
Recurrent Neural Networks

Recurrent Neural Networks (RNN)

Dr. Josif Grabocka

ISMLL, University of Hildesheim

Recurrent Neural Networks

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Recurrent Neural Networks 1 / 17

Recurrent Neural Networks

Unfolding Computational Graphs

I Activation in a recurrent network depend on the activation history

h(t) = f (h(t−1), x (t); θ)

I The unfolded recurrence after t steps with a function g (t):

h(t) = g (t)(x (t), x (t−1), . . . , x (1))

h(t) = f (h(t−1), x (t); θ)

Figure 1: A recurrent computational graph, Source: Goodfellow et al., 2016

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Recurrent Neural Networks 2 / 17

Recurrent Neural Networks

Recurrent Neural Networks (RNN)
I Regardless of sequence length the model has same input size
I It is possible to use the same transition function with same parameters
I RNNs have recurrent connections between hidden units

Figure 2: A recurrent neural network, Source: Goodfellow et al., 2016

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Recurrent Neural Networks 3 / 17

Recurrent Neural Networks

RNN - Prediction Model (Single Layer)

I The aggregation a ∈ RN×1 depends on the previous activations
h(t−1) ∈ RN×1 and current input x (t) ∈ RM×1:

a(t) = b + W h(t−1) + U x (t), W ∈ RN×N ,U ∈ RN×M

I The activations h(t−1) ∈ RN×1 are non-linear firings:

h(t) = tanh(a(t))

I The per-label outputs o(t) ∈ RL×1 are:

o(t) = c + V h(t), V ∈ RL×N

I And the predictions are the softmax of the per-label outputs:

ŷ (t) = softmax(o(t)), i.e.: y
(t)
` =

eo
(t)
`∑L

`′=1 e
o
(t)

`′

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Recurrent Neural Networks 4 / 17

Recurrent Neural Networks

RNN Loss

I The loss is defined as the negative likelihood of y τ given x (1), . . . , x (τ)

L
({

x (1), . . . , x (τ)
}
,
{
y (1), . . . , y (τ)

})
=

τ∑
t=1

L(t)

= −
τ∑

t=1

logP
(
y (t) |

{
x (1), . . . , x (τ)

})

I States computed during the O(τ) forward pass needs to be stored for
back-propagation through time (BPTT)

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Recurrent Neural Networks 5 / 17

Recurrent Neural Networks

RNN Learning - BPTT

I Gradient of loss w.r.t. the output at time step t is:

∂L
∂o

(t)
`

=
∂L
∂L(t)

∂L(t)

∂o
(t)
`

= ŷ
(t)
` − 1`,y (t)

I For the last sequence prediction at time τ :

∂L
∂h

(τ)
i

=
∂L
∂L(τ)

∂L(τ)

∂h
(τ)
i

=
∂L
∂L(τ)

L∑
`=1

∂L(τ)

∂o
(τ)
`

∂o
(τ)
`

∂h
(τ)
i

=
L∑
`=1

(
ŷ
(τ)
` − 1`,y (τ)

)
V`,i

I Back-propagate ∂L
∂h

(t)
i

to compute ∂L
∂h

(t−1)
i

, for t = τ, τ − 1, . . . , 2

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Recurrent Neural Networks 6 / 17

Recurrent Neural Networks

RNN Learning - BPTT (2)

I Using previously computed ∂L
∂h(t+1) and stored h(t+1), ŷ (t)

I For 1 < t < τ , note that h
(t)
i contributes to all h(t+1) ∈ RN and all

o(t) ∈ RL, leading to:

∂L
∂h

(t)
j

=
N∑
i=1

∂L
∂h

(t+1)
i

∂h
(t+1)
i

∂h
(t)
j

+
L∑
`=1

∂L
∂o

(t)
`

∂o
(t)
`

∂h
(t)
j

=
N∑
i=1

∂L
∂h

(t+1)
i

(
1−

(
h
(t+1)
i

)2)
Wi ,j

+
L∑
`=1

(
ŷ
(t)
` − 1`,y (t)

)
V`,j

I Keep back-propagating ∂L
∂h(t)

to compute ∂L
∂h(t−1) until t = 1

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Recurrent Neural Networks 7 / 17

Recurrent Neural Networks

RNN Learning - BPTT (3)

I Using computed gradients ∂L
∂h(t)

and ∂L
∂o(t) , for t = τ, . . . , 1

I Then we can compute gradient w.r.t. parameters:

∂L
∂c`

=
τ∑

t=1

∂L
∂o

(t)
`

∂o
(t)
`

∂c
(t)
`

=
τ∑

t=1

∂L
∂o

(t)
`

∂L
∂bi

=
τ∑

t=1

∂L
∂h

(t)
i

∂h
(t)
i

∂b
(t)
i

=
τ∑

t=1

∂L
∂h

(t)
i

(
1−

(
h
(t)
i

)2)
∂L
∂V`,i

=
τ∑

t=1

∂L
∂o

(t)
`

∂o
(t)
`

∂V
(t)
`,i

=
τ∑

t=1

∂L
∂o

(t)
`

h
(t)
i

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Recurrent Neural Networks 8 / 17

Recurrent Neural Networks

RNN Learning - BPTT (4)

I Continuing with the activation parameters W ,U:

∂L
∂Wi ,j

=
τ∑

t=2

∂L
∂h

(t)
i

∂h
(t)
i

∂W
(t)
i ,j

=
τ∑

t=2

∂L
∂h

(t)
i

(
1−

(
h
(t)
i

)2)
h
(t−1)
j

∂L
∂Ui ,m

=
τ∑

t=1

∂L
∂h

(t)
i

∂h
(t)
i

∂U
(t)
i ,m

=
τ∑

t=1

∂L
∂h

(t)
i

(
1−

(
h
(t)
i

)2)
x
(t)
m

I BPTT recap:
I Forward step: Compute and store h(t), ŷ (t), for t = 1, 2, . . . , τ
I Backward step: Compute and store ∂L

∂h(t)
, ∂L
∂o(t) , for t = τ, τ − 1, . . . , 1

I Update step: Compute ∂L
∂c ,

∂L
∂b ,

∂L
∂V ,

∂L
∂W , ∂L∂U

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Recurrent Neural Networks 9 / 17

Recurrent Neural Networks

Long-term Dependencies

I The RNN function composition resembles matrix multiplication:

h(t) = W Th(t−1)

h(t) =
(
W t
)T

h(0)

I If W admits an decomposition with orthogonal Q and diagonal λ:

W = QΛQT

I Then the recurrence can be expressed as :

h(t) = QΛtQTh(0)

I Eigenvalues Λ < 1 will decay to zero (vanishing gradient problem),
while Λ > 1 will explode to infinity

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Recurrent Neural Networks 10 / 17

Recurrent Neural Networks

Illustrating Vanishing Gradients

Figure 3: Sensitivity to the input at time one, Source: Graves 2008

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Recurrent Neural Networks 11 / 17

Recurrent Neural Networks

Gating against Vanishing Gradients

Figure 4: Gating helps remember, Source: Graves 2008

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Recurrent Neural Networks 12 / 17

Recurrent Neural Networks

Long Short-Term Memory (LSTM)
I Gates: Nonlinear switch functions R→ [0, 1]

I State := State · State gate + Input · Input gate
I Output := f (State) · Output gate

Figure 5: A LSTM neuron, Source: Goodfellow et al., 2016

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Recurrent Neural Networks 13 / 17

Recurrent Neural Networks

LSTM (2)

I First of all, the input is gated as:

g
(t)
i = σ

bgi +
M∑

m=1

Ug
i ,mx

(t)
m +

N∑
j=1

W g
i ,jh

(t−1)
j


I The state gate is also known as forget gate:

f
(t)
i = σ

bfi +
M∑

m=1

U f
i ,mx

(t)
m +

N∑
j=1

W f
i ,jh

(t−1)
j


I Leading to a forget state with gated input:

s
(t)
i = f

(t)
i s

(t−1)
i + g

(t)
i σ

bi +
M∑

m=1

Ui ,mx
(t)
m +

N∑
j=1

Wi ,jh
(t−1)
j


Dr. Josif Grabocka, ISMLL, University of Hildesheim

Recurrent Neural Networks 14 / 17

Recurrent Neural Networks

LSTM (3)

I Finally the activation is a gated firing of state:

h
(t)
i = tanh

(
s
(t)
i

)
q
(t)
i

q
(t)
i =

bqi +
M∑

m=1

Uq
i ,mx

(t)
m +

N∑
j=1

W q
i ,jh

(t−1)
j



I There are four types of parameters in a LSTM neuron/cell:
I Input: b,U,W
I Input gate: bg ,Ug ,W g

I State/forget gate: bf ,U f ,W f

I Output gate: bq,Uq,W q

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Recurrent Neural Networks 15 / 17

Recurrent Neural Networks

Alternative: Gated Recurrent Unit

A simplified version of LSTM is the Gated Recurrent Unit:

h
(t)
i = u

(t−1)
i h

(t−1)
i +

(
1− u

(t−1)
i

)
σ

bi +
∑
m

Ui,mx
(t)
m +

∑
j

Wi,j r
(t−1)
j h

(t−1)
j


It utilizes u-update and r-reset gates:

u
(t)
i =

bui +
M∑

m=1

Uu
i ,mx

(t)
m +

N∑
j=1

W u
i ,jh

(t−1)
j


r
(t)
i =

bri +
M∑

m=1

U r
i ,mx

(t)
m +

N∑
j=1

W r
i ,jh

(t−1)
j


What happens with u

(t)
i = 0 and r

(t)
i = 1? What about u

(t)
i = 1?

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Recurrent Neural Networks 16 / 17

Recurrent Neural Networks

Clipping gradients
RNN produces strongly nonlinear loss functions which create cliffs:

Figure 6: Clipping can avoid exploding gradients, Source: Goodfellow et al., 2016

A simple solution is the gradient clipping heuristic:

if ||g || > v then g ← gv

||g ||
Dr. Josif Grabocka, ISMLL, University of Hildesheim

Recurrent Neural Networks 17 / 17

