

Dr. Josif Grabocka

ISMLL, University of Hildesheim

Recent Advances in Deep Learning

<ロト 4 回 ト 4 三 ト 4 三 ト 一 三 一 の へ (?)</p>

Batch Normalization (BN)

Normalize activation values of each neuron h (or feature maps V):

- For a mini-batch of M instances $\mathcal{B} = h_1, h_2, \ldots, h_M$
- Mini-batch mean $\mu_{\mathcal{B}} \leftarrow \frac{1}{M} \sum_{i=1}^{M} h_i$ and variance $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{M} \sum_{i=1}^{M} (h_i \mu_{\mathcal{B}})^2$
- Activations are Z-normalized and scaled with γ, β :

$$\hat{h}_i = \gamma \left(\frac{h_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \right) + \beta$$

▶ *h* is the post-nonlinearity activation (i.e. first ReLU than BN)

Source: loffe et al. 2015, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Universiter - Tridesheim

Residual Network for Image Recognition

Figure 1: Residual Block, Source: He et al. 2015, Deep Residual Learning for Image Recognition

ペロト 4 四ト 4 三ト 4 三ト 4 日ト

Residual Network (II)

• Define the feature map of layer ℓ as:

$$V^{(\ell)} = \max\left(0, \sum_{c=1}^{I^{(\ell)}} \sum_{m=1}^{M^{(\ell)}} \sum_{n=1}^{N^{(\ell)}} V^{(\ell-1)}_{c,x+m-1,y+n-1} K^{(\ell)}_{i,c,m,n}\right), \forall \ell \in \{1, \dots, L\}$$

► The residual layers aggregate a specific feature map at layer l + k with a feature map k layers ago:

$$ilde{\mathcal{V}}^{(\ell+k)} := \max\left(0, \mathcal{V}^{(\ell+k)} + \mathcal{V}^{(\ell)}
ight)$$

Typically dimensions of V^(l+k) and V^(l) should match, otherwise linearly project V^(l) into the dimensionality of V^(l+k)

Residual Network Architecture

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112	7×7, 64, stride 2						
	56×56	3×3 max pool, stride 2						
conv2_x		$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,128\\3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128\\ 3 \times 3, 128\\ 1 \times 1, 512 \end{bmatrix} \times 8$		
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256\\ 3 \times 3, 256\\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$		
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512\\ 3 \times 3, 512\\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$		
	1×1	average pool, 1000-d fc, softmax						
FLOPs		1.8×10^{9}	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^{9}		

Figure 2: ResNet Architecture, Source: He et al. 2015

ResNet Performance

Improves generalization w.r.t plain CNN without additional parameters:

Figure 3: Residual vs plain CNNs, Source: He et al. 2015

Dr. Josif Grabocka, ISMLL, University of Hildesheim Recent Advances in Deep Learning ・ロト・日本・日本・日本・日本・今日で

6 / 19

DenseNet: A Generalization of Resnet

Figure 4: Residual connections from all previous layers, Source: Huang et al. 2017, Densely Connected Convolutional Networks

Dense concatenation instead of aggregation:

► Do not add previous layers as ResNet would do:

$$ilde{V}^{(\ell)} := \max\left(0, \sum_{k=1}^{\ell} V^{(k)}\right)$$

DenseNet instead concatenates past feature maps:

$$ilde{V}^{(\ell)} := \left[V^{(0)}, V^{(1)}, \dots, V^{(\ell-1)}, V^{(\ell)}
ight]$$

- For *L* convolutional layers there are $\frac{L(L+1)}{2}$ connections
- If each convolutional layer has k kernels and the input k₀ channels
 k₀ + (ℓ − 1) k channels as input to the ℓ-th layer
 Yet, authors claim DenseNet's required k is way smaller than usual

イロト イボト イモト イモト 三日

San

DenseNet Expressiveness

Figure 5: DenseNet is more expressive than Resnet on the CIFAR dataset; Source: Huang et al. 2017

Inception Network

- ► Reduce channel dimensionality via 1x1 convolutions
- ► Apply diverse combinations of filter sizes in one module:

(b) Inception module with dimension reductions

Figure 6: Inception Module, Source: Szegedy et al. 2014, Going Deeper with Convolutions

<ロト < 回 ト < 三 ト < 三 ト 、 三 の へ ()</p>

Inception+ResNet Network

Figure 7: Inception + ResNet network module for a 8×8 grid, Source: Szegedy et al. 2016, Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

Dr. Josif Grabocka, ISMLL, University of Hildesheim Recent Advances in Deep Learning しゃん 聞き ふぼやえ 聞きょう

Shivers

Inception+ResNet Results

Figure 8: Top-5 error results on ImageNet, Source: Szegedy et al. 2016

Attention Mechanism

Language Encoders

Language encoders are typically Recurrent Neural Networks that convert a word embedding x⁽ⁱ⁾ into a latent low-rank representation h⁽ⁱ⁾:

Figure 10: Encoding a sentence to a list of latent vectors

Language Decoders

► Decoder RNN: from encoded *h* into probabilities *y*

Figure 11: Decoders convert word encodings into word probabilities in the target language. What is the problem with this model?

Attention: Translating language A to B

$$h^{(i)} = \text{Bi-LSTM}^{(A)}(x^{(i)}, s_A^{(i-1)})$$

▶ Attention the *i*-th word in output sentence gets from *k*-th input work:

$$c^{(i)} = \sum_{k=1}^{K} \alpha_{i,k} h^{(k)}$$

Finally estimate the target

$$y^{(i)} = \text{Bi-LSTM}^{(B)}(c^{(i)}, s_B^{(i-1)})$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Recent Advances in Deep Learning San

・ロト ・ 同ト ・ ヨト ・ ヨト

Attention Weights

$$\alpha_{i,k} = \frac{e^{f_{i,k}}}{\sum\limits_{q=1}^{K} e^{f_{i,q}}}$$

- Where $f_{i,k} = \text{NeuralNetwork}(\Delta^{(i-1)}, h^{(k)})$
 - Δ_(i-1) = s⁽ⁱ⁻¹⁾_B according to Bahdanou et al. 2015, Neural Machine Translation by Jointly Learning to Align and Translate, or
 Δ_(i-1) = y⁽ⁱ⁻¹⁾ according to Wu et al. 2016, Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Google Neural Machine Translation

Figure 12: Google Translation System, Source: Wu et al. 2016

Dr. Josif Grabocka, ISMLL, University of Hildesheim Recent Advances in Deep Learning ◆□ > ◆□ > ◆豆 > ◆豆 > ◆豆 > ◆□ >

18 / 19

Neural Machine Translation Results

Table 10. Mean of side by side secres on production data							
	PBMT	GNMT	Human	Relative			
				Improvement			
$English \rightarrow Spanish$	4.885	5.428	5.504	87%			
$\operatorname{English} \to \operatorname{French}$	4.932	5.295	5.496	64%			
English \rightarrow Chinese	4.035	4.594	4.987	58%			
$\mathrm{Spanish} \to \mathrm{English}$	4.872	5.187	5.372	63%			
$\mathrm{French} \to \mathrm{English}$	5.046	5.343	5.404	83%			
$\mathbf{Chinese} \to \mathbf{English}$	3.694	4.263	4.636	60%			

Table 10: Mean of side-by-side scores on production data

Figure 13: Statistical Phrase-Based vs. Neural Translation, Source: Wu et al. 2016