

Generative Adversarial Network

Dr. Josif Grabocka

ISMLL, University of Hildesheim

Generative Adversarial Network

・ロット 4回ット 4回ット 4回ット 4日ッ

Generative Models

Learn to generate data that looks as close as possible to a real dataset:

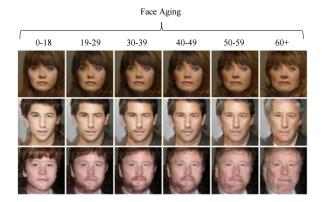


Figure 1: Conditional Generation, Source: Antipov 2017

Dr. Josif Grabocka, ISMLL, University of Hildesheim Generative Adversarial Network ・ロット (中)・ (中)・ (日)・ (日)・

Generation as a Maximum Likelihood Task

 θ

• Maximize the likelihood of observing the data using parameters θ :

* =
$$\operatorname{argmax}_{\theta} \prod_{i=1}^{n} p_{\text{model}}(x^{(i)}; \theta)$$

= $\operatorname{argmax}_{\theta} \log \prod_{i=1}^{n} p_{\text{model}}(x^{(i)}; \theta)$
= $\operatorname{argmax}_{\theta} \sum_{i=1}^{n} \log p_{\text{model}}(x^{(i)}; \theta)$

► Alternatively think it as a minimization of the distance between the generated distribution p_{model} and observed data p_{model}

$$\theta^* = \operatorname{argmax}_{\theta} D_{\mathcal{KL}}(p_{\mathsf{data}}(x) || p_{\mathsf{model}}(x; \theta))$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Generative Adversarial Network San

=

イロト 不得 トイヨト イヨト

Universiter Fildesheim

Minimax - Game Theory

- ► A zero-sum game: Sum of the outcomes (loss or gain) among participants is zero. E.g.: Board games as Chess, ...
- Minimax is a strategy to win a zero-sum game by:
 - Maximizing the Minimum gain of an action
 - Maximizing the worst-case outcome without knowing the future moves of other players
- ► Let the g_i denote the minimax gain of player i when:
 - ▶ player *i* plays an action $a_i \in A$ among many feasible actions A
 - ▶ player(s) j followed with action(s) a_j
 - $g(a_i, a_j)$ denote the gain of player *i* as a result of the round of actions

$$g_i = \max_{a_i \in \mathcal{A}} \min_{a_i \in \mathcal{A}} g_i(a_i, a_j)$$

Minimax - Example

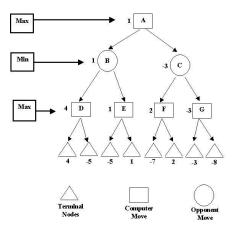


Figure 2: Minimax for Game Playing, Source: http://www.cs.nott.ac.uk

Generative Adversarial Networks (GAN)

- ► Two agents play a minimax game:
 - ► Generator: Generate synthetic data aiming to make them as similar as possible to real data
 - ► **Discriminator**: Distinguish if an input sample comes from the real data distribution

Figure 3: GAN, Courtesy of Dev Nag

- Generator **MIN**imizes the following:
 - ► Discriminator MAXimizes the accuracy of counterfeit detection

San

(日)

GAN - Problem

• Generator:

- Needs to learn distribution p_g over data instances $x \in \mathbb{R}^M$
- $G(z, \theta_g) : \mathbb{R}^L \to \mathbb{R}^M$ is a neural network
- ► z is a noise fed into the generator following a prior on $z \sim p_z(z)$

Discriminator:

- $D(x, \theta_d) : \mathbb{R}^M \to [0, 1]$ is a neural network
- D(x) is the probability that x comes from real data rather than p_g
- ► GAN aims at learning θ_g and θ_d which optimize an objective V as min max V(D, G), by:

$$\min_{\theta_g} \max_{\theta_d} \mathbb{E}_{x \sim p_{data}(x)} \left[\log D(x, \theta_d) \right] + \mathbb{E}_{z \sim p_z(z)} \left[\log \left(1 - D(G(z, \theta_g), \theta_d) \right) \right]$$

GAN - Optimization

- 1: for $1, \ldots, numlters$ do
- 2: for $1, \ldots, K$ do
- 3: Sample *n* noise samples: $\{z^{(1)}, \ldots, z^{(n)}\}$ from $p_z(z)$
- 4: Sample *n* real samples: $\{x^{(1)}, \ldots, x^{(n)}\}$ from $p_{data}(x)$
- 5: Update discriminator parameters θ_d using gradient **ascent**:

$$\nabla_{\theta_d} \frac{1}{n} \sum_{i=1}^n \log D(x^{(i)}, \theta_d) + \log \left(1 - D(G(z^{(i)}, \theta_g), \theta_d)\right)$$

- 6: Sample *n* noise samples: $\{z^{(1)}, \ldots, z^{(n)}\}$ from $p_z(z)$
- 7: Update generator parameters θ_g using gradient **descent**:

$$\nabla_{\theta_g} \frac{1}{n} \sum_{i=1}^n \log \left(1 - D(G(z^{(i)}, \theta_g), \theta_d) \right)$$

Generative Adversarial Network

GAN - Optimization (II)

► How to compute the derivatives w.r.t. the discriminator and generator weights? [check on board]

• What happens to the gradients ∇_{θ_g} in the early iterations?

Optimal Discriminator

► Given any generator G, an optimal discriminator D maximizes:

$$V(G,D) = \int_{x} p_{data}(x) \log(D(x)) dx + \int_{z} p_{z}(z) \log(1 - D(G(z))) dz$$
$$= \int_{x} p_{data}(x) \log(D(x)) + p_{g}(x) \log(1 - D(x)) dx$$

- The maximum of $a \log y + b \log (1 y)$ is $\frac{a}{a+b}$ for $(a, b) \in \mathbb{R}^2 \setminus \{0, 0\}$
- ► Therefore, for a fixed *G* the optimal discriminator is:

$$D_G^* = rac{p_{data}(x)}{p_{data}(x) + p_g(x)}$$

Reformulate the objective

• Knowing the optimal D for a G, we can rewrite the optimization as:

$$C(G) = \max_{D} V(G, D)$$

= $\mathbb{E}_{x \sim p_{data}} [\log D^*(x)] + \mathbb{E}_{z \sim p_x} [\log (1 - D^*G(z))]$

$$= \mathbb{E}_{x \sim \rho_{\mathsf{data}}} \left[\log D^*(x) \right] + \mathbb{E}_{x \sim \rho_g} \left[\log \left(1 - D^*(x) \right) \right]$$

$$= \mathbb{E}_{x \sim \rho_{\mathsf{data}}} \left[\log \frac{\rho_{\mathsf{data}}(x)}{\rho_{\mathsf{data}}(x) + \rho_g(x)} \right] + \mathbb{E}_{x \sim \rho_g} \left[\log \frac{\rho_g(x)}{\rho_{\mathsf{data}}(x) + \rho_g(x)} \right]$$

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Optimality when generator meets real data

For p_{data}(x) = p_g(x) then C(G) = − log 4, which is the minimum of C(G) if there is no difference among the distributions of p_{data}(x)and p_g(x), or:

$$C(G) = -\log(4) + KL\left(p_{data}||\frac{p_{data}(x) + p_g(x)}{2}\right) \\ + KL\left(p_g||\frac{p_{data}(x) + p_g(x)}{2}\right)$$

► Which turns out to be the Jensen-Shannon divergence:

$$C(G) = -\log(4) + 2 JSD(p_{data}(x)||p_g(x))$$

► JSD is known to be zero only for p_{data}(x) = p_g(x), thus the minimum loss is when the generator matches exactly the true data distribution

DCGAN

- Replace pooling with strided convolutions (discriminator) and fractional-strided convolutions (generator)
- Use batchnorm in both generator and discriminator
- Remove fully connected hidden layers
- ► Use ReLU in generator for all layers, except output (tanh)
- ► Use LeakyReLU in discriminator for all layers

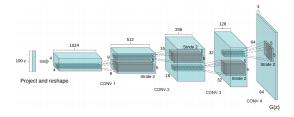


Figure 4: DCGAN Generator Architecture, Source: Radford et al., ICLR 2016

DCGAN (II)

Figure 5: DCGAN Generated Images discriminated against the LSUN dataset, Source: Radford et al., ICLR 2016