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Batch Normalization (BN) \
Normalize activation values of each neuron h (or feature maps V):
» For a mini-batch of M instances B = hy, ha, ..., hy
» Mini-batch mean ug + ﬁ %1/1[ and variance 0123 — % i(h; — ug)?
i= i=

P Activations are Z-normalized and scaled with ~, j3:

hi — us
| ——==
\/01234-6

» h is the post-nonlinearity activation (i.e. first ReLU than BN)

hi = +

Source: loffe et al. 2015, Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift
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Residual Network for Image Recognition
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Figure 1: Residual Block, Source: He et al. 2015, Deep Residual Learning for

Image Recognition
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Residual Network (1) v

» Define the feature map of layer / as:

110 M) N©
VO = max [0, SO S VO kD vee (L)

c=1 m=1n=1

> The residual layers aggregate a specific feature map at layer £ + k
with a feature map k layers ago:

VIR = max (0, vk 4 V(g))

» Typically dimensions of V(4 and V() should match, otherwise
linearly project V() into the dimensionality of V(1K)
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Residual Network Architecture

layer name | output size 18-layer | 34-layer | 50-layer 101-layer 152-layer
conv]l 112x112 Tx7, 64, stride 2
33 max pool, stride 2
[ Ix1,64 ] [ Ix1,64 | [ Ix1,64 |
comv2x | 56x36 [ 3*; 2: ]xl [ gx;'z ]x3 3x3,64 | x3 3%3,64 | x3 3x3,64 | x3
o s | 1x1,256 | | 1x1,256 | | 1x1,256 |
[ 1x1, 128 | [ 1x1, 128 | [ 1x1,128 ]
conv3_x 28x28 [ ixg :ig } x2 { gxg :gg } x4 3x3,128 | x4 3x3,128 | x4 3x3,128 | x8
i e | 1x1,512 | | 1x1,512 | | 1x1,512 |
1x1,256 ] [ 1x1,256 | [ 1x1,256 |
convdx | 14x14 [ ;iz ggg }xz { ;ig igg }xé 3x3,256 | x6 | | 3x3,256 |x23 || 3x3,256 |x36
: : | 1x1,1024 | 1x1,1024 | 1x1, 1024 |
11,512 ] [ 1x1,512 [ 1x1,512
convs_x % [ ixggg }xz { i"ggﬁ }x} 3%3,512 | =3 3x3,512 | %3 3x3,512 | x3
i > | 1x1,2048 | | 1x1,2048 | | 1x1,2048 |
1x1 average pool, 1000-d fc, softmax
FLOPs 18x10° [ 36x109 [ 38x10° ] 7.6x10° [ 113x109

Figure 2: ResNet Architecture, Source: He et al. 2015
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ResNet Performance v

Improves generalization w.r.t plain CNN without additional parameters:
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Figure 3: Residual vs plain CNNs, Source: He et al. 2015
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DenseNet: A Generalization of Resnet

Figure 4: Residual connections from all previous layers, Source: Huang et al

2017, Densely Connected Convolutional Networks
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Dense concatenation instead of aggregation:

» Do not add previous layers as ResNet would do:

l
V) .= max (0, Z V(k)>
k=1
» DenseNet instead concatenates past feature maps:
v .— [V(m, v oyl V(z)}

. L(L+1 .
» For L convolutional layers there are % connections

» If each convolutional layer has k kernels and the input kg channels

» ko + (£ — 1) k channels as input to the /-th layer
P Yet, authors claim DenseNet's required k is way smaller than usual
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. N
DenseNet Expressiveness “
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Figure 5: DenseNet is more expressive than Resnet on the CIFAR dataset; Source:
Huang et al. 2017

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Recent Advances in Deep Learning



Recent Advances in Deep Learning

Inception Network

» Reduce channel dimensionality via 1x1 convolutions

» Apply diverse combinations of filter sizes in one module:

Filter

concatenation
3x3 5x5 x1
x1 i ) ) ]
1x1 luti 1x1 luti

3x3 max pooling
Previous layer

(b) Inception module with dimension reductions

Convolutions
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Figure 6: Inception Module, Source: Szegedy et al. 2014, Going Deeper with
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Inception+ResNet Network

Relu activation

+

1x1 Conv
(1792 Linear)
i —
3x1 Conv
(192)
f
1x1 Conv 1x3 Conv
(192) (192)
f
1x1 Conv
(192)

Relu activation

Figure 7: Inception + ResNet network module for a 8x8 grid, Source: Szegedy et
al. 2016, Inception-v4, Inception-ResNet and the Impact of Residual Connections

on Learning
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Inception+ResNet Results
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Figure 8: Top-5 error results on ImageNet, Source: Szegedy et al. 2016
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Attention Mechanism

Who has passed this  course?

Wer

hat

diesen Kurs

bestanden?
Figure 9: Translation demands " attention”
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Language Encoders

» Language encoders are typically Recurrent Neural Networks that
convert a word embedding x(7) into a latent low-rank representation

A1)
Who has  passed this  course?
x(M x@ x®3 x@ x®

h(M h@ h3) h4) h()
Figure 10: Encoding a sentence to a list of latent vectors
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Language Decoders

» Decoder RNN: from encoded h into probabilities y
h3)

K h h4) h(5)
AN § »” RNN RNN RNN R\W
H y@ y@ y@ H

Wer hat diesen Kurs  bestanden?

—

Figure 11: Decoders convert word encodings into word probabilities in the
target language. What is the problem with this model?
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Attention: Translating language A to B

» A Bi-LSTM encoder for language A with state s4 produces output:
) = Bi-LSTMA) (x(, (1)

> Attention the i-th word in output sentence gets from k-th input work:

K
€D =3 agy H0
k=1

» Finally estimate the target

y) = Bi-LSTM®B) () sU~1)y
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B
Attention Weights “

P> Attention weights are neural networks:

Qj k=

> Where f;, = NeuralNetwork(AU=1), p(K))

> Aoy = sgfl) according to Bahdanou et al. 2015, Neural Machine

Translation by Jointly Learning to Align and Translate, or

> Aj-1) =y according to Wu et al. 2016, Google's Neural
Machine Translation System: Bridging the Gap between Human and
Machine Translation
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Google Neural Machine Translation
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Figure 12: Google Translation System, Source: Wu et al. 2016
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Neural Machine Translation Results

Table 10: Mean of side-by-side scores on production data
PBMT GNMT Human Relative

Improvement
English — Spanish ~ 4.885 5.428 5.504 87%
English — French 4.932 5.295 5.496 64%
English — Chinese  4.035 4.594 4.987 58%
Spanish — English ~ 4.872 5.187 5.372 63%
French — English 5.046 5.343 5.404 83%
Chinese — English  3.694 4.263 4.636 60%

Figure 13: Statistical Phrase-Based vs. Neural Translation, Source: Wu et al.
2016
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