goodfellow et al., 2016
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Deep Forward Networks Back-propagation

Back-propagation in MLP

Figure 10 : Back-propagation for MLP, Source: Goodfellow et al., 2016

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 31 / 35



Deep Forward Networks Back-propagation

Symbol-to-Symbol Derivatives
I A software engineering strategy for learning deep networks
I Add nodes in a computational graph to provide a symbolic description

of the derivatives (Theano, Tensorflow)

Figure 11 : Symbol-to-Symbol derivative, Source: Goodfellow et al., 2016
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Deep Forward Networks Back-propagation

Implementing General Back-propagation

I Each variable V is associated with three subroutines:
I get operation(V): Get the operation that produced V
I get consumers(V, G): Get the children of V in graph G
I get inputs(V, G): Get the parents of V in graph G

I Every operation op has a bprop operation:

I op.bprob(inputs, X, G) =
∑
i

(∇Xop.f(inputs)i )Gi

I where G is the gradient of the loss w.r.t. the output of the operation
I where inputs are an abstraction for operation parameters
I where X is the specific input for which we would like to compute the

gradient of the loss w.r.t. it
I where op.f is the function that this operation performs
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Deep Forward Networks Back-propagation

General Back-propagation - Start Method (I)

Figure 12 : Interface to General Back-prop, Source: Goodfellow et al., 2016
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Deep Forward Networks Back-propagation

General Back-propagation - Recursion (II)

Figure 13 : Recursive General Back-prop, Source: Goodfellow et al., 2016
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