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Regularization

Regularization

v

Limit the capacity of a model to avoid over-fitting

v

Extend the cost-function by adding a penalization term

J(0; X,y) = J(6; X, y) + aQ2(6)

v

a € [0,00) is also known as the regularization penalty

v

Regularize the neuron weights, but not the bias terms

v

For simplicity use the same « for all layers

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning

N



Regularization

Motivating Regularization
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Figure 1: Regularizing polynomial regression (order 15), Source
www.analyticsvidhya.com
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Regularization

[? Regularization

The L2 regularization penalizes high w values

v

Jw; X, y) = J(w; X, y) + %WTW

v

Gradients of the cost w.r.t. the weights are

Vwd(w; X,y) =V, J(w; X, y) + aw

v

Remember V,,J(w; X, y) is computed through back-propagation

v

A simple gradient descent step with a learning rate € is:

w < w —e(Vud(w; X, y) + aw)

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Deep Learning 4



Regularization

L' Regularization
» The L regularization:

Jw; X,y) = J(w; X,y)+«af|lw||1
= J(W;X,y)—FOéZ’Wk‘
k

» Gradients of the cost w.r.t. the weights are

- 1 if we >0
Vud(w; X,y) = Vud(w; X, y) +
(w; X, y) (w; X, y) +a ({_1 i wy < 0>

» A simple gradient descent step with a learning rate ¢ is:

1 if we >0
W w e( (w; X,y) a({_l ” Wk§0)>
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Regularization

v

L1 and L2 Regularizations - lllustration of the Principle

W29 4

Figure 2: Competing objective terms. i) the blue line represents the L1
regularization, ii) the red line represents the L1 regularization, while iii) solid lines
represent the cost function. Source: g2pi.tsc.uc3m.es
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Regularization

Constraint Optimization

» The standard regularized objective:

JO; X,y) = J(0;X,y)+ aQ(h)

» A constrained problem forces Q(w) < k as:

JO,a; X,y) = J(O; X,y)+ a(Q(0) — k)

» The solution is by deriving a new objective:

0 = arggnin max_[J(6; X, y) + a (2(0) — k)]

a,a>0
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Regularization

Dataset Augmentation (Noise to Input)

» Train the network with more data to improve generalization

» Create "fake” data by perturbing existing training set instances

» Effective for object recognition:

» Translation, rotation, scaling of images; or deformation strategies:

Figure 3: An illustrative strategy for digit images augmentation,

Saiirce: comnuite din dk
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Regularization

Noise Robustness (Noise to Weights)

» Noise to weights reduces over-fitting and is used primarily with
recurrent neural networks

» Consider a regression problem:
J o= By |0) = )]

» Adding a perturbation €, ~ N(0,n/) to the network weights yield a
perturbed prediction ye,(x), such that:

J = EP(vavew) |:(-),}€W (X) - y)2i|
Ep(x,y,ew) [)A’ew(x)z — 2y, (X)y + )/2]

» The optimization of this objective for small 7 is equivalent to adding
an additional regularization nE,(xy.c.) [[IVw9(X)[?]
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Regularization

NN
Early Stopping - Motivation “
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Figure 4: There is a better generalization in the earlier epochs of the
optimization, Source: Goodfellow et al., 2016
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Regularization

NS
Early Stopping (Source: Goodfellow et al., 2016) “

Let n be the number of steps between evaluations.
Let p be the “patience,” the number of times to observe worsening validation set
error before giving up.
Let 6, be the initial parameters.
6«0,
i< 0
j+<0
vV 4 00
0" — 0
while j < p do
Update 0 by running the training algorithm for n steps.
i< i+n
v’ « ValidationSetError()
if v/ < v then
j+0
g «—0
1
v
else
jej+1
end if
end while
Best parameters are 8*, best number of training steps is ¢*

] = =
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Regularization

Early Stopping as a Regularizer
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Figure 5: Effect of early stopping (left) on the parameter weights, compared to L2
regularization (right). Source: Goodfellow et al., 2016
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Regularization

NN
Bagging (Boostrap Aggregating) “

v

Sample the training dataset with replacement and create subsets
Learn one model for each subset and then aggregate the predictions
of each model

Also known as ensemble methods with model averaging

Bagging helps reducing the generalization error

v

vy

Original dataset

@O®

First resampled dataset First ensemble member

®O®=>O=>0)

Second resampled dataset Second ensemble member

Figure 6: Classify 8-vs-others in digit recognition, Source: Goodfellow et al., 2016
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Regularization

NN
Understanding Bagging “

» Ensemble models make errors ¢;,i = 1,..., k in a regression task:

» Each ¢; is drawn from a multivariate normal distribution with mean 0,
variance E [¢?] = v and covariances E [e;¢;] = ¢

k
» The overall error of an ensemble is % Zle,-
1=
» The expected squared error of the ensemble is
K 2 K
1 1 1 k—1
2|(i30) |- Re 3 (40 3o ) | <R e
i=1 i=1 JFi
» (A) If errors are perfectly correlated, ¢ = v then squared error is v
> (B) If errors are perfectly uncorrelated, ¢ = 0 then squared error is
» In (A) ensemble doesn't help and in (B) the error is reduced linearly
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Regularization

Dropout - Bagging of random neural subnetworks
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Ensemble of subnetworks
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Regularization

Dropout Mechanism

v

Dropout a node by multiplying its output by zero

v

Only input and hidden nodes are dropped out

v

Minibatch-based learning

» for each batch of training instances we sample different binary masks
for input/hidden units

v

Typically an input unit is included with a probability of 0.8 and
hidden unit with a probability of 0.5

v

Compute back-propagation as usual but multiplying the activations by
the mask
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Regularization

Dropout - Forward computations (i)

» For every mini-batch of the training set,
» For input layer sample drop-out masks u(®) ~ Bernoulli( pinput ) v

> For hidden layer / = 1,..., L sample () ~ Bernoulli(pridden)n;

0 =g (7 (@) )
JHC) - g(2)< 2)T< ®u(1))+b )

OO (W(L)T (h(L—l) (X)u“‘”) 4 b(L)>
where @) is the element-wise multiplication.
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Regularization

Dropout - Forward computation (ii)

Figure 7: Illustrating drop-out masks, Source: Goodfellow et al., 2016
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Regularization

Dropout - Back-propagation

When running backpropagation mulptiply gradients by the masks:

OL(y,hV))  AL(y,hY) 9a"
aow 90 o
5! I J»i

AL(y, DY (1_1y (-
(v L )hJ(/ 1)M§/ 1)
Oa;
B aquﬂn{@””é“” if/—1>0

0a  \xd” ifl—1=0

(L) . .
Remember aﬁgy}g ) are stored during back-propagation
a

i
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Regularization

Dropout - Inference

Use the weight scaling rule for inference:

T -
T o
he = g®w® (h(l) (039 Phiddean> + b?)
o )
hh = gt <h(L 2 ®PhiddenNL_1> + b))
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