Deep Forward Networks

Deep Forward Networks

Dr. Josif Grabocka

ISMLL, University of Hildesheim

Deep Learning

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 1

35

Deep Forward Networks

Introduction

Outline

Introduction

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning

2/35

Deep Forward Networks Introduction

. B2
What is a Deep Forward Network (DFN)? i
» Feedforward networks, feedforward neural networks or multilayer
perceptrons
» Given a function y = f*(x) that maps input x to category y

v

A DFN defines a parametric mapping y = f(x, #) with parameters 0

v

Aim is to learn 6 such as f(x,0) best approximates f*(x)!

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning

N

35

Deep Forward Networks Introduction

B
Why Feedforward? “

» Given a Feedforward Network § = f(x, 6)
» Input x, then pass through a chain of steps before outputting y

v

No feedback exists between the chains of steps
» Feedback connections yield the Recurrent Neural Network

v

Example f1(x), f2(x) and f3(x) can be chained as:
> f(x) = F(F(F1(x)))

» ! is the first layer, or the input layer
» 2 is the second layer, or a hidden layer
» {3 is the last layer, or the output layer

v

Number of hidden layers define the depth of the network

v

Dimensionality of the hidden layers defines the width of the network

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 3

35

Deep Forward Networks Introduction

Why Neural?

v

Loosely inspired by neuroscience, hence Artificial Neural Network
» Each hidden layer node resembles a neuron

» Input to a neuron are the synaptic connections from the previous
attached neuron

» Output of a neuron is an aggregation of the input vector

» Signal propagates forward in a chain of " Neuron”-to-" Neuron”
transmissions

» However, modern Deep Learning research is steered mainly by
mathematical and engineering principles!

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning

35

Deep Forward Networks Introduction

B
Why Network? “

» A feed-forward network is an acyclic directed graph, but
» Graph nodes are structured in layers

Directed links between nodes are parameters/weights

Each node is a computational functions

No inter-layer and intra-layer connections (but possible)

Input to the first layer is given (the features x)

Output is the computation of the last laver (the target §)

vV vy VY VvYy

Hidden nodes layer

Input x2
—>

Input x3

—

Figure 1 : FNN, Source www.analyticsvidhya.com

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 5

35

www.analyticsvidhya.com

Deep Forward Networks Introduction

Nonlinear Mapping

» We can easily solve linear regression, but not every problem is linear.
» Can the function f(x) = (x + 1)2 be approximated through a linear
function?

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 6

35

Deep Forward Networks Introduction

Nonlinear Mapping
» We can easily solve linear regression, but not every problem is linear.
» Can the function f(x) = (x + 1)2 be approximated through a linear

function?
» Yes, but only if we map the feature x into a new space:

f(x)=(x+1)"2 f(ab)=a+2b+1

f(a,b)

Figure 2 : Mapping feature x into a new dimensionality x — ¢(x)

Dr. Josif Grabocka, ISMLL, University of Hildesheim
6

Deep Learning

35

Deep Forward Networks Introduction

Nonlinear Mapping (I1)

» Which mapping ¢(x) is the best?

There are various ways of designing ¢(x):

1. Hand-craft (manually engineer) ¢(x)
2. Use a very generic ¢(x), RBF or polynomial expansion

3. Parametrize and learn the mapping f(x; 0, w) := &(x,0)Tw

Deep Forward Networks follow the third approach, where:
» the hidden layers (weights 6) learn the mapping ¢(x,)"

» the output layer (weights w) learns the function f(x; 0, w)

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning

~

35

Deep Forward Networks

Feedforward Computations
Qutline

Feedforward Computations

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning

Deep Forward Networks Feedforward Computations

An example - Learn XOR

» XOR is a function:

x1 | x2 | y="7*x)
0|0 0
0|1 1
110 1
1|1 0

» Can we learn a DFN § = f(x, #) such that f resembles f*?
» Our dataset X = {[0,0]7,[1,0]7,[0,1]",[1,1]"}
» Leading to the optimization:

argmax J(0)

0
1
J0) = 7D (F ()~ f(x.0)
xEX
Dr. Josif Grabocka, ISMLL, University of Hildesheim
8

Deep Learning

35

Deep Forward Networks Feedforward Computations

B
An example - Learn XOR (2) “

» We will learn a simple DFN with one hidden layer:

Wi

Figure 3 : Left: Detailed, Right: Compact, Source: Goodfellow et al., 2016

» Two functions are chained h = f(x; W, c) and y = f?(y, w, b)

» For n-th instance: Hidden-layer hf") =g (W' x(" + g)
» For n-th instance: output layer: §, = w’h(") + b
» WeR>2 ceR*LweR> beR

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 9/35

Deep Forward Networks Feedforward Computations

Rectified Linear Unit

The rectified linear unit (ReLU) is defined by the activation function
g(z) = max{0, z}, i.e.

max{0, z}

9(2)

|
0
z

Figure 4 : The ReLU activation, Source: Goodfellow et al., 2016

Yielding the overall function:
g = WTmax{O, WTx+c} b

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning

35

Deep Forward Networks Feedforward Computations

"Deus ex machina” solution?

Suppose | magically found out that:

o[t e (8]0

We would later on see an optimization technique called back-propagation
to learn the network parameters.

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 11

Deep Forward Networks Feedforward Computations

XOR Solution - Hidden Layer Computations

hM

— —
[[

—
[y

— — —
[un [un [un

—
—

0
A~~~ /N N —~
o=
&5
+
(9}
M N N " "
Il
[\
7 N 7 N7 N7 N7 N7 N NN
ey

g (VV:?;X4 +c

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning

juy
—

P o OoOR MO RO OO OO

+o) =g(0)=0

35

Deep Forward Networks Feedforward Computations

XOR Solution - Output Layer Computations

¥V o= WA 4b=[1 -2] 8 +0=0
¥ = wh® 4b=[1 -2] (1) +0=1
¥ = WA 4b=[1 -2] (1) +0=1
yW o= wih® pp=[1 -2] i +0=0

The computations of the final layer match exactly those of the XOR function.

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 13 / 35

Deep Forward Networks

Output and Hidden Units
Qutline

Output and Hidden Units

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning

Deep Forward Networks Output and Hidden Units

Gradient-Based Learning - Maximum Likelihood

The loss/cost can be expressed in probabilistic terms as

J(Q) = _EX,yNﬁdata log pmodel(y | X)
We early saw that assuming normality pmodel(y | X) = N (y; f(x,0),1)

1
J6) = 5Ewympanlly — F(x, O + const

Solving for the optimal DFN parameters:

goPt —. arg;nax Ex.ympu |y — F(X, 0)|I?

Yields a function that outputs the mean: f(x, §°Pt) = E,)by [Y]

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning

14 / 35

Deep Forward Networks Output and Hidden Units

NN
Output Units - Gaussian Output Distribution “

» Affine transformation with no nonlinearity

» Given features h, produces y = w' h+ b

» Used to produce the mean of a conditional Gaussian distribution

> p(y |x) =N(y:y,1)

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 15 / 35

Deep Forward Networks Output and Hidden Units

Bernoulli Output Distributions

v

Binary target variables follow a Bernoulli distribution
Ply=1)=p, Ply=0)=1-p

v

Train a DFN such that § = f(x,0) € [0,1]

v

Naive Option: Clip a linear output layer:
» P(y =1|x) =max{0,min{1,w"h+b}}

v

What is the problem with the clipped linear output layer?

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 16 / 35

Deep Forward Networks Output and Hidden Units

Bernoulli Output Distributions (2)

» Use a smooth sigmoid output unit:

eZ

e?+1
z = w'h+b

y o= o=

» The loss for a DFN f(x, 6) with a sigmoid output is:

N
JO) = D —ynlog(f(xn,0)) — (1 — yn)log(1 — f(xn,0))

n=1

» Also called as Cross-entropy Cost Function

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning

17 / 35

Deep Forward Networks Output and Hidden Units

Multinoulli Output Distribution

» For multi-category targets y; = P(y = i|x), i € {1,...,C}
» Let the unnormalized log probability be defined as

zi = W,Th+b
zi = logls(y: i|x)
» Yielding the normalized probability estimation:
e?

P(y = I|X) S Softmax(z,-) e —

PO
j

» Minimizing the log-likelihood loss:

N
JO) = > —1y,-ilog P(y = i|x)
n=1
N
J(Q) = — Z 1yn:; zi — |ng e’
n=1 j

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning

18 / 35

Deep Forward Networks

Output and Hidden Units

Types of Hidden Units

» Question: Can we use a linear activation h = WTx + b?

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning

19 / 35

Deep Forward Networks Output and Hidden Units

MR
Types of Hidden Units VA

Question: Can we use a linear activation h = WTx + b?

v

v

Remember the most used hidden layer is RelLU:

h=g(W'x+ b) =max(0, W x + b)

v

Alternatively, the sigmoid function:

h=o(z)

v

or, the hyperbolic tangent:

h =tanh(z) =20(2z) — 1

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 19 / 35

Deep Forward Networks Output and Hidden Units

Architecture of Hidden Layers

A DFN with L hidden layers:

A = gD Ty p@)
hD = @@ 4 p@)

AL = OO T LD 4 D)

Different layers can have different activation functions.

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning

20 / 35

Deep Forward Networks

Back-propagation

Outline

Back-propagation

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning

Deep Forward Networks Back-propagation

Computational Graphs

Figure 5 : a) multiplication, b) logistic regression prediction, c) ReLU, d) linear
regression prediction and regularization, Source: Goodfellow et al., 2016

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 21 /35

Deep Forward Networks ~ Back-propagation
Chain-rule of Calculus
» Suppose y = g(x) and z = f(g(x)) = f(y), then
d _ dz dy
dx dy dx
» In the vector case, suppose x € R™, y € R”, and
y = g(x),g : R™ — R" together with z = f(y),f : R" —» R:
9z N~ 020y
ox; = Jy;j 0x;

» Compactly written using the Jacobian matrix % € R™™ as

dy T
VXZ = (ax> Vyz

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning

35

Deep Forward Networks Back-propagation

Backpropagation in Computational Graphs

Figure 6 : x=f(w), y=f(x), z=f(y), Source: Goodfellow et al., 2016

Subexpression f(w) is repeated:

oz _ 0zoyox
ow Oy Oxow
= f(y)f (x)f'(w)

= FFFW))F (F(w)f'(w)

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning

23 /35

Deep Forward Networks Back-propagation

Backpropagation in Computational Graphs (2)

Assume we want to compute a scalar u(”), e.g. loss of an instance

>
» Need to compute gradient w.r.t. n; input nodes u(®), ... u(") je.
» Need to compute 8 () Jied{l,... n}

» We assume the nodes are ordered such that the computations are
sequential, i.e. starting from u("*1) until u("

v

Let A() be the set of parent/predecessor nodes to u;
» AD « {4U) | j € Pa(ul)}

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 24 / 35

Deep Forward Networks Back-propagation

Backpropagation in Computational Graphs (3)

The feed-forward steps are:

fori=1,...,n; do
end for
fori=n;+1,...,ndo
AD — (w0 | j e Pa(u®)}
w® f(i)(A(i))
end for
return u™

Figure 7 : Feedforward in Computational Graphs, Source: Goodfellow et al., 2016

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 25 /35

Deep Forward Networks Back-propagation

s
Backpropagation in Computational Graphs (4) “

» The back-propagation is based on the chain-rule:

ou(m ou(m 9y
oul) — Z_ ou 9ul)

ijePa(uli))

» However, to avoid repeated computations, each node i computes and
du(™

5. in a table.

stores

» In that way, gradients of final node with respect to successor nodes
are not re-computed

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 26 / 35

Deep Forward Networks Back-propagation

NN
Back-propagation in Computational Graphs (5) “

Run forward propagation (algorithm 6.1 for this example) to obtain the activa-
tions of the network
Initialize grad_table, a data structure that will store the derivatives that have

been computed. The entry grad table[u()] will store the computed value of
Au ™

Quli)

grad_table[u(™)] « 1

for j =n—1down to 1 do

+ Tine ¢ , oum ou™) ult) ek s -
The next line computes T = Zi:jePa(uU)) o Gumy using stored values:

grad_table[ul)] + Zi:jepa(u(,)) grad_table[u(i)}%
end for
return {grad table[ud]|i=1,...,n;}

Figure 8 : Back-propagation in Computational Graphs, Source: Goodfellow et al.,
2016

u]
8
I
i
it

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 27 / 35

Deep Forward Networks Back-propagation

From Computational Graphs to MLP - An example

Layer (1) Layer (2) I(_)ayer ?3)
utput

» How can we compute y7?
» How about B‘M(/y@” and 8‘%” te{1,2,3},ge {1,2},re {1,2}7

» Lets derive on the board .

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 28 / 35

Deep Forward Networks Back-propagation

Motivating Back-propagation

RelLU Linear

2 =
W 1 —y=1

» Apply one gradient descent update on Wz(ll) with a learning rate 0.5.

» Lets see the reduction of loss on the board

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 29

35

Deep Forward Networks Back-propagation

Forward Computations in MLP

Require: Network depth, [
Require: W@ i € {1,...,1}, the weight matrices of the model
Require: b"),i € {1,...,1}, the bias parameters of the model
Require: x, the input to process
Require: y, the target output

hO) = ¢

for k=1,...,l do

() = bR L W p k-1
= j(a)

end for

g =ho

J =L(y,y) + A\2(H)

Figure 9 : Forward Computations for MLP, Source: Goodfellow et al., 2016

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 30 /35

Deep Forward Networks Back-propagation

Back-propagation in MLP

After the forward computation, compute the gradient on the output layer:
g« VyJ =VyL(y,y)
for k=101—-1,...,1do
Jonvert the gradient on the layer’s output into a gradient into the pre-
nonlinearity activation (element-wise multiplication if f is element-wise):
g < va(m J = g O] f/(ﬂ,“:))
Compute gradients on weights and biases (including the regularization term,
where needed):
Viwd =g+ AV 8(0)
VW(k)J =g h(k_l)T +)\VW(;;)Q(H)
Propagate the gradients w.r.t. the next lower-level hidden layer’s activations:
g < vh(k—l)J = W(’“)T g
end for

Figure 10 : Back-propagation for MLP, Source: Goodfellow et al., 2016

u]
8
I
i
it

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 31/35

Deep Forward Networks Back-propagation

Symbol-to-Symbol Derivatives

» A software engineering strategy for learning deep networks
» Add nodes in a computational graph to provide a symbolic description
of the derivatives (Theano, Tensorflow)

Figure 11 : Symbol-to-Symbol derivative, Source: Goodfellow et al., 2016

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 32 /35

Deep Forward Networks Back-propagation

Implementing General Back-propagation

» Each variable V is associated with three subroutines:

» get_operation (V): Get the operation that produced V
» get_consumers (V, G): Get the children of V in graph G
» get_inputs (V, G): Get the parents of V in graph G

» Every operation op has a bprop operation:

» op.bprob (inputs, X, G) =) (Vxop.f (inputs);)G;

I

» where G is the gradient of the loss w.r.t. the output of the operation

» where inputs are an abstraction for operation parameters

» where X is the specific input for which we would like to compute the
gradient of the loss w.r.t. it

» where op. f is the function that this operation performs

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 33

35

Deep Forward Networks Back-propagation

B
General Back-propagation - Start Method (1) i

Require: T, the target set of variables whose gradients must be computed.
Require: G, the computational graph
Require: z, the variable to be differentiated
Let G’ be G pruned to contain only nodes that are ancestors of z and descendents
of nodes in T.
Initialize grad_table, a data structure associating tensors to their gradients
grad_table[z] < 1
for Vin T do
build grad(V,G,G’, grad table)
end for
Return grad_table restricted to T

Figure 12 : Interface to General Back-prop, Source: Goodfellow et al., 2016

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning

34

35

Deep Forward Networks Back-propagation

General Back-propagation - Recursion (I1)

Require
Require
Require
Require

if Vis

: V, the variable whose gradient should be added to G and grad_table.
: G, the graph to modify.

: G, the restriction of G to nodes that participate in the gradient.

: grad_table, a data structure mapping nodes to their gradients

in grad_table then

Return grad_table[V]

end if
P41

for Cin get consumers(V,G’) do
op + get_operation(C)
D < build grad(C,G,G’,grad table)
G + op.bprop(get inputs(C,G'),V,D)
i1+1

end for

G+ ,G"

grad_table[V] =G

Insert G and the operations creating it into G

Return G

Figure 13 : Recursive General Back-prop, Source:- Goodfellow-et ak, 2016
Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning

85

35

	Introduction
	Feedforward Computations
	Output and Hidden Units
	Back-propagation

