
Generative Adversarial Network

Generative Adversarial Network

Dr. Josif Grabocka

ISMLL, University of Hildesheim

Generative Adversarial Network

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Generative Adversarial Network 1 / 14



Generative Adversarial Network

Generative Models
Learn to generate data that looks as close as possible to a real dataset:

Figure 1: Conditional Generation, Source: Antipov 2017
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Generative Adversarial Network

Generation as a Maximum Likelihood Task

I Maximize the likelihood of observing the data using parameters θ:

θ∗ = argmax
θ

n∏
i=1

pmodel(x
(i); θ)

= argmax
θ

log
n∏

i=1

pmodel(x
(i); θ)

= argmax
θ

n∑
i=1

log pmodel(x
(i); θ)

I Alternatively think it as a minimization of the distance between the
generated distribution pmodel and observed data pmodel

θ∗ = argmax
θ

DKL (pdata(x) || pmodel(x ; θ))
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Generative Adversarial Network

Minimax - Game Theory

I A zero-sum game: Sum of the outcomes (loss or gain) among
participants is zero. E.g.: Board games as Chess, ...

I Minimax is a strategy to win a zero-sum game by:
I Maximizing the Minimum gain of an action
I Maximizing the worst-case outcome without knowing the future moves

of other players

I Let the gi denote the minimax gain of player i when:
I player i plays an action ai ∈ A among many feasible actions A
I player(s) j followed with action(s) aj
I g(ai , aj) denote the gain of player i as a result of the round of actions

gi = max
ai∈A

min
aj∈A

gi (ai , aj)
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Generative Adversarial Network

Minimax - Example

Figure 2: Minimax for Game Playing, Source: http://www.cs.nott.ac.uk
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Generative Adversarial Network

Generative Adversarial Networks (GAN)

I Two agents play a minimax game:
I Generator: Generate synthetic data aiming to make them as similar as

possible to real data
I Discriminator: Distinguish if an input sample comes from the real

data distribution

Figure 3: GAN, Courtesy of Dev Nag

I Generator MINimizes the following:
I Discriminator MAXimizes the accuracy of counterfeit detection
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Generative Adversarial Network

GAN - Problem

I Generator:
I Needs to learn distribution pg over data instances x ∈ RM

I G (z , θg ) : RL → RM is a neural network
I z is a noise fed into the generator following a prior on z ∼ pz(z)

I Discriminator:
I D(x , θd) : RM → [0, 1] is a neural network
I D(x) is the probability that x comes from real data rather than pg

I GAN aims at learning θg and θd which optimize an objective V as
min
G

max
D

V (D,G ), by:

min
θg

max
θd

Ex∼pdata(x) [logD(x , θd)] + Ez∼pz (z) [log (1− D(G (z , θg ), θd))]
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Generative Adversarial Network

GAN - Optimization
Algorithm 1: GAN Optimization

1: for 1, . . . , numIters do
2: for 1, . . . ,K do
3: Sample n noise samples:

{
z(1), . . . , z(n)

}
from pz(z)

4: Sample n real samples:
{
x (1), . . . , x (n)

}
from pdata(x)

5: Update discriminator parameters θd using gradient ascent:

∇θd

1

n

n∑
i=1

logD(x (i), θd) + log
(

1− D(G (z(i), θg ), θd)
)

6: Sample n noise samples:
{
z(1), . . . , z(n)

}
from pz(z)

7: Update generator parameters θg using gradient descent:

∇θg

1

n

n∑
i=1

log
(

1− D(G (z(i), θg ), θd)
)
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Generative Adversarial Network

GAN - Optimization (II)

I How to compute the derivatives w.r.t. the discriminator and
generator weights? [check on board]

I What happens to the gradients ∇θg in the early iterations?
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Generative Adversarial Network

Optimal Discriminator

I Given any generator G, an optimal discriminator D maximizes:

V (G ,D) =

∫
x
pdata(x) log(D(x))dx +

∫
z
pz(z) log(1− D(G (z)))dz

=

∫
x
pdata(x) log(D(x)) + pg (x) log(1− D(x))dx

I The maximum of a log y + b log (1− y) is a
a+b for (a, b) ∈ R2 \ {0, 0}

I Therefore, for a fixed G the optimal discriminator is:

D∗G =
pdata(x)

pdata(x) + pg (x)
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Generative Adversarial Network

Reformulate the objective

I Knowing the optimal D for a G , we can rewrite the optimization as:

C (G ) = max
D

V (G ,D)

= Ex∼pdata [log D∗(x)] + Ez∼px [log (1− D∗G (z))]

= Ex∼pdata [log D∗(x)] + Ex∼pg [log (1− D∗(x))]

= Ex∼pdata

[
log

pdata(x)

pdata(x) + pg (x)

]
+ Ex∼pg

[
log

pg (x)

pdata(x) + pg (x)

]
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Generative Adversarial Network

Optimality when generator meets real data

I For pdata(x) = pg (x) then C (G ) = − log 4, which is the minimum of
C (G ) if there is no difference among the distributions of pdata(x)and
pg (x), or:

C (G ) = − log(4) + KL

(
pdata||

pdata(x) + pg (x)

2

)
+KL

(
pg ||

pdata(x) + pg (x)

2

)
I Which turns out to be the Jensen-Shannon divergence:

C (G ) = − log(4) + 2 JSD(pdata(x)||pg (x))

I JSD is known to be zero only for pdata(x) = pg (x), thus the minimum
loss is when the generator matches exactly the true data distribution
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Generative Adversarial Network

DCGAN
I Replace pooling with strided convolutions (discriminator) and

fractional-strided convolutions (generator)
I Use batchnorm in both generator and discriminator
I Remove fully connected hidden layers
I Use ReLU in generator for all layers, except output (tanh)
I Use LeakyReLU in discriminator for all layers

Figure 4: DCGAN Generator Architecture, Source: Radford et al., ICLR 2016
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Generative Adversarial Network

DCGAN (II)

Figure 5: DCGAN Generated Images discriminated against the LSUN dataset,
Source: Radford et al., ICLR 2016
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