

Deep Learning 4. Optimization for Training Deep Models

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

Syllabus

(1)	1. Supervised Learning (Review 1)
(2)	2. Neural Networks (Review 2)
(3)	3. Regularization for Deep Learning
(4)	4. Optimization for Training Deep Models
(5)	5. Convolutional Neural Networks
(6)	6. Recurrent Neural Networks
	— Pentecoste Break —
(7)	7. Autoencoders
(8)	8. Generative Adversarial Networks
(9)	9. Recent Advances
(10)	10. Engineering Deep Learning Models
(11)	tbd.
(12)	Q & A
	(1) (2) (3) (4) (5) (6) (-) (7) (8) (9) (10) (11) (12)

Outline

- 1. Learning as Optimization
- 2. Parameter Initializations
- 3. Gradient Estimation and Momentum
- 4. Adaptive Learning Rates

Outline

1. Learning as Optimization

- 2. Parameter Initializations
- 3. Gradient Estimation and Momentum
- 4. Adaptive Learning Rates

Learning as Optimization

• Optimization:

find the parameters x^* with minimum value of the objective function f:

$$x^* := rgmin_x f(x)$$

► Learning:

find the model parameters θ^* with minimum value of the objective function f for the training data set:

$$\begin{split} \theta^* &:= \arg\min_{\theta} f(\theta; \mathcal{D}^{\text{train}}) \\ f(\theta; \mathcal{D}^{\text{train}}) &:= \frac{1}{N} \left(\sum_{n=1}^N \ell(y_n, \hat{y}(x_n; \theta)) \right) + \lambda \Omega(\theta), \\ &= \frac{1}{N} \sum_{n=1}^N f(\theta; \{(x_n, y_n)\}) \\ \mathcal{D}^{\text{train}} &= \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\} \end{split}$$

Gradient Descent (basic version)

1 learn-gd(
$$f : \mathbb{R}^{P} \to \mathbb{R}, \mathcal{D}^{\text{train}}, \sigma^{2} \in \mathbb{R}^{+}, \mu, i_{\text{max}} \in \mathbb{N}$$
):
2 $\theta \sim \mathcal{N}(0, \sigma^{2})$
3 for $i = 1, \dots, i_{\text{max}}$:
4 $g := \nabla f(\theta; \mathcal{D}^{\text{train}})$
5 $\theta := \theta - \mu_{i}g$

6 return heta

f objective function (as function in the parameters $\theta)$ $\mathcal{D}^{\rm train}$ training data

- $\sigma^2\,$ parameter initialization variance
 - $\mu\,$ step size schedule
- i_{max} maximal number of iterations

Deep Learning 1. Learning as Optimization

Issues: Non-Convexity / Local Minima

- Universiter Fildeshein
- ► The objective functions of neural networks are highly non-convex

Figure 1: A non-convex function has multiple local minima, source: imgur.com

Issues: Saddle Points

► In addition to local minima, objective functions include saddle points

Figure 2: Saddle points, Source: Goodfellow et al., 2016

Gradients are very small around a saddle point

Outline

- 1. Learning as Optimization
- 2. Parameter Initializations
- 3. Gradient Estimation and Momentum
- 4. Adaptive Learning Rates

Parameter Initializations May Matter

- convex optimization:
 - there exists a global minimum
 - it does not matter where we start, minimization always converges to the global minimum
 - e.g., initialize $\theta = 0$
- non-convex optimization:
 - there exist many local minima
 - ▶ depending on where we start, minimization might converge to a different local minimum
 → parameter initialization may matter

Issue: Symmetric Networks Stay Symmetric

► neural network:

$$z^{\ell}(z^{\ell-1}) := a(W^{\ell}z^{\ell-1} + b^{\ell})$$

assume we initialized all neurons of each layer with the same weights and biases:

$$W^\ell_{m,k} = W^\ell_{m',k}, \quad b^\ell_m = b^\ell_{m'} \quad orall \ell, m, m', k$$

► then their gradients are identical:

$$\frac{\partial f(\theta)}{\partial W_{m,k}^{\ell}} = \frac{\partial f(z^{L+1})}{\partial z^{\ell}} \frac{\partial z^{\ell}(z^{\ell-1})}{\partial W_{m,k}^{\ell}}$$

- → we need to **break the symmetry**
 - e.g., initialize randomly $W^\ell_{m,k} \sim \mathcal{N}(0,\sigma^2)$

Deep Learning 2. Parameter Initializations

Normalized Initialization [Glorot and Bengio, 2010]

- ► keep variances of all layers and all gradients constant:
 - view all variables X, Z^{ℓ}, W^{ℓ} as random variables
 - \blacktriangleright assume no activation function, independent weight matrices W^ℓ

$$\operatorname{var}(Z^{\ell}) = \operatorname{var}(W^{\ell}) M_{\ell-1} \operatorname{var}(Z^{\ell-1}) \quad \rightsquigarrow \operatorname{var}(W^{\ell}) \stackrel{!}{=} \frac{1}{M_{\ell-1}}$$
$$\operatorname{var}(\nabla_{Z^{\ell-1}} f) = \operatorname{var}(W^{\ell}) M_{\ell} \operatorname{var}(\nabla_{Z^{\ell}} f) \quad \rightsquigarrow \operatorname{var}(W^{\ell}) \stackrel{!}{=} \frac{1}{M_{\ell}}$$

- Q: How should we set the variance of W such that both,
 - the variance of the latent values z and
 - the variance of the gradients

stays constant across layers?

Deep Learning 2. Parameter Initializations

Normalized Initialization [Glorot and Bengio, 2010]

- ► keep variances of all layers and all gradients constant:
 - view all variables X, Z^{ℓ}, W^{ℓ} as random variables
 - \blacktriangleright assume no activation function, independent weight matrices W^ℓ

$$\operatorname{var}(Z^{\ell}) = \operatorname{var}(W^{\ell}) M_{\ell-1} \operatorname{var}(Z^{\ell-1}) \quad \rightsquigarrow \operatorname{var}(W^{\ell}) \stackrel{!}{=} \frac{1}{M_{\ell-1}}$$
$$\operatorname{var}(\nabla_{Z^{\ell-1}} f) = \operatorname{var}(W^{\ell}) M_{\ell} \operatorname{var}(\nabla_{Z^{\ell}} f) \quad \rightsquigarrow \operatorname{var}(W^{\ell}) \stackrel{!}{=} \frac{1}{M_{\ell}}$$

weights:

▶ ŀ

٧

$$W^\ell_{m,k} \sim {
m unif}(-\sqrt{rac{6}{M_{\ell-1}+M_\ell}}, \sqrt{rac{6}{M_{\ell-1}+M_\ell}}), ~~$$
 with layer sizes M_ℓ

uniform distribution has variance

$$\operatorname{var}(\operatorname{unif}(a,b)) = \frac{(b-a)^2}{12} = \frac{2}{M_{\ell-1} + M_{\ell}} = \frac{1}{\frac{M_{\ell-1} + M_{\ell}}{2}}$$
 a compromise biases: $b_m^{\ell} := 0$

Initializing Biases

- biases often just set to zero
- ► biases on hidden layers:
 - set to a small positive constant:

$$b^\ell := c > 0$$

- ▶ esp. for ReLU to avoid the "Dead ReLU" phenomenon
- biases on output layer:
 - optimal biases to predict average output for zero weights:

$$b^{L+1} := \arg\min_{b} \ell(\bar{y}, 0+b), \quad \bar{y} := \frac{1}{N} \sum_{n=1}^{N} y_n$$

Outline

- 1. Learning as Optimization
- 2. Parameter Initializations
- 3. Gradient Estimation and Momentum
- 4. Adaptive Learning Rates

Gradient Estimation

- ► global shape of the objective function is unknown
- only have local gradients as information:
 - **batch** of full training set $\mathcal{D}^{\text{train}} := \{(x_1, y_1), \dots, (x_N, y_N)\}:$

$$g :=
abla_{ heta} f(heta; \mathcal{D}^{\mathsf{train}}) = rac{1}{N} \sum_{n=1}^{N}
abla_{ heta} f(heta; x_n, y_n)$$

▶ mini batch $\mathcal{D}^{\text{batch}} = \{(x_{n_1}, y_{n_1}), \dots, (x_{n_B}, y_{n_B})\} \subseteq \mathcal{D}^{\text{train}}$ for $B \ll N$:

$$\hat{g} :=
abla_{ heta} f(heta; \mathcal{D}^{ ext{batch}}) = rac{1}{|\mathcal{D}^{ ext{batch}}|} \sum_{(x,y)\in\mathcal{D}^{ ext{batch}}}
abla_{ heta} f(heta; x, y)$$

$$=\frac{1}{B}\sum_{b=1}^{B}\nabla_{\theta}f(\theta;x_{n_{b}},y_{n_{b}})$$

• online w.r.t. a single instance (x_n, y_n) (= mini batch with B = 1):

$$\hat{g} = \nabla_{\theta} f(\theta; x_n, y_n)$$

Stochastic Gradient Descent (basic version)

1 learn-sgd($f : \mathbb{R}^{P} \to \mathbb{R}, \mathcal{D}^{train}, \sigma^{2} \in \mathbb{R}^{+}, \mu, i_{max} \in \mathbb{N}, B \in \mathbb{N}$):

2
$$heta \sim \mathcal{N}(\mathbf{0}, \sigma^2)$$

- 3 for $i = 1, ..., i_{max}$:
 - $\mathcal{D}^{\mathsf{batch}} \sim \mathcal{D}^{\mathsf{train}}$ draw B instances uniformly at random
- 5 $g := \nabla f(\theta; \mathcal{D}^{\mathsf{batch}})$

$$heta \quad heta := heta - \mu_i g$$

7 return heta

f objective function (as function in the parameters $\theta)$ $\mathcal{D}^{\rm train}$ training data

- $\sigma^2\,$ parameter initialization variance
 - $\mu\,$ step size schedule

 i_{max} maximal number of iterations

 ${\it B}\,$ minibatch size

Momentum

Figure 3: A quadratic loss with a poor conditioned Hessian; Black arrows: Gradient descent steps; Red line: Momentum correction, Source: Goodfellow et al., 2016

Momentum

$$\mathbf{v} := -\sum_{j=1}^{i} \alpha^{i-j} \mu_j \mathbf{g}_j$$
$$= -\alpha^{i-1} \mu_1 \mathbf{g}_1 - \alpha^{i-2} \mu_2 \mathbf{g}_2 - \dots - \alpha^1 \mu_{i-1} \mathbf{g}_{i-1} - \mathscr{A}^{\mathbf{0}} \mu_i \mathbf{g}_i, \quad \alpha \in [0, 1)$$

► Q: How can we compute *v* efficiently?

Momentum

$$\mathbf{v} := -\sum_{j=1}^{i} \alpha^{i-j} \mu_j \mathbf{g}_j$$
$$= -\alpha^{i-1} \mu_1 \mathbf{g}_1 - \alpha^{i-2} \mu_2 \mathbf{g}_2 - \dots - \alpha^1 \mu_{i-1} \mathbf{g}_{i-1} - \mathscr{A}^{\mathbf{0}} \mu_i \mathbf{g}_i, \quad \alpha \in [0, 1)$$

► *v* can be computed efficiently recursively:

$$\mathbf{v} := \alpha \mathbf{v} - \mu_i \mathbf{g}_i$$

- finally $\theta := \theta + v$
- αv is often called **momentum**, v sometimes a velocity.

SGD with Momentum

1 learn-sgd-moment $(f : \mathbb{R}^P \to \mathbb{R}, \mathcal{D}^{\text{train}}, \sigma^2 \in \mathbb{R}^+, \mu, i_{\text{max}} \in \mathbb{N}, B \in \mathbb{N}, \alpha)$: $\theta \sim \mathcal{N}(0, \sigma^2)$ $\mathbf{v} := \mathbf{0}$ 4 for $i = 1, \dots, i_{\text{max}}$: $\mathcal{D}^{\text{batch}} \sim \mathcal{D}^{\text{train}}$ draw B instances uniformly at random $g := \nabla f(\theta; \mathcal{D}^{\text{batch}})$ $\mathbf{v} := \alpha \mathbf{v} - \mu_i g$ $\theta := \theta + \mathbf{v}$ 9 return θ

α update step decay factor, e.g., $\alpha \in \{0.5, 0.9, 0.99\}$

Nesterov Momentum

 Nesterov momentum adds a correction (look-ahead) factor to the standard velocity update

Figure 4: Nesterov momentum with a correction factor

• Computes gradient at the updated weights:

$$\mathbf{v} := \alpha \mathbf{v} - \mu \nabla_{\theta} f(\theta + \alpha \mathbf{v}; \mathcal{D}^{\mathsf{batch}})$$

 currently the most widely used momentum in Deep Learning libraries (Tensorflow, PyTorch)

SGD with Nesterov Momentum

1 **learn-sgd-nesterov** $(f : \mathbb{R}^{P} \to \mathbb{R}, \mathcal{D}^{\text{train}}, \sigma^{2} \in \mathbb{R}^{+}, \mu, i_{\text{max}} \in \mathbb{N}, B \in \mathbb{N}, \alpha)$: 2 $\theta \sim \mathcal{N}(0, \sigma^{2})$ 3 v := 04 for $i = 1, \dots, i_{\text{max}}$: 5 $\mathcal{D}^{\text{batch}} \sim \mathcal{D}^{\text{train}}$ draw B instances uniformly at random 6 $g := \nabla f(\theta + \alpha v; \mathcal{D}^{\text{batch}})$ 7 $v := \alpha v - \mu_{i}g$ 8 $\theta := \theta + v$ 9 return θ

α update step decay factor, e.g., $\alpha \in \{0.5, 0.9, 0.99\}$

Outline

- 1. Learning as Optimization
- 2. Parameter Initializations
- 3. Gradient Estimation and Momentum
- 4. Adaptive Learning Rates

Stochastic Gradient Descent and Learning Rates

• What is a good learning rate / step size μ ?

Figure 5: Cliffs and Exploding Gradients, Source: Goodfellow et al., 2016

Decaying Learning Rates

• Converges if
$$\sum_{i=1}^{\infty} \mu_i = \infty$$
 and $\sum_{i=1}^{\infty} \mu_i^2 < \infty$

► In practice, it is common to decay the learning rate:

$$\mu_{i} = \begin{cases} \left(1 - \frac{i}{\tau}\right)\mu_{0} + \frac{i}{\tau}\mu_{\tau} & \text{if } i < \tau\\ \mu_{\tau} & \text{if } i \geq \tau \end{cases}, \text{ where } \mu_{0} \gg \mu_{\tau}$$

Adagrad

- ▶ individual learning rate $\tilde{\mu}_{i,p}$ for every iteration i and parameter θ_p
- ► strongly decrease learning rate for large gradients:

$$r_{p} := r_{p} + g_{p}^{2}$$

 $\tilde{\mu}_{i,p} := rac{\mu_{i}}{\delta + \sqrt{r_{p}}}, \quad p = 1, \dots, P$

- $\blacktriangleright \ \delta > 0 \text{ a small constant}$
- rapid progress in gently sloped directions
- Q: What might happen if Adagrad is run for many iterations?

Note: In vector notation: $r := r + g \odot g$ and $\tilde{\mu}_i := \frac{\mu_i}{\delta + \sqrt{r}}$ where \odot is elementwise product and \sqrt{r} also taken elementwise. Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Shiversiter Fildesheim

SGD with Adagrad

1 learn-sgd-adagrad
$$(f : \mathbb{R}^{P} \to \mathbb{R}, \mathcal{D}^{\text{train}}, \sigma^{2} \in \mathbb{R}^{+}, \mu, i_{\text{max}} \in \mathbb{N}, B \in \mathbb{N}, \delta)$$

2 $\theta \sim \mathcal{N}(0, \sigma^{2})$
3 $r := 0$
4 for $i = 1, \dots, i_{\text{max}}$:
5 $\mathcal{D}^{\text{batch}} \sim \mathcal{D}^{\text{train}}$ draw B instances uniformly at random
6 $g := \nabla f(\theta; \mathcal{D}^{\text{batch}})$
7 $r := r + g \odot g$
8 $\tilde{\mu} := \frac{\mu_{i}}{\delta + \sqrt{r}}$
9 $\theta := \theta - \tilde{\mu} \odot g$
10 return θ

$\delta > 0 \ {\rm small} \ {\rm constant}$

Universiter Fildeshein

Root Mean Square Propagation (RMSProp)

- As \sqrt{r} monotonically increases in Adagrad, $\frac{\mu}{\sqrt{r}}$ becomes too small
- RMSProp introduces an exponentially decaying average of the squared gradient history
- 1 learn-sgd-rmsprop $(f : \mathbb{R}^P \to \mathbb{R}, \mathcal{D}^{\text{train}}, \sigma^2 \in \mathbb{R}^+, \mu, i_{\text{max}} \in \mathbb{N}, B \in \mathbb{N}, \delta, \rho)$: $\theta \sim \mathcal{N}(0, \sigma^2)$ 2 r := 0for $i = 1, ..., i_{max}$: 4 $\mathcal{D}^{\mathsf{batch}} \sim \mathcal{D}^{\mathsf{train}}$ draw B instances uniformly at random 5 $g := \nabla f(\theta; \mathcal{D}^{\mathsf{batch}})$ 6 $r := \rho r + (1 - \rho)g \odot g$ $\tilde{\mu} := \frac{\mu_i}{\delta + \sqrt{r}}$ 8 $\theta := \theta - \tilde{\mu} \odot g$ 9 return θ 10

SGD with Nesterov Momentum and RMSProp

1 learn-sgd-nesterov-rmsprop $(f : \mathbb{R}^P \to \mathbb{R}, \mathcal{D}^{\text{train}}, \sigma^2 \in \mathbb{R}^+, \mu, i_{\text{max}} \in \mathbb{N}, B \in \mathbb{N}, \alpha, \rho)$:

2
$$heta \sim \mathcal{N}(\mathbf{0}, \sigma^2)$$

5 for
$$i=1,\ldots,i_{\mathsf{max}}$$
:

$_{6}$ $\mathcal{D}^{\mathsf{batch}} \sim \mathcal{D}^{\mathsf{train}}$ draw B instances uniformly at random

- 7 $g := \nabla f(\theta + \alpha \mathbf{v}; \mathcal{D}^{\mathsf{batch}})$
- 8 $r := \rho r + (1 \rho)g \odot g$
- 9 $\tilde{\mu} := \frac{\mu_i}{\delta + \sqrt{r}}$
- 10 $\mathbf{v} := \alpha \mathbf{v} \tilde{\mu} \odot \mathbf{g}$
- $\theta := \theta + v$
- 12 return heta

α update step decay factor, e.g., $\alpha \in \{0.5, 0.9, 0.99\}$ ρ gradient square decay factor

SGD with Adaptive Moment (ADAM)

1 learn-sgd-adam $(f : \mathbb{R}^P \to \mathbb{R}, \mathcal{D}^{\text{train}}, \sigma^2 \in \mathbb{R}^+, \mu, i_{\text{max}} \in \mathbb{N}, B \in \mathbb{N}, \alpha, \rho)$: $\theta \sim \mathcal{N}(0, \sigma^2)$ 2 v := 0r := 05 for $i = 1, ..., i_{max}$: $\mathcal{D}^{\mathsf{batch}} \sim \mathcal{D}^{\mathsf{train}}$ draw B instances uniformly at random 6 $g := \nabla f(\theta; \mathcal{D}^{\mathsf{batch}})$ 7 $\mathbf{v} := \frac{1}{1-\alpha i} (\alpha \mathbf{v} + (1-\alpha)g)$ 8 $r := \frac{1}{1-\rho'} (\rho r + (1-\rho)g \odot g)$ 9 $\tilde{\mu} := \frac{\mu_i}{\delta + \sqrt{r}}$ 10 $\theta := \theta - \tilde{\mu} \mathbf{v}$ 11 return θ 12

α gradient decay factor, e.g., $\alpha \in \{0.5, 0.9, 0.99\}$ ρ gradient square decay factor

Comparing Various Optimization Approaches

Convergence over iteration times

Figure 6: Optimizing a logistic regression model, Source: gmo.jp

Deep Learning 4. Adaptive Learning Rates

Illustrations of Performance

Two illustrations (Source: cs.stanford.edu)

- http://cs231n.github.io/assets/nn3/opt1.gif
- http://cs231n.github.io/assets/nn3/opt2.gif

Summary (1/2)

- Learning the parameters of a model means minimizing the objective function.
 - ► the objective function is a big sum over instance wise losses and a regularization term
 - ► a stochastic function estimated based on mini batches (subsets of the training data)
 - gradients then also are averages over mini batches
- Learning a neural network is a highly non-convex optimization problem
 - many local minima
 - saddle points
- Parameter initialization matters.
 - it must be randomized (to break the symmetry)
 - normalized initialization to enforce similar variances of latent values and gradients across layers

Summary (2/2)

- ► a momentum can be added to SGD to stabilize the search direction
 - sum of exponetially decayed update steps (instead of just last update step)
 - Nesterovs momentum: look ahead
- ► learning rates can be computed adaptively
 - individual for each parameter (AdaGrad, RMSProp)
 - momentum and adaptive learning rates can be combined (ADAM)

Further Readings

- ▶ Goodfellow et al. 2016, ch. 8
- ▶ for initialization: Zhang et al. 2020, ch. 4.8
- ▶ lecture Modern Optimization Techniques, chapters 2.1 and 2.2.

Acknowledgement: An earlier version of the slides for this lecture have been written by my former postdoc Dr Josif Grabocka. Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

References

- Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pages 249–256, 2010.
- Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The Mit Press, Cambridge, Massachusetts, November 2016. ISBN 978-0-262-03561-3.

Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander Smola. Dive into Deep Learning. https://d2l.ai/, 2020.