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Deep Learning 1. Convolutions

Convolutions
I given two functions f , g : RN → R,

define a third function with the same signature:

h := (f ∗ g) : RN → R,

h(x) := (f ∗ g)(x) =

∫
RN

f (x ′)g(x − x ′)dx ′ =

∫
RN

f (x + x ′)g(−x ′)dx ′

I example 1: averaging:
I f : R→ R a signal in time

I g : R→ R: g(x) := 1
2 I(x ∈ [−1, 1])

 h(x) is f (x ′) averaged over x ′ ∈ [x − 1, x + 1]

I example 2: correlating:
I f : R→ R a signal in time

I g : R→ R a pattern of interest (encoded backwards in time)

 h(x) how similar signal f is at position x to pattern g

I Example:
I x(t): a noisy measure the position of a spaceship

I w(a): relevance of a measurement with age a (Note:
∫
w(a)da = 1)

I Given a sequence of noisy measurements x(t), x(t − 1), ..., x(t −∞),
what is the relevance-corrected position s(t)?
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Deep Learning 1. Convolutions

Convolutions / Basic Properties
commutative:

f ∗ g = g ∗ f
associative:

f ∗ (g ∗ h) = (f ∗ g) ∗ h
distributive:

f ∗ (g + h) = (f ∗ g) + (f ∗ h)

differentiation:
∂(f ∗ g)

∂xn
=

∂f

∂xn
∗ g = f ∗ ∂g

∂xn
integration: ∫

RN

(f ∗ g)(x)dx = (

∫
RN

f (x)dx)(

∫
RN

g(x)dx)

convolution theorem (F the Fourier transform):

F(f ∗ g) = F(f ) · F(g)
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Deep Learning 1. Convolutions

Discrete Convolutions

I continuous:
given two functions f , g : RN → R,
define a third function with the same signature:

h := (f ∗ g) : RN → R,

h(x) := (f ∗ g)(x) =

∫
RN

f (x ′)g(x − x ′)dx ′ =

∫
RN

f (x + x ′)g(−x ′)dx ′

I discrete:
given two functions f , g : ZN → R on a grid,
define a third function with the same signature:

h := (f ∗ g) : ZN → R,

h(x) := (f ∗ g)(x) =
∑

x ′∈ZN

f (x ′)g(x − x ′) =
∑

x ′∈ZN

f (x + x ′)g(−x ′)
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Deep Learning 1. Convolutions

Discrete Convolutions

I discrete:
given two functions f , g : ZN → R on a grid,
define a third function with the same signature:

h := (f ∗ g) : ZN → R,

h(x) := (f ∗ g)(x) =
∑

x ′∈ZN

f (x ′)g(x − x ′) =
∑

x ′∈ZN

f (x + x ′)g(−x ′)

I in computer science, reading the second function backwards
usually is not done:

h(x) := (f ∗ g)(x) =
∑

x′∈ZN

f (x + x ′)g(x ′)
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Deep Learning 1. Convolutions

Finite Discrete Convolutions
I finite discrete:

given two arrays f ∈ RN×M , g ∈ RÑ×M̃ ,
define a third array with the dimensions:

h := (f ∗ g) ∈ RN×M

hn,m := (f ∗ g)n,m =
Ñ∑

n′=1

M̃∑
m′=1

f (n + δn′,m + δm′)g(n′,m′)

=

β(Ñ,N)∑
n′=α(Ñ,n)

β(M̃,M)∑
m′=α(M̃,m)

f (n + δn′,m + δm′)g(n′,m′)

I δn′ := δ(n′, Ñ) := n′ − b Ñ+1
2 c index centering

I e.g., Ñ = 5  δn′ = n′ − 3: δn′ = −2,−1, 0, 1, 2 for n′ = 1, 2, . . . , 5.
Ñ = 6  δn′ = n′ − 3: δn′ = −2,−1, 0, 1, 2, 3 for n′ = 1, 2, . . . , 6.

I f (n,m) := 0 for n < 1, n ≥ N, m < 1 or m ≥ M (zero padding)
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Note: Here for two-dimensional arrays. The same works for any dimensional arrays.
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Deep Learning 1. Convolutions

Finite Discrete Convolutions / Shrinking Array Sizes

I finite discrete (alternative definition):

given two arrays f ∈ RN×M , g ∈ RÑ×M̃ ,
define a third array with the dimensions:

h := (f ∗ g) ∈ R(N−Ñ+1)×(M−M̃+1)

hn,m := (f ∗ g)n,m =
Ñ∑

n′=1

M̃∑
m′=1

f (n + n′ − 1,m + m′ − 1)g(n′,m′)

I avoids zero padding

I but leads to shrinking array sizes

I rarely used in ML nowadays
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Deep Learning 1. Convolutions

1D convolution

I let X ∈ RW be a sequence of length W (called input)
(e.g., a time series),

K ∈ RW̃ a pattern / filter / kernel / window (W̃ �W ):
I W̃ pattern size

Zw := (X ∗ K )w =
W̃∑

w ′=1

Xw+δw ′Kw ′

Z ∈ RW called feature map
I of same type as X

I uses zero padding convention
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Deep Learning 1. Convolutions

1D convolution / Example

X := (1,−3, 4, 4, 2)

K := (−1, 1, 2)

X ∗ K =

A. (4, 15, 4)

with size shrinking

B. (4, 15, 4,−2,−2)

without centering (unusual)

C. (−5, 4, 15, 4,−2)

default
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Deep Learning 1. Convolutions

2D convolution

I let X ∈ RW×H be an array of dimensions W × H (e.g., an image),

K ∈ RW̃×H̃ a pattern / filter / kernel (W̃ �W , H̃ � H):

Zw ,h := (X ∗ K )w ,h =
W̃∑

w ′=1

H̃∑
h′=1

Xw+δw ′,h+δh′Kw ′,h′

Z ∈ RW×H called feature map
I of same type as X
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Deep Learning 1. Convolutions

2D convolution / Example

[source: Goodfellow et al. 2016]
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Deep Learning 1. Convolutions

3D convolution

I let X ∈ RW×H×D be an array of dimensions W × H × D
(e.g., a 3d image),

K ∈ RW̃×H̃×D̃ a pattern / filter / kernel
(W̃ �W , H̃ � H, D̃ � D):

Zw ,h,d := (X ∗ K )w ,h,d

=
W̃∑

w ′=1

H̃∑
h′=1

D̃∑
d ′=1

Xw+δw ′,h+δh′,d+δd ′Kw ′,h′,d ′

Z ∈ RW×H×D called feature map
I of same type as X
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Deep Learning 1. Convolutions

convolution for arrays of any order

I let X ∈ RM1×M2×···×MD be an array of order D,
K ∈ RM̃1×M̃2×···×M̃D a pattern / filter / kernel

(M̃d � Md , d = 1, . . . ,D):

Zm1,m2,...,mD
:= (X ∗ K )m1,m2,...,mD

=

M̃1∑
m′1=1

M̃2∑
m′2=1

· · ·
M̃D∑

m′D=1

Xm1+δm′1,m2+δm′2,...,mD+δm
′
D
Km′1,m

′
2,...,m

′
D

Z ∈ RM1×M2×···×MD called feature map
I of same type as X
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Deep Learning 2. Ordered vs Unordered Dimensions
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Deep Learning 2. Ordered vs Unordered Dimensions

Multiple Patterns
I let X ∈ RW×H be a W × H image,

K1, . . . ,KC ∈ RW̃×H̃ multiple patterns (filter bank):

Zw ,h,c := (X ∗ Kc)w ,h =
W̃∑

w ′=1

H̃∑
h′=1

Xw+δw ′,h+δh′Kc,w ′,h′

Z ∈ RW×H×C called feature map array
I with dimensions dim(X )× C

[source: S. Lazebnik]
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Deep Learning 2. Ordered vs Unordered Dimensions

What do you see?

a) Cat b) Tiger c) Dog

d) Permuted Cat e) Permuted Tiger f) Permuted Dog
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Deep Learning 2. Ordered vs Unordered Dimensions

Ordered vs Unordered Dimensions / Example

I let input X ∈ RW×H×C have multiple variables measured
for each position (w , h):

xw ,h,1, xw ,h,2, . . . , xw ,h,C

I e.g., red/green/blue intensities of pixels in images: C = 3

I each such variable often is called a channel

I lets assume their order does not contain any information:
I the indices of dimension C are unordered.

I I will call dimension C unordered.

I ordered dimensions: first / width (W ) and second / height (H).)

I unordered dimensions: third / color (C ).
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Deep Learning 2. Ordered vs Unordered Dimensions

Ordered vs Unordered Dimensions

I ordered dimensions:
I re-ordering the indices destroys information

I e.g., positions, times, generally bins of a continuous variable

I consider convolutions with patterns
I pattern size usually way smaller than input size (W̃ � W )

I unordered dimensions:
I re-ordering the indices does not destroy any information

I e.g., color channels, different attributes measured of an entity

I convolutions with patterns over some indices make no sense

I but patterns can stretch over all indices of an unordered dimension
and drop it in the output.
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Deep Learning 2. Ordered vs Unordered Dimensions

2D convolution with Channels

I let X ∈ RW×H×C be an array with
I ordered dimensions W and H and
I unordered dimension C

(e.g., an image with C channels),

K ∈ RW̃×H̃×C a pattern / filter / kernel (W̃ �W , H̃ � H):

Zw ,h := (X ∗ K )w ,h,c0 =
W̃∑

w ′=1

H̃∑
h′=1

C∑
c ′=1

Xw+δw ′,h+δh′,c ′Kw ′,h′,c ′

Z ∈ RW×H called feature map
I with all dimensions of X but the unordered one.

I by abuse of notation, this is also often written as convolution X ∗ K .
I correct: use c0 := bC+1

2 c to select just the center slice w.r.t. C
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Deep Learning 3. Convolutional Neural Networks
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Deep Learning 3. Convolutional Neural Networks

Nonlinear Activation of Feature Maps
I Q: why is stacking purely convolutional layers not useful?

Z 2 = Z 1 ∗W 2 = (X ∗W 1) ∗W 2

I use non-linear activation functions such as ReLU
to avoid weight array collapsing:

Znext
w ,h := a((Z ∗W )w ,h,c0) = a(

W̃∑
w ′=1

H̃∑
h′=1

C∑
c ′=1

Zw+δw ′,h+δh′,c ′Ww ′,h′,c ′)

[source: Rob Fergus]
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Deep Learning 3. Convolutional Neural Networks

Fully Connected vs Convolutional Neural Networks

fully connected layers
(L hidden layers):

x ∈ RM , y ∈ RO

z` := a`(W
`z`−1 + b`),

∈ RM` , ` = 1, . . . , L + 1

z0:=x, M0:=M, zL+1=:ŷ , ML+1:=O

W ` ∈ RM`×M`−1

b` ∈ RM`

a` : R→ R

aL+1 : RM`+1

→ RM`+1

e.g., softmax

convolutional layers (2D, images):
(L hidden layers):

x ∈ RW×H×C , y ∈ RW×H×O

z` := a`(W
` ∗ z`−1)

∈ RW×H×M` , ` = 1, . . . , L + 1

z0:=x, M0:=C , zL+1=:ŷ , ML+1:=O

W ` ∈ RM`×W̃×H̃×M`−1 , W̃ �W , H̃ � H

a` : R→ R
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W ` ∈ RM`×M`−1

b` ∈ RM`

a` : R→ R

aL+1 : RM`+1

→ RM`+1

e.g., softmax

convolutional layers (2D, images):
(L hidden layers):

x ∈ RW×H×C , y ∈ RW×H×O

z` := a`(W
` ∗ z`−1)

∈ RW×H×M` , ` = 1, . . . , L + 1

z0:=x, M0:=C , zL+1=:ŷ , ML+1:=O
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Deep Learning 4. Convolutional Layers vs Fully Connected Layers

A Convolutional Layer as Fully Connected Layer
I fully connected layer:

I connected every layer input neuron zw ′,h′,m′
with every layer output neuron zw ,h,m:

znextw ,h,m := a(
∑

w ′,h′,m′

Ww ,h,m,w ′,h′,m′zw ′,h′,m′)

I # parameters: W 2H2M`M`−1, # operations: O(W 2H2M`M`−1)

I convolutional layer as fully connected layer:

Ww ,h,m,w ′,h′,m′ :=

{
W conv

m,w ′−w ,h′−h,m′ , if w ′ − w < W̃& h′ − h < H̃

0, else

I # parameters:

W̃ H̃M`M`−1,

# operations:

O(WHW̃ H̃M`M`−1)

I convolutions have sparse parameters: most are 0.
I local interaction

I convolutions share parameters across positions:
e.g., Ww ,h,3,w+5,h+7,11 = W conv

3,5,7,11 are the same for all w , h
I translation invariant patterns
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Znext
w ,h := a((Z ∗W )w ,h,c0) = a(

W̃∑
w ′=1

H̃∑
h′=1

C∑
c ′=1

Zw+δw ′,h+δh′,c ′Ww ′,h′,c ′)

Note: Here we use non-centered convolutions for ease of notation.
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Deep Learning 4. Convolutional Layers vs Fully Connected Layers

Sparse Parameters, Local Interaction / Example

[source: Goodfellow et al., 2016]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 33



Deep Learning 4. Convolutional Layers vs Fully Connected Layers

Local Interaction over Multiple Layers

I stacked convolutions increase the interaction area (receptive field)

[source: Goodfellow et al., 2016]
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Deep Learning 4. Convolutional Layers vs Fully Connected Layers

Shared Parameters / Example

[source: Goodfellow et al., 2016]
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Deep Learning 5. Reducing Resolutions: Pooling and Striding

Reducing Resolutions

I convolutional layers retain the resolution of their inputs.
I OK, if the output has the same resolution,

e.g., for image segmenation tasks

I but what do we do if the output does not have any/some of the
ordered input dimensions?

I add a last fully connected layer
I could lead to a large number of parameters for high resolutions

I just average latent features over the ordered dimensions (pooling)
I has no parameters

I is it too simple?
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Deep Learning 5. Reducing Resolutions: Pooling and Striding

Pooling

I reduce resolution by aggregating neighborhoods of a position:

znext := poolmax(z)

poolmaxv ,s : RW×H×M → Rd
W
s
e×dH

s
e×M

znextw ′,h′,m := max(zw ,h,m | w := w ′s,w ′s + 1, . . . ,w ′s + v − 1,
h := h′s, h′s + 1, . . . , h′s + v − 1)

I pool width v > 1

I pool stride s, s ≤ v (otherwise parts are skipped), often s = v

I max pooling: as above (using max)

I average pooling: use avg instead of max to aggregate neighborhoods
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Deep Learning 5. Reducing Resolutions: Pooling and Striding

Pooling / Example 1D

I pool width v = 3, pool stride s = 2

[source: Goodfellow et al., 2016]
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Deep Learning 5. Reducing Resolutions: Pooling and Striding

Pooling / Example 2D

[source: Goodfellow et al., 2016]
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Deep Learning 5. Reducing Resolutions: Pooling and Striding

Pooling / Smoothing
I pooling also can be used for smoothing the latent features

e.g., for reduced sensitivity to small translations of the input:

[source: Goodfellow et al., 2016]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 33



Deep Learning 5. Reducing Resolutions: Pooling and Striding

Strided Convolutions
I instead of first computing high-resolution convolutions and

and then aggregating with pooling,
one also can use strided convolutions:

Znext
w ,h,m := (Z ∗stride s Wm)w ,h,m′0

=
W̃∑

w ′=1

H̃∑
h′=1

M′∑
m′=1

Zws+δw ′,hs+δh′,m′Wm,w ′,h′,m′
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Deep Learning 5. Reducing Resolutions: Pooling and Striding

Reshaping and Fully Connected Layers

I finally add fully connected layers

I reshape the D-dimensional array Z ∈ RM1×M2×···×MD to a vector:

reshape(Z ) := (Zindex(i))i=1,...,M′ ∈ RM′ , M ′ := M1M2 · · ·MD

index(i)d := (i −
D∑

d ′=d+1

index(i)d ′M1M2 · · ·Md ′) div M1M2 · · ·Md
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Deep Learning 5. Reducing Resolutions: Pooling and Striding

Example CNN Architectures

[source: Goodfellow et al., 2016]
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Deep Learning 6. Outlook

Gradients and Backpropagation

I gradients for convolutions are easy to compute.

I backpropagation as learning algorithm works seamlessly.
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Deep Learning 6. Outlook

Convolutional Neural Network Architectures

I AlexNet: deep CNNs.– 2012
I Alex = First name of first author.

I VGG: networks using blocks – 2014
I VGG = Visual Geometry Group.

I NiN: Network in Network – 2013

I GoogleLeNet – 2015: parallel concatenations; Inception

I ResNet: Residual Networks – 2016

I DenseNet: densely connected networks – 2016
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Deep Learning 6. Outlook

Summary

I In multidimensional data, dimensions can be ordered or unordered.
I information in ordered dimensions is destroyed if indices are shuffled.

I images

I time series

I any indices representing binned continuous variables

I Convolutions allow to learn patterns in data with ordered dimensions.

I Finite discrete convolutions for arrays need to take care of index
centering and zero padding.

I To reduce resolution, pooling and striding are used.
I max pooling and average pooling.

I For unordered targets (e.g., classification), CNNs feature final fully
connected layers (reshaping the last latent array to a vector).
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Deep Learning

Further Readings

I Goodfellow et al. 2016, ch. 9

I Zhang et al. 2020, ch. 6 & 7
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Deep Learning

convolution for arrays of any order

I convolutions for arrays of any order can be written more compactly
as follows:

I let X ∈ RM ,M ∈ ND be an array of order D,
K ∈ RM̃ , M̃ ∈ ND a pattern / filter / kernel

(M̃ � M elementwise):

Zm := (X ∗ K )m =
∑

m′∈ρ(M̃)

Xm+δm′Km′ , m ∈ ρ(M)

Z ∈ RM called feature map
I of same type as X

I grid ρ(M̃) :=
|M̃|

×
d=1

{1, 2, . . . , M̃d}

I index centering δm′ := δ(m′, M̃) := m′ − (b M̃d+1
2 c)d=1,...,D
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