

Deep Forward Networks

Dr. Josif Grabocka

ISMLL, University of Hildesheim

Deep Learning

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning ふして 前 ふぼとえばやえる

1 / 35

Outline

Introduction

Feedforward Computations

Output and Hidden Units

Back-propagation

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

Deep Forward Networks Introduction

What is a Deep Forward Network (DFN)?

► Feedforward networks, feedforward neural networks or multilayer perceptrons

- \blacktriangleright Given a function $y=f^*(x)$ that maps input x to category y
- ► A DFN defines a parametric mapping $\mathbf{\hat{y}} = \mathbf{f}(\mathbf{x}, \theta)$ with parameters θ
- Aim is to learn θ such as $f(x, \theta)$ best approximates $f^*(x)$!

Why Feedforward?

- Given a Feedforward Network $\mathbf{\hat{y}} = \mathbf{f}(\mathbf{x}, \theta)$
 - \blacktriangleright Input x, then pass through a chain of steps before outputting y
- No feedback exists between the chains of steps
 - ► Feedback connections yield the **Recurrent Neural Network**
- Example $f^1(x)$, $f^2(x)$ and $f^3(x)$ can be chained as:
 - $f(x) = f^3(f^2(f^1(x)))$
 - f^1 is the first layer, or the **input** layer
 - f^2 is the second layer, or a **hidden** layer
 - ► *f*³ is the last layer, or the **output** layer
- ► Number of hidden layers define the **depth** of the network
- Dimensionality of the hidden layers defines the width of the network

Why Neural?

- ► Loosely inspired by neuroscience, hence Artificial Neural Network
- ► Each hidden layer node resembles a neuron
- Input to a neuron are the synaptic connections from the previous attached neuron
- Output of a neuron is an aggregation of the input vector
- Signal propagates forward in a chain of "Neuron"-to-"Neuron" transmissions
- However, modern Deep Learning research is steered mainly by mathematical and engineering principles!

Why Network?

- ► A feed-forward network is an acyclic directed graph, but
 - Graph nodes are structured in layers
 - Directed links between nodes are parameters/weights
 - Each node is a computational functions
 - ► No inter-layer and intra-layer connections (but possible)
 - Input to the first layer is given (the features x)
 - \blacktriangleright Output is the computation of the last laver (the target $\boldsymbol{\hat{y}})$

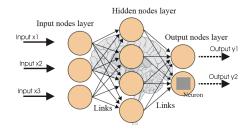


Figure 1 : FNN, Source www.analyticsvidhya.com

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning San

Nonlinear Mapping

- ► We can easily solve linear regression, but not every problem is linear.
- ► Can the function f(x) = (x + 1)² be approximated through a linear function?

Nonlinear Mapping

- ► We can easily solve linear regression, but not every problem is linear.
- ► Can the function f(x) = (x + 1)² be approximated through a linear function?
- ► Yes, but only if we **map** the feature x into a new space:

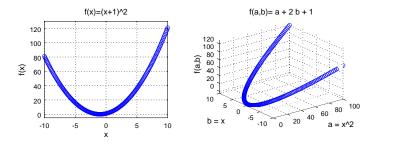


Figure 2 : Mapping feature x into a new dimensionality $x \to \phi(x) = (a, b)$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

Nonlinear Mapping (II)

• Which mapping $\phi(x)$ is the best?

There are various ways of designing $\phi(x)$:

- 1. Hand-craft (manually engineer) $\phi(\mathbf{x})$
- 2. Use a very generic $\phi(\mathbf{x})$, RBF or polynomial expansion
- 3. Parametrize and learn the mapping $\mathbf{f}(\mathbf{x}; \theta, \mathbf{w}) := \phi(\mathbf{x}, \theta)^{\mathsf{T}} \mathbf{w}$

Deep Forward Networks follow the third approach, where:

- ► the hidden layers (weights θ) learn the mapping $\phi(x, \theta)^T$
- ▶ the output layer (weights w) learns the function $f(x; \theta, w)$

San

Outline

Introduction

Feedforward Computations

Output and Hidden Units

Back-propagation

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

8 / 35

Deep Forward Networks Feedforward Computations

An example - Learn XOR

► XOR is a function:

<i>x</i> ₁	<i>x</i> ₂	$y = f^*(x)$
0	0	0
0	1	1
1	0	1
1	1	0

- Can we learn a DFN $\hat{\mathbf{y}} = \mathbf{f}(\mathbf{x}, \theta)$ such that f resembles f^* ?
- Our dataset $\mathcal{X} = \{[0, 0]^T, [1, 0]^T, [0, 1]^T, [1, 1]^T\}$
- Leading to the optimization:

< □ > < 同 > < 三</p>

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

୬ < ୧୦ 8 / 35

포 - 포

An example - Learn XOR (2)

► We will learn a simple DFN with one hidden layer:

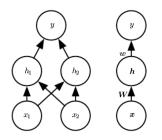


Figure 3 : Left: Detailed, Right: Compact, Source: Goodfellow et al., 2016

- Two functions are chained $h = f^1(x; W, c)$ and $y = f^2(y, w, b)$
 - ► For n-th instance: Hidden-layer $h_i^{(n)} = g\left(W_{:,i}^T x^{(n)} + c_i\right)$
 - For n-th instance: output layer: $\hat{y}_n = w^T h^{(n)} + b$
 - $W \in \mathbb{R}^{2 \times 2}, c \in \mathbb{R}^{2 \times 1}, w \in \mathbb{R}^{2 \times 1}, b \in \mathbb{R}$

Rectified Linear Unit

The rectified linear unit (ReLU) is defined by the activation function $g(z) = \max\{0, z\}$, i.e.:

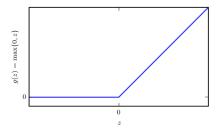


Figure 4 : The ReLU activation, Source: Goodfellow et al., 2016

Yielding the overall function:

$$\hat{y} = w^T \max\left\{0, W^T x + c\right\} + b$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning Э

"Deus ex machina" solution?

Suppose I magically found out that:

$$W = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \ c = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \ w = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \ b = 0$$

We would later on see an optimization technique called back-propagation to learn the network parameters.

XOR Solution - Hidden Layer Computations

$$\begin{aligned} h_{1}^{(1)} &= g\left(W_{:,1}^{T}x_{1}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}0\\0\end{bmatrix}+0\right) = g\left(0\right) = 0 \\ h_{2}^{(1)} &= g\left(W_{:,2}^{T}x_{1}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}0\\0\end{bmatrix}-1\right) = g\left(-1\right) = 0 \\ h_{1}^{(2)} &= g\left(W_{:,1}^{T}x_{2}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}0\\1\end{bmatrix}+0\right) = g\left(1\right) = 1 \\ h_{2}^{(2)} &= g\left(W_{:,2}^{T}x_{2}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}0\\1\end{bmatrix}-1\right) = g\left(0\right) = 0 \\ h_{1}^{(3)} &= g\left(W_{:,1}^{T}x_{3}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\0\end{bmatrix}+0\right) = g\left(1\right) = 1 \\ h_{2}^{(3)} &= g\left(W_{:,2}^{T}x_{3}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\0\end{bmatrix}-1\right) = g\left(0\right) = 0 \\ h_{1}^{(4)} &= g\left(W_{:,1}^{T}x_{4}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\1\end{bmatrix}+0\right) = g\left(2\right) = 2 \\ h_{2}^{(4)} &= g\left(W_{:,2}^{T}x_{4}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\1\end{bmatrix}-1\right) = g\left(1\right) = 1 \\ h_{2}^{(4)} &= g\left(W_{:,2}^{T}x_{4}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\1\end{bmatrix}-1\right) = g\left(1\right) = 1 \\ h_{2}^{(4)} &= g\left(W_{:,2}^{T}x_{4}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\1\end{bmatrix}-1\right) = g\left(1\right) = 1 \\ h_{2}^{(4)} &= g\left(W_{:,2}^{T}x_{4}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\1\end{bmatrix}-1\right) = g\left(1\right) = 1 \\ h_{2}^{(4)} &= g\left(W_{:,2}^{T}x_{4}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\1\end{bmatrix}-1\right) = g\left(1\right) = 1 \\ h_{2}^{(4)} &= g\left(W_{:,2}^{T}x_{4}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\1\end{bmatrix}-1\right) = g\left(1\right) = 1 \\ h_{2}^{(4)} &= g\left(W_{:,2}^{T}x_{4}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\1\end{bmatrix}-1\right) = g\left(1\right) = 1 \\ h_{2}^{(4)} &= g\left(W_{:,2}^{T}x_{4}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\1\end{bmatrix}-1\right) = g\left(1\right) = 1 \\ h_{2}^{(4)} &= g\left(W_{:,2}^{T}x_{4}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\1\end{bmatrix}-1\right) = g\left(1\right) = 1 \\ h_{2}^{(4)} &= g\left(W_{:,2}^{T}x_{4}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\1\end{bmatrix} = 1 \\ h_{2}^{(4)} &= g\left(W_{:,2}^{T}x_{4}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\1\end{bmatrix} = 1 \\ h_{2}^{(4)} &= g\left(W_{:,2}^{T}x_{4}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\1\end{bmatrix} = 1 \\ h_{2}^{(4)} &= g\left(W_{:,2}^{T}x_{4}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\1\end{bmatrix} = 1 \\ h_{2}^{(4)} &= g\left(W_{:,2}^{T}x_{4}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\1\end{bmatrix} = 1 \\ h_{2}^{(4)} &= g\left(W_{:,2}^{T}x_{4}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\1\end{bmatrix} = 1 \\ h_{2}^{(4)} &= g\left(W_{:,2}^{T}x_{4}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\1\end{bmatrix} = 1 \\ h_{2}^{(4)} &= g\left(W_{:,2}^{T}x_{4}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\1\end{bmatrix} = 1 \\ h_{2}^{(4)} &= g\left(W_{:,2}^{T}x_{4}+c\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}1\\1\end{bmatrix} = 1 \\ h_{2}^{(4)} &= g\left(W_{:,2}^{T}x_{4}+c\right) = g\left(U_{:,2}^{T}x_{4}+c\right) = g\left(U_{:,2$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

XOR Solution - Output Layer Computations

$$\hat{y}^{(1)} = w^{T} h^{(1)} + b = \begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + 0 = 0$$
$$\hat{y}^{(2)} = w^{T} h^{(2)} + b = \begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 0 = 1$$
$$\hat{y}^{(3)} = w^{T} h^{(3)} + b = \begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 0 = 1$$
$$\hat{y}^{(4)} = w^{T} h^{(4)} + b = \begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 0 = 0$$

The computations of the final layer match exactly those of the XOR function.

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

Outline

Introduction

Feedforward Computations

Output and Hidden Units

Back-propagation

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

14 / 35

Gradient-Based Learning - Maximum Likelihood

The loss/cost can be expressed in probabilistic terms as

$$J(\theta) = -\mathbf{E}_{x, y \sim \hat{p}_{data}} \log p_{\text{model}}(y \mid x)$$

We early saw that assuming normality $p_{model}(y \mid x) = \mathcal{N}(y; f(x, \theta), I)$

$$J(\theta) = \frac{1}{2} \mathbf{E}_{x, y \sim \hat{p}_{data}} ||y - f(x, \theta)||^2 + \text{const}$$

Solving for the optimal DFN parameters:

$$\theta^{\mathsf{opt}} =: \underset{\theta}{\operatorname{argmax}} \mathbf{E}_{x, y \sim \hat{p}_{data}} ||y - f(x, \theta)||^2$$

Yields a function that outputs the mean: $f(x, \theta^{\text{opt}}) = \mathsf{E}_{x, y \sim \hat{p}_{data}(y|x)}[y]$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

500

Output Units - Gaussian Output Distribution

- ► Affine transformation with no nonlinearity
 - Given features h, produces $\hat{y} = w^T h + b$

- ► Used to produce the mean of a conditional Gaussian distribution
 - $p(y | x) = \mathcal{N}(y; \hat{y}, I)$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

Bernoulli Output Distributions

- ► Binary target variables follow a Bernoulli distribution P(y = 1) = p, P(y = 0) = 1 - p
- Train a DFN such that $\hat{y} = f(x, \theta) \in [0, 1]$
- ► Naive Option: Clip a linear output layer:
 - $P(y = 1 | x) = \max \{0, \min \{1, w^T h + b\}\}$
- What is the problem with the clipped linear output layer?

<ロト < 同ト < 三ト < 三ト < 三ト < ○への</p>

Bernoulli Output Distributions (2)

► Use a smooth sigmoid output unit:

$$\hat{y} = \sigma(z) = \frac{e^z}{e^z + 1}$$
$$z = w^T h + b$$

• The loss for a DFN $f(x, \theta)$ with a sigmoid output is:

$$J(\theta) = \sum_{n=1}^{N} -y_n \log(f(x_n, \theta)) - (1 - y_n) \log(1 - f(x_n, \theta))$$

► Also called as Cross-entropy Cost Function

Multinoulli Output Distribution

- ▶ For multi-category targets $\hat{y}_i = P(y = i | x), i \in \{1, ..., C\}$
- Let the unnormalized log probability be defined as

$$z_i = w_i^T h + b$$

 $z_i = log \tilde{P}(y = i | x)$

► Yielding the normalized probability estimation:

$$P(y=i|x) pprox ext{softmax}(z_i) = rac{e^{z_i}}{\sum\limits_i e^{z_j}}$$

• Minimizing the log-likelihood loss:

$$J(\theta) = \sum_{n=1}^{N} -1_{y_n=i} \log P(y=i|x)$$

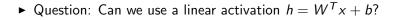
$$J(\theta) = -\sum_{n=1}^{N} 1_{y_n=i} \left(z_i - \log \sum_{\substack{i \in \mathbb{D} \\ i \in \mathbb{D} > j \in \mathbb{D} \\ i \in \mathbb{D} > j \in \mathbb{D} } e^{z_j} \right)_{z \in \mathbb{D} < i \in \mathbb{D} > j \in \mathbb{D}}$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

Types of Hidden Units

• Question: Can we use a linear activation $h = W^T x + b$?

Types of Hidden Units



► Remember the most used hidden layer is ReLU:

$$h = g(W^T x + b) = \max(0, W^T x + b)$$

Alternatively, the sigmoid function:

$$h = \sigma(z)$$

► or, the hyperbolic tangent:

$$h = \tanh(z) = 2\sigma(2z) - 1$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

19 / 35

Architecture of Hidden Layers

Shiversiter Shidesheift

A DFN with L hidden layers:

$$h^{(1)} = g^{(1)}(W^{(1)^{T}}x + b^{(1)})$$

$$h^{(2)} = g^{(2)}(W^{(2)^{T}}h^{(1)} + b^{(2)})$$

...

$$h^{(L)} = g^{(L)}(W^{(L)^{T}}h^{(L-1)} + b^{(L)})$$

Different layers can have different activation functions.

500

Outline

Introduction

Feedforward Computations

Output and Hidden Units

Back-propagation

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

21 / 35

Computational Graphs

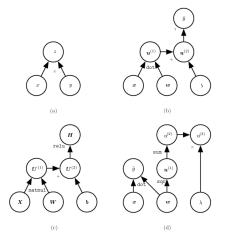


Figure 5 : a) multiplication, b) logistic regression prediction, c) ReLU, d) linear regression prediction and regularization, Source: Goodfellow et al., 2016

(ヘロト 《聞 》 《臣 》 《臣 》 《 国 》 《 ロ 》

Chain-rule of Calculus

► Suppose
$$y = g(x)$$
 and $z = f(g(x)) = f(y)$, then

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$$

▶ In the vector case, suppose $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$, and $y = g(x), g : \mathbb{R}^m \to \mathbb{R}^n$ together with $z = f(y), f : \mathbb{R}^n \to \mathbb{R}$:

$$\frac{\partial z}{\partial x_i} = \sum_{j=1}^n \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}$$

• Compactly written using the Jacobian matrix $\frac{\partial y}{\partial x} \in \mathbb{R}^{n \times m}$ as

$$\nabla_{\mathsf{X}} z = \left(\frac{\partial y}{\partial x}\right)^T \nabla_{\mathsf{Y}} z$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

・ロト ・ 中 ・ モ ・ ・ モ ・ ・ モ ・ う へ ()・

Deep Forward Networks Back-propagation

Backpropagation in Computational Graphs

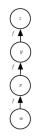


Figure 6 : x=f(w), y=f(x), z=f(y), Source: Goodfellow et al., 2016

Subexpression f(w) is repeated:

$$\frac{\partial z}{\partial w} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} \frac{\partial x}{\partial w}$$

$$= f'(y)f'(x)f'(w)$$

$$= f'(f(f(w)))f'(f(w))f'(w)$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

Backpropagation in Computational Graphs (2)

- Assume we want to compute a scalar $u^{(n)}$, e.g. loss of an instance
- ▶ Need to compute gradient w.r.t. n_i input nodes $u^{(1)}, \ldots, u^{(n_i)}$, i.e.
- Need to compute $\frac{\partial u^{(n)}}{\partial u^{(i)}}, i \in \{1, \dots, n_i\}$
- ► We assume the nodes are ordered such that the computations are sequential, i.e. starting from u^(n_i+1) until u⁽ⁿ⁾
- Let A⁽ⁱ⁾ be the set of parent/predecessor nodes to u⁽ⁱ⁾:
 A⁽ⁱ⁾ ← {u^(j) | j ∈ Pa(u⁽ⁱ⁾)}

Deep Forward Networks Back-propagation

Backpropagation in Computational Graphs (3)

The feed-forward steps are:

$$\begin{array}{l} \mathbf{for} \ i = 1, \dots, n_i \ \mathbf{do} \\ u^{(i)} \leftarrow x_i \\ \mathbf{end} \ \mathbf{for} \\ \mathbf{for} \ i = n_i + 1, \dots, n \ \mathbf{do} \\ \mathbb{A}^{(i)} \leftarrow \{u^{(j)} \mid j \in Pa(u^{(i)})\} \\ u^{(i)} \leftarrow f^{(i)}(\mathbb{A}^{(i)}) \\ \mathbf{end} \ \mathbf{for} \\ \mathbf{return} \ u^{(n)} \end{array}$$

Figure 7 : Feedforward in Computational Graphs, Source: Goodfellow et al., 2016

Deep Forward Networks Back-propagation

Backpropagation in Computational Graphs (4)

• The back-propagation is based on the chain-rule:

$$\frac{\partial u^{(n)}}{\partial u^{(j)}} = \sum_{i:j \in \mathsf{Pa}(u^{(i)})} \frac{\partial u^{(n)}}{\partial u^{(i)}} \frac{\partial u^{(i)}}{\partial u^{(j)}}$$

- In that way, gradients of final node with respect to successor nodes are not re-computed

Back-propagation in Computational Graphs (5)

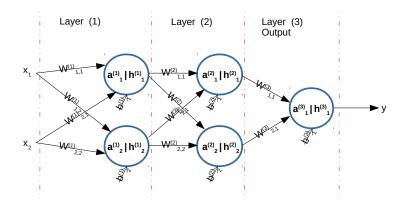
Run forward propagation (algorithm 6.1 for this example) to obtain the activations of the network

Initialize grad_table, a data structure that will store the derivatives that have been computed. The entry grad_table[$u^{(i)}$] will store the computed value of $\frac{\partial u^{(n)}}{\partial n^{(i)}}$.

$$\begin{split} & \text{for } j = n - 1 \text{ down to } 1 \text{ do} \\ & \text{ The next line computes } \frac{\partial u^{(n)}}{\partial u^{(j)}} = \sum_{i:j \in Pa(u^{(i)})} \frac{\partial u^{(n)}}{\partial u^{(j)}} \frac{\partial u^{(i)}}{\partial u^{(j)}} \text{ using stored values:} \\ & \text{grad_table}[u^{(j)}] \leftarrow \sum_{i:j \in Pa(u^{(i)})} \text{grad_table}[u^{(i)}] \frac{\partial u^{(i)}}{\partial u^{(j)}} \\ & \text{end for} \\ & \text{return } \{\text{grad_table}[u^{(i)}] \mid i = 1, \dots, n_i\} \end{split}$$

Figure 8 : Back-propagation in Computational Graphs, Source: Goodfellow et al., 2016

From Computational Graphs to MLP - An example

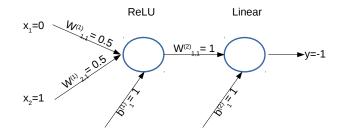


- ► Lets derive on the board ...

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

Jriversiter Hildesheif

Motivating Back-propagation



- Apply one gradient descent update on $W_{2,1}^{(1)}$ with a learning rate 0.5.
- ► Lets see the reduction of loss on the board

Forward Computations in MLP

Shiversiter,

Require: Network depth, l **Require:** $W^{(i)}, i \in \{1, \ldots, l\}$, the weight matrices of the model **Require:** $b^{(i)}, i \in \{1, \ldots, l\}$, the bias parameters of the model **Require:** \boldsymbol{x} , the input to process **Require:** y, the target output $h^{(0)} = x$ for $k = 1, \ldots, l$ do $a^{(k)} = b^{(k)} + W^{(k)} h^{(k-1)}$ $\boldsymbol{h}^{(k)} = f(\boldsymbol{a}^{(k)})$ end for $\hat{\boldsymbol{u}} = \boldsymbol{h}^{(l)}$ $J = L(\hat{\boldsymbol{y}}, \boldsymbol{y}) + \lambda \Omega(\theta)$

Figure 9 : Forward Computations for MLP, Source: Goodfellow et al., 2016

Back-propagation in MLP

After the forward computation, compute the gradient on the output layer: $\boldsymbol{g} \leftarrow \nabla_{\hat{\boldsymbol{y}}} J = \nabla_{\hat{\boldsymbol{y}}} L(\hat{\boldsymbol{y}}, \boldsymbol{y})$ for $k = l, l-1, \ldots, 1$ do

Convert the gradient on the layer's output into a gradient into the prenonlinearity activation (element-wise multiplication if f is element-wise):

$$\boldsymbol{g} \leftarrow \nabla_{\boldsymbol{a}^{(k)}} J = \boldsymbol{g} \odot f'(\boldsymbol{a}^{(k)})$$

Compute gradients on weights and biases (including the regularization term, where needed):

$$\begin{split} \nabla_{\boldsymbol{b}^{(k)}} J &= \boldsymbol{g} + \lambda \nabla_{\boldsymbol{b}^{(k)}} \Omega(\boldsymbol{\theta}) \\ \nabla_{\boldsymbol{W}^{(k)}} J &= \boldsymbol{g} \ \boldsymbol{h}^{(k-1)\top} + \lambda \nabla_{\boldsymbol{W}^{(k)}} \Omega(\boldsymbol{\theta}) \\ \text{Propagate the gradients w.r.t. the next lower-level hidden layer's activations:} \\ \boldsymbol{g} \leftarrow \nabla_{\boldsymbol{h}^{(k-1)}} J &= \boldsymbol{W}^{(k)\top} \ \boldsymbol{g} \\ \text{end for} \end{split}$$

Figure 10 : Back-propagation for MLP, Source: Goodfellow et al., 2016

Symbol-to-Symbol Derivatives

- Jniversiter.
- ► A software engineering strategy for learning deep networks
- Add nodes in a computational graph to provide a symbolic description of the derivatives (Theano, Tensorflow)

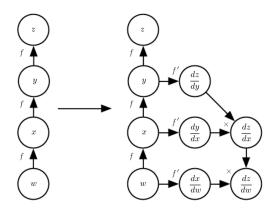


Figure 11 : Symbol-to-Symbol derivative, Source: Goodfellow et al., 2016

Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning

Implementing General Back-propagation

- ► Each variable **V** is associated with three subroutines:
 - \blacktriangleright get_operation (V): Get the operation that produced V
 - ▶ get_consumers (V, G): Get the children of V in graph G
 - ▶ get_inputs (V, G): Get the parents of V in graph G
- Every operation op has a bprop operation:
 - op.bprob(inputs, X, G) = $\sum_{i} (\nabla_{\mathbf{X}} \circ \mathbf{p}.f(inputs)_{i}) \mathbf{G}_{i}$
 - \blacktriangleright where \boldsymbol{G} is the gradient of the loss w.r.t. the output of the operation
 - where inputs are an abstraction for operation parameters
 - ► where X is the specific input for which we would like to compute the gradient of the loss w.r.t. it
 - where op.f is the function that this operation performs

Universiter Fildesheim

General Back-propagation - Start Method (I)

Require: \mathbb{T} , the target set of variables whose gradients must be computed. **Require:** \mathcal{G} , the computational graph **Require:** z, the variable to be differentiated Let \mathcal{G}' be \mathcal{G} pruned to contain only nodes that are ancestors of z and descendents of nodes in \mathbb{T} . Initialize grad_table, a data structure associating tensors to their gradients grad_table[z] $\leftarrow 1$ for V in \mathbb{T} do build_grad($V, \mathcal{G}, \mathcal{G}', \text{grad_table}$) end for Return grad_table restricted to \mathbb{T}

Figure 12 : Interface to General Back-prop, Source: Goodfellow et al., 2016

General Back-propagation - Recursion (II)


```
Require: V, the variable whose gradient should be added to \mathcal{G} and grad_table.
Require: \mathcal{G}, the graph to modify.
Require: \mathcal{G}', the restriction of \mathcal{G} to nodes that participate in the gradient.
Require: grad_table, a data structure mapping nodes to their gradients
  if V is in grad_table then
     Return grad table[V]
  end if
  i \leftarrow 1
  for C in get consumers(V, G') do
     op \leftarrow get operation(\mathbf{C})
     D \leftarrow \text{build grad}(C, G, G', \text{grad table})
     \mathbf{G}^{(i)} \leftarrow \texttt{op.bprop}(\texttt{get inputs}(\mathbf{C}, \mathcal{G}'), \mathbf{V}, \mathbf{D})
     i \leftarrow i + 1
  end for
  \mathbf{G} \leftarrow \sum_{i} \mathbf{G}^{(i)}
  grad table [V] = G
  Insert G and the operations creating it into \mathcal{G}
  Return G
```

Figure 13 : Recursive General Back-prop, Source: Goodfellow et a ⊨, 2016 ∽ ດ ↔ Dr. Josif Grabocka, ISMLL, University of Hildesheim Deep Learning 35 / 35