
Regularization

Regularization for Deep Learning

Dr. Josif Grabocka

ISMLL, University of Hildesheim

Deep Learning

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 1 / 20

Regularization

Regularization

I Limit the capacity of a model to avoid over-fitting

I Extend the cost-function by adding a penalization term

J̃(θ;X , y) = J(θ;X , y) + αΩ(θ)

I α ∈ [0,∞) is also known as the regularization penalty

I Regularize the neuron weights, but not the bias terms

I For simplicity use the same α for all layers

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 2 / 20

Regularization

Motivating Regularization

Figure 1: Regularizing polynomial regression (order 15), Source
www.analyticsvidhya.com

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 3 / 20

www.analyticsvidhya.com

Regularization

L2 Regularization

I The L2 regularization penalizes high w values

J̃(w ;X , y) = J(w ;X , y) +
α

2
wTw

I Gradients of the cost w.r.t. the weights are

∇w J̃(w ;X , y) = ∇wJ(w ;X , y) + αw

I Remember ∇wJ(w ;X , y) is computed through back-propagation

I A simple gradient descent step with a learning rate ε is:

w ← w − ε (∇wJ(w ;X , y) + αw)

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 4 / 20

Regularization

L1 Regularization

I The L1 regularization:

J̃(w ;X , y) = J(w ;X , y) + α||w ||1
= J(w ;X , y) + α

∑
k

|wk |

I Gradients of the cost w.r.t. the weights are

∇w J̃(w ;X , y) = ∇wJ(w ;X , y) + α

({
1 if wk > 0

−1 if wk ≤ 0

)

I A simple gradient descent step with a learning rate ε is:

w ← w − ε

(
∇wJ(w ;X , y) + α

({
1 if wk > 0

−1 if wk ≤ 0

))
Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 5 / 20

Regularization

L1 and L2 Regularizations - Illustration of the Principle

Figure 2: Competing objective terms. i) the blue line represents the L1
regularization, ii) the red line represents the L1 regularization, while iii) solid lines
represent the cost function. Source: g2pi.tsc.uc3m.es

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 6 / 20

g2pi.tsc.uc3m.es

Regularization

Constraint Optimization

I The standard regularized objective:

J̃(θ;X , y) = J(θ;X , y) + αΩ(θ)

I A constrained problem forces Ω(w) < k as:

J̃(θ, α;X , y) = J(θ;X , y) + α (Ω(θ)− k)

I The solution is by deriving a new objective:

θ∗ = argmin
θ

max
α,α≥0

[J(θ;X , y) + α (Ω(θ)− k)]

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 7 / 20

Regularization

Dataset Augmentation (Noise to Input)
I Train the network with more data to improve generalization

I Create ”fake” data by perturbing existing training set instances

I Effective for object recognition:
I Translation, rotation, scaling of images; or deformation strategies:

Figure 3: An illustrative strategy for digit images augmentation,
Source: compute.dtu.dk

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 8 / 20

Regularization

Noise Robustness (Noise to Weights)

I Noise to weights reduces over-fitting and is used primarily with
recurrent neural networks

I Consider a regression problem:

J = Ep(x ,y)

[
(ŷ(x)− y)2

]
I Adding a perturbation εw ∼ N (0, ηI) to the network weights yield a

perturbed prediction ŷew (x), such that:

J = Ep(x ,y ,εw)

[
(ŷεw (x)− y)2

]
= Ep(x ,y ,εw)

[
ŷεw (x)2 − 2yεw (x)y + y2

]
I The optimization of this objective for small η is equivalent to adding

an additional regularization ηEp(x ,y ,εw)

[
||∇w ŷ(x)||2

]
Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 9 / 20

Regularization

Early Stopping - Motivation

Figure 4: There is a better generalization in the earlier epochs of the
optimization, Source: Goodfellow et al., 2016

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 10 / 20

Regularization

Early Stopping (Source: Goodfellow et al., 2016)

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 11 / 20

Regularization

Early Stopping as a Regularizer

Figure 5: Effect of early stopping (left) on the parameter weights, compared to L2
regularization (right). Source: Goodfellow et al., 2016

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 12 / 20

Regularization

Bagging (Boostrap Aggregating)
I Sample the training dataset with replacement and create subsets
I Learn one model for each subset and then aggregate the predictions

of each model
I Also known as ensemble methods with model averaging
I Bagging helps reducing the generalization error

Figure 6: Classify 8-vs-others in digit recognition, Source: Goodfellow et al., 2016

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 13 / 20

Regularization

Understanding Bagging

I Ensemble models make errors εi , i = 1, . . . , k in a regression task:
I Each εi is drawn from a multivariate normal distribution with mean 0,

variance E
[
ε2i
]

= v and covariances E [εiεj] = c

I The overall error of an ensemble is 1
k

k∑
i=1

εi

I The expected squared error of the ensemble is

E

(1

k

k∑
i=1

εi

)2
 =

1

k2
E

 k∑
i=1

ε2i +
∑
j 6=i

εiεj

 =
1

k
v +

k − 1

k
c

I (A) If errors are perfectly correlated, c = v then squared error is v

I (B) If errors are perfectly uncorrelated, c = 0 then squared error is v
k

I In (A) ensemble doesn’t help and in (B) the error is reduced linearly

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 14 / 20

Regularization

Dropout - Bagging of random neural subnetworks

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 15 / 20

Regularization

Dropout Mechanism

I Dropout a node by multiplying its output by zero

I Only input and hidden nodes are dropped out

I Minibatch-based learning
I for each batch of training instances we sample different binary masks

for input/hidden units

I Typically an input unit is included with a probability of 0.8 and
hidden unit with a probability of 0.5

I Compute back-propagation as usual but multiplying the activations by
the mask

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 16 / 20

Regularization

Dropout - Forward computations (i)

I For every mini-batch of the training set,

I For input layer sample drop-out masks µ(0) ∼ Bernoulli(pinput)N
I For hidden layer l = 1, . . . , L sample µ(l) ∼ Bernoulli(phidden)Nl

h(1) = g (1)
(
W (1)T

(
x
⊗

µ(0)
)

+ b(1)
)

h(2) = g (2)
(
W (2)T

(
h(1)

⊗
µ(1)

)
+ b(2)

)
. . .

h(L) = g (L)
(
W (L)T

(
h(L−1)

⊗
µ(L−1)

)
+ b(L)

)
where

⊗
is the element-wise multiplication.

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 17 / 20

Regularization

Dropout - Forward computation (ii)

Figure 7: Illustrating drop-out masks, Source: Goodfellow et al., 2016

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 18 / 20

Regularization

Dropout - Back-propagation

When running backpropagation mulptiply gradients by the masks:

∂L(y , h(L))

∂W
(l)
j ,i

=
∂L(y , h(L))

∂a
(l)
i

∂a
(l)
i

∂W
(l)
j ,i

=
∂L(y , h(L))

∂a
(l)
i

h
(l−1)
j µ

(l−1)
j

=
∂L(y , h(L))

∂a
(l)
i

{
h
(l−1)
j µ

(l−1)
j if l − 1 > 0

xjµ
(0)
j if l − 1 = 0

Remember ∂L(y ,h(L))
∂a

(l)
i

are stored during back-propagation

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 19 / 20

Regularization

Dropout - Inference

Use the weight scaling rule for inference:

h(1) = g (1)(W (1)T
(
x
⊗

~pinputN

)
+ b(1))

h(2) = g (2)(W (2)T
(
h(1)

⊗
~phiddenN1

)
+ b(2))

. . .

h(L) = g (L)(W (L)T
(
h(L−1)

⊗
~phiddenNL−1

)
+ b(L))

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Deep Learning 20 / 20

