

Deep Learning6. Recurrent Neural Networks (RNNs)

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

Syllabus

Tue. 21.4.	(1)	1. Supervised Learning (Review 1)
Tue. 28.4.	(2)	2. Neural Networks (Review 2)
Tue. 5.5.	(3)	3. Regularization for Deep Learning
Tue. 12.5.	(4)	4. Optimization for Training Deep Models
Tue. 19.5.	(5)	5. Convolutional Neural Networks
Tue. 26.5.	(6)	6. Recurrent Neural Networks
Tue. 2.6.		— Pentecoste Break —
Tue. 9.6.	(7)	7. Autoencoders
Tue. 16.6.	(8)	8. Generative Adversarial Networks
Tue. 23.6.	(9)	9. Recent Advances
Tue. 30.6.	(10)	10. Engineering Deep Learning Models
Tue. 7.7.	(11)	tbd.
Tue. 14.7.	(12)	Q & A

Outline

- 1. Sequence Data and Problems
- 2. Recurrent Neural Networks
- 3. Back Propagation Through Time
- 4. Gated Units and Long Short-Term Memory (LSTM)
- 5. Time Series Classification and Forecasting

Outline

1. Sequence Data and Problems

- 2. Recurrent Neural Networks
- 3. Back Propagation Through Time
- 4. Gated Units and Long Short-Term Memory (LSTM)
- 5. Time Series Classification and Forecasting

Sequences

- ► let X be any set, often called **alphabet**
- ► sequences in X:

$$X^* := \bigcup_{t \in \mathbb{N}} X^t$$

- aka time series
- e.g., ("h", "e", "l", "l", "o") ∈ X* for alphabet
 X := {"a", "b", ..., "z"}: strings.
- |x| := t if $x \in X^t$ length of sequence $x \in X^*$

Sequences / Example

- new corona infections in Germany
- ► alphabet: Q: what is the alphabet?
- example: $(490, 692, 273, 342) \in X^*$

https://www.worldometers.info/co

Sequences / Example

- new corona infections in Germany
- alphabet: $X := \mathbb{N}$
- example: $(490, 692, 273, 342) \in X^*$

https://www.worldometers.info/co

Sequences / Example

- German stock index DAX
- ▶ alphabet: $X := \mathbb{R}_0^+$
- ▶ example: $(11223.71, 11065.93, 11073.87, 11259.11) \in X^*$

Sequences of Vectors

- $X := \mathbb{R}^M$, *M* called **channels**
- e.g., EEG data: measurement at M := 16 electrodes.

[source: https://en.wikipedia.org/wiki/Electroencephalography]

Universiter Eligesheim

Sequences of Vectors / More Examples

- weather data: temperature, precipitation, wind speed, pressure, humidity etc.
- ► infections: new infections, new recoveries, new deaths
- ► infections: in Lower Saxony, Hamburg, Bremen, Berlin, Hessen etc.
- ► texts: 60.000 binary word indicators

Sequence Problems / 1. Sequence Prediction

- ► supervised problems with pairs $\mathcal{D}^{\text{train}} := \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\} \subseteq \mathcal{X} \times \mathcal{Y}$
- 1. sequence / time series classification / regression / prediction:
 - input: $\mathcal{X} := (\mathbb{R}^M)^*$ sequences / time series
 - usually with multiple channels
 - ▶ output: $\mathcal{Y} := \mathbb{R}^{O}$ (regression) or $\mathcal{Y} := \{0,1\}^{O}$ (classification)
 - ► example:
 - predict thunderstorm from weather data
 - predict insolvency from stock quotes
 - predict health conditions from ECG (or other medical time-variant data)
 - ► special case: time series forecasting: 𝒴 := ℝ^M

Sequence Problems / 2. Sequence-to-Sequence Learning

- 2. sequence-to-sequence learning:
 - input: $\mathcal{X} := (\mathbb{R}^M)^*$ sequences / time series
 - usually with multiple channels
 - ▶ output: $\mathcal{Y} := (\mathbb{R}^{O})^{*}$ or $\mathcal{Y} := (\{0,1\}^{O})^{*}$ sequence / time series
 - the output sequence is not aligned to the input sequence, esp. the output sequence can have a different length as the input sequence.
 - ► loss: average elementwise loss:

$$\ell(y, \hat{y}) := rac{1}{|y|} \sum_{t=1}^{|y|} \ell(y_t, \hat{y}_t), \quad ext{e.g.}, = -rac{1}{|y|} \sum_{t=1}^{|y|} \sum_{o=1}^{O} y_{t,o} \log(\hat{y}_{t,o})$$

example: translation:

input	<i>x</i> :	Μ	lachen	wir	es	ku	rz.
					•		

- output y: Let's make it short
- input x: Auf Wiedersehen!
- output y: Goodbye!

Sequence Problems / 3. Sequence Labeling

- 3. sequence labeling:
 - input: $\mathcal{X} := (\mathbb{R}^M)^*$ sequences / time series
 - usually with multiple channels
 - \blacktriangleright output: $\mathcal{Y} := (\mathbb{R}^O)^*$ or $\mathcal{Y} := (\{0,1\}^O)^*$
 - each output representing further measurements for each input index (aligned sequences),
 esp. each output having the same length as the input,

i.e., $\mathcal{D}^{\text{train}} \in ((\mathbb{R}^M \times \mathbb{R}^{\vec{O}})^*)^* = ((\mathbb{R}^{M + \vec{O}})^*)^*$

- ► loss: average elementwise loss.
- example: part of speech tagging:

input x: The quick brown jumps over the lazy dog. output y: DET ADJ NOUN VERB ADP DET ADJ NOUN

Outline

- 1. Sequence Data and Problems
- 2. Recurrent Neural Networks
- 3. Back Propagation Through Time
- 4. Gated Units and Long Short-Term Memory (LSTM)
- 5. Time Series Classification and Forecasting

From Convolutional Layers to Recurrent Layers

- inputs $x \in (\mathbb{R}^M)^*$
- convolutions with kernel size 1 (kernels $1 \times M$):

Universiter Eligesheim

From Convolutional Layers to Recurrent Layers

- inputs $x \in (\mathbb{R}^M)^*$
- convolutions with kernel size 1 (kernels $1 \times M$):

$$egin{aligned} & z_t := g(x_t) = a(W\!x_t + b), \quad t := 1, \dots, |x| \ & W \in \mathbb{R}^{K imes M}, \quad b \in \mathbb{R}^{K}, \quad a : \mathbb{R} o \mathbb{R} \end{aligned}$$

- convolutions with kernel size 2 (kernels $2 \times M$):
 - $z_t := g(x_t, x_{t-1}) = a(W_{.,2,.}x_t + W_{.,1,.}x_{t-1} + b), \quad t := 1, \dots, |x|$ $W \in \mathbb{R}^{K \times 2 \times M}, \quad b \in \mathbb{R}^{K}, \quad a: \mathbb{R} \to \mathbb{R}$

Universiter Fildesheim

From Convolutional Layers to Recurrent Layers

- inputs $x \in (\mathbb{R}^M)^*$
- convolutions with kernel size 1 (kernels $1 \times M$):

$$egin{aligned} & z_t := g(x_t) = a(W\!x_t + b), \quad t := 1, \dots, |x| \ & W \in \mathbb{R}^{K imes M}, \quad b \in \mathbb{R}^{K}, \quad a : \mathbb{R} o \mathbb{R} \end{aligned}$$

• convolutions with kernel size 2 (kernels $2 \times M$):

$$z_t := g(x_t, x_{t-1}) = a(W_{.,2,.}x_t + W_{.,1,.}x_{t-1} + b), \quad t := 1, \dots, |x|$$
$$W \in \mathbb{R}^{K \times 2 \times M}, \quad b \in \mathbb{R}^K, \quad a: \mathbb{R} \to \mathbb{R}$$
$$= g(x_t, x_{t-1}) = a(Wx_t + Vx_{t-1} + b), \quad t := 1, \dots, |x|$$
$$W \in \mathbb{R}^{K \times M}, \quad V \in \mathbb{R}^{K \times M}, \quad b \in \mathbb{R}^K, \quad a: \mathbb{R} \to \mathbb{R}$$

Universiter.

From Convolutional Layers to Recurrent Layers

- ▶ inputs $x \in (\mathbb{R}^M)^*$
- convolutions with kernel size 1 (kernels $1 \times M$):

$$z_t := g(x_t) = a(Wx_t + b), \quad t := 1, \dots, |x|$$
$$W \in \mathbb{R}^{K \times M}, \quad b \in \mathbb{R}^{K}, \quad a: \mathbb{R} \to \mathbb{R}$$

• convolutions with kernel size 2 (kernels $2 \times M$):

$$z_t = g(x_t, x_{t-1}) = a(Wx_t + Vx_{t-1} + b), \quad t := 1, \dots, |x|$$
$$W \in \mathbb{R}^{K \times M}, \quad V \in \mathbb{R}^{K \times M}, \quad b \in \mathbb{R}^{K}, \quad a: \mathbb{R} \to \mathbb{R}$$

recurrent layer:

$$z_t := g(x_t, z_{t-1}) = a(Wx_t + Vz_{t-1} + b), \quad t := 1, \dots, |x|$$
$$W \in \mathbb{R}^{K \times M}, \quad V \in \mathbb{R}^{K \times K}, \quad b \in \mathbb{R}^K, \quad a: \mathbb{R} \to \mathbb{R}, \quad z_0 \in \mathbb{R}^K$$

From Convolutional Layers to Recurrent Layers

RNN with one Hidden Layer

$$\begin{aligned} z_t &:= g(x_t, z_{t-1}) := a(W^1 x_t + V^1 z_{t-1} + b^1), \quad t := 1, \dots, |x| \\ & W^1 \in \mathbb{R}^{K \times M}, \quad V^1 \in \mathbb{R}^{K \times K}, \quad b^1 \in \mathbb{R}^K, \quad a: \mathbb{R} \to \mathbb{R}, \quad z_0 \in \mathbb{R}^K \\ y_t &:= h(z_t) := a_2(W^2 z_t + b^2), \quad t := 1, \dots, |x| \\ & W^2 \in \mathbb{R}^{O \times K}, \quad b^2 \in \mathbb{R}^O, \quad a_2: \mathbb{R} \to \mathbb{R} \text{ (or } \mathbb{R}^O \to \mathbb{R}^O, \text{ e.g., softmax)} \end{aligned}$$

RNN with one Hidden Layer

$$\begin{aligned} z_t &:= g(x_t, z_{t-1}) := a(W^1 x_t + V^1 z_{t-1} + b^1), \quad t := 1, \dots, |x| \\ & W^1 \in \mathbb{R}^{K \times M}, \quad V^1 \in \mathbb{R}^{K \times K}, \quad b^1 \in \mathbb{R}^K, \quad a: \mathbb{R} \to \mathbb{R}, \quad z_0 \in \mathbb{R}^K \\ y_t &:= h(z_t) := a_2(W^2 z_t + b^2), \quad t := 1, \dots, |x| \\ & W^2 \in \mathbb{R}^{O \times K}, \quad b^2 \in \mathbb{R}^O, \quad a_2: \mathbb{R} \to \mathbb{R} \text{ (or } \mathbb{R}^O \to \mathbb{R}^O, \text{ e.g., softmax)} \\ \end{aligned}$$
Q: Is a RNN still a computational acyclic graph?

Note: dashed line: temporal connection.

RNN with *L* Hidden Layers

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

conv

rec

rec

Deep Learning 2. Recurrent Neural Networks

Variants of Deep RNN Architectures

[source: Goodfellow et al. 2016, p. 400]

Outline

- 1. Sequence Data and Problems
- 2. Recurrent Neural Networks
- 3. Back Propagation Through Time
- 4. Gated Units and Long Short-Term Memory (LSTM)
- 5. Time Series Classification and Forecasting

Gradients w.r.t. Latent Features

► recurrent layer:

objective:

$$f(x,y; heta):=\ell(y,\hat{y}(x; heta))+\Omega(heta), \quad heta:=(W^\ell,V^\ell,b^\ell,z_0^\ell)_{\ell=1:L+1}$$

► gradients:

$$\frac{\partial f(x, y; \theta)}{\partial \theta} = \frac{\partial \ell(y, \hat{y}(x; \theta))}{\partial \hat{y}} \frac{\partial \hat{y}(x; \theta)}{\partial \theta} + \frac{\partial \Omega(\theta)}{\partial \theta}$$

Gradients w.r.t. Latent Features

Universiter.

► recurrent layer:

gradients w.r.t. latent features:

$$\begin{split} \frac{\partial \hat{y}}{\partial z_t^{\ell}} &= \frac{\partial \hat{y}}{\partial u_t^{\ell+1}} \frac{\partial u_t^{\ell+1}}{\partial z_t^{\ell}} + \frac{\partial \hat{y}}{\partial u_{t+1}^{\ell}} \frac{\partial u_{t+1}^{\ell}}{\partial z_t^{\ell}} = \frac{\partial \hat{y}}{\partial u_t^{\ell+1}} W^{\ell+1} + \frac{\partial \hat{y}}{\partial u_{t+1}^{\ell}} V^{\ell} \\ \frac{\partial \hat{y}}{\partial u_t^{\ell}} &= \frac{\partial \hat{y}}{\partial z_t^{\ell}} \frac{\partial z_t^{\ell}}{\partial u_t^{\ell}} = \frac{\partial \hat{y}}{\partial z_t^{\ell}} \operatorname{diag}(a'(u_t^{\ell})) \\ &= (\frac{\partial \hat{y}}{\partial u_t^{\ell+1}} W^{\ell+1} + \underbrace{\frac{\partial \hat{y}}{\partial u_{t+1}^{\ell}}}_{\text{bp time}} V^{\ell}) \operatorname{diag}(a'(u_t^{\ell})) \end{split}$$

Universiter Fildesheim

Gradients w.r.t. Parameters

► recurrent layer:

$$egin{aligned} u_t^\ell &:= \mathcal{W}^\ell z_t^{\ell-1} + V^\ell z_{t-1}^\ell + b^\ell, \quad \ell:=1,...,L+1; t:=1,...,|x| \ z_t^\ell &:= a(u_t^\ell) \end{aligned}$$

► gradients w.r.t. parameters:

$$\frac{\partial \hat{y}}{\partial b^{\ell}} = \frac{\partial z^{L+1}}{\partial b^{\ell}}$$

Universiter Fildesheim

Gradients w.r.t. Parameters

► recurrent layer:

$$egin{aligned} u_t^\ell &:= W^\ell z_t^{\ell-1} + V^\ell z_{t-1}^\ell + b^\ell, \quad \ell:=1,...,L+1; t:=1,...,|x| \ z_t^\ell &:= a(u_t^\ell) \end{aligned}$$

gradients w.r.t. parameters:

$$\frac{\partial \hat{y}}{\partial b^{\ell}} = \frac{\partial z^{L+1}}{\partial b^{\ell}} \stackrel{?}{=} \begin{cases} \mathsf{A}. & \sum_{t=1}^{|\mathsf{x}|} \frac{\partial \hat{y}}{\partial u_t^{\ell}} \frac{\partial u_t^{\ell}}{\partial b^{\ell}} \\ \mathsf{B}. & \sum_{t=1}^{|\mathsf{x}|} \frac{\partial \hat{y}}{\partial u_t^{\ell}} \\ \mathsf{C}. & \frac{\partial \hat{y}}{\partial u_t^{\ell}} \frac{\partial u_t^{\ell}}{\partial b^{\ell}} \\ \mathsf{D}. & \mathsf{0} \end{cases}$$

Universiter - Hildesheim

Gradients w.r.t. Parameters

► recurrent layer:

$$egin{aligned} u_t^\ell &:= W^\ell z_t^{\ell-1} + V^\ell z_{t-1}^\ell + b^\ell, & \ell:=1,...,L+1; t:=1,...,|x| \ z_t^\ell &:= a(u_t^\ell) \end{aligned}$$

gradients w.r.t. parameters:

RNN: Prediction / Forward Computation

Backpropagation Through Time (BPTT)

$$\begin{aligned} & \operatorname{gradients-rnn}((W^{\ell}, V^{\ell}, b^{\ell}, z_{0}^{\ell})_{\ell=1:L+1}, a, x, y, f): \\ & (u_{t}^{\ell}, z_{t}^{\ell})_{\ell=0:L+1;t=1:|x|} := \operatorname{predict-rnn}((W^{\ell}, V^{\ell}, b^{\ell}, z_{0}^{\ell})_{\ell=1:L+1}, a, x, "all") \\ & \text{for } \ell := L+1: 1 \text{ backwards:} \\ & \frac{\partial f}{\partial W^{\ell}} := 0, \frac{\partial f}{\partial V^{\ell}} := 0, \frac{\partial f}{\partial b^{\ell}} := 0; \frac{\partial f}{\partial u_{|x|+1}^{\ell}} := 0 \\ & \text{for } t := |x| : 1 \text{ backwards:} \\ & \text{if } \ell = L+1: \\ & \frac{\partial f}{\partial u_{t}^{l+1}} := \frac{\partial f}{\partial y}(y, z^{L+1}) \operatorname{diag}(a'(u_{t}^{L+1})) \\ & \text{s else:} \\ & \text{g else:} \\ & \frac{\partial f}{\partial u_{t}^{\ell}} := (\frac{\partial f}{\partial u_{t}^{\ell+1}} W^{\ell+1} + \frac{\partial f}{\partial u_{t+1}^{\ell}} V^{\ell}) \operatorname{diag}(a'(u_{t}^{\ell})) \\ & \frac{\partial f}{\partial W^{\ell}} + = \frac{\partial f}{\partial u_{t}^{\ell}} \cdot (z_{t}^{\ell} - 1)^{T} \\ & \frac{\partial f}{\partial V^{\ell}} + = \frac{\partial f}{\partial u_{t}^{\ell}} \cdot (z_{t-1}^{\ell})^{T} \\ & \frac{\partial f}{\partial z_{0}^{\ell}} := \frac{\partial f}{\partial u_{t}^{\ell}} V^{\ell} \\ & \text{return } (\frac{\partial f}{\partial W^{\ell}}, \frac{\partial f}{\partial V^{\ell}}, \frac{\partial f}{\partial b^{\ell}}, \frac{\partial f}{\partial z_{0}^{\ell}})_{\ell=1:L+1} \end{aligned}$$

Backpropagation Through Time (BPTT)

1. compute parameter gradients:

$$(\frac{\partial f}{\partial W^{\ell}}, \frac{\partial f}{\partial V^{\ell}}, \frac{\partial f}{\partial b^{\ell}}, \frac{\partial f}{\partial z_0^{\ell}})_{\ell=1:L+1} := \text{gradients-rnn}(\ldots)$$

2. update parameters:

$$\begin{split} W^{\ell} &:= W^{\ell} - \mu \frac{\partial f}{\partial W^{\ell}} \\ V^{\ell} &:= V^{\ell} - \mu \frac{\partial f}{\partial V^{\ell}} \\ b^{\ell} &:= b^{\ell} - \mu \frac{\partial f}{\partial b^{\ell}} \\ z_{0}^{\ell} &:= z_{0}^{\ell} - \mu \frac{\partial f}{\partial z_{0}^{\ell}}, \quad \ell = 1:L+1 \end{split}$$

Backpropagation Through Time (BPTT)

- mind the details:
 - compute gradients for minibatches
 - ▶ use weight decay / L2 regularization .
 - possibly use momentum
 - use step length controller for μ , e.g., Adam.

Outline

- 1. Sequence Data and Problems
- 2. Recurrent Neural Networks
- 3. Back Propagation Through Time

4. Gated Units and Long Short-Term Memory (LSTM)

5. Time Series Classification and Forecasting

Long-term Dependencies

• z_t as a function of x_1 :

$$\mathsf{z}_t(\mathsf{x}_1) \propto \mathsf{V}\mathsf{z}_{t-1} \propto \mathsf{V}^2 \mathsf{z}_{t-2} \propto \cdots \propto \mathsf{V}^{t-1} \mathsf{z}_1 \propto \mathsf{V}^{t-1} \mathsf{W}\mathsf{x}_1$$

 for V = QΛQ^T with orthogonal matrix Q and diagonal matrix Λ := diag(λ₁, λ₂,..., λ_K) the eigenvalues:

$$z_t(x_1) \propto Q \wedge Q^T Q \wedge Q^T \cdots Q \wedge Q^T W x_1 = Q \wedge^{t-1} Q^T W x_1$$

- ► dimensions with eigenvalue $\lambda_k < 1$: $\lambda_k^{t-1} \rightarrow 0$ will vanish
- dimensions with eigenvalue $\lambda_k > 1$: $\lambda_k^{t-1} \to \infty$ will explode

Illustrating Vanishing Gradients

Gating against Vanishing Gradients

Figure 2: Gating helps to remember, Source: Graves 2008

Gated Recurrent Units (GRUs)

► GRU layer:

$$z^{t} := v^{t} \odot z^{t-1} + (1 - v^{t}) \odot a(W^{z}x^{t} + V^{z}(r^{t} \odot z^{t-1}))$$
with
$$v^{t} := a(W^{v}x^{t} + V^{v}z^{t-1} + b^{v})$$
update gate
$$r^{t} := a(W^{r}x^{t} + V^{r}z^{t-1} + b^{r})$$
reset gate
$$W^{z}, W^{v}, W^{r} \in \mathbb{R}^{K \times M}, \quad V^{z}, V^{v}, V^{r} \in \mathbb{R}^{K \times K}, \quad b^{z}, b^{v}, b^{r} \in \mathbb{R}^{K}$$

•
$$v_t = 1$$
: gate $x_t \rightsquigarrow z_t$ closed

 Q: What happens in the following edge cases? Assign edge cases to possible effects.

edge cases			possible effects		
a.	$\forall t: v^t = 1$	2	1.	usual conv-1 layer	
b.	$\forall t: v^t = 0, r^t = 1$	$\stackrel{?}{\rightsquigarrow}$	2.	usual recurrent layer	
c.	$\forall t: v^t = 0, r^t = 0$		3.	$z^t = z_0$ constant in t ,	
				not dependend on <i>x</i>	

Universiter Eligesheim

Gated Recurrent Units (GRUs)

► GRU layer:

$$z^{t} := v^{t} \odot z^{t-1} + (1 - v^{t}) \odot a(W^{z}x^{t} + V^{z}(r^{t} \odot z^{t-1}))$$
with $v^{t} := a(W^{v}x^{t} + V^{v}z^{t-1} + b^{v})$ update gate
$$r^{t} := a(W^{r}x^{t} + V^{r}z^{t-1} + b^{r})$$
 reset gate
$$W^{z}, W^{v}, W^{r} \in \mathbb{R}^{K \times M}, \quad V^{z}, V^{v}, V^{r} \in \mathbb{R}^{K \times K}, \quad b^{z}, b^{v}, b^{r} \in \mathbb{R}^{K}$$

•
$$v_t = 1$$
: gate $x_t \rightsquigarrow z_t$ closed

- ► edge cases:
 - $\forall t : v^t = 1$ $\rightsquigarrow z^t = z_0$ constant in t, not dependend on x
 - $\forall t : v^t = 0, r^t = 1 \rightsquigarrow$ usual recurrent layer
 - $\forall t : v^t = 0, r^t = 0 \rightsquigarrow$ usual conv-1 layer

The GRU Cell

Note: dashed: temporal connections. cvx: convex combination $u \odot v + (1 - u) \odot w$.

Long Short-Term Memory (LSTM)

$$\begin{split} f^t &:= a(W^f x^t + V^f z^{t-1} + b^f) \quad \text{forget gate} \\ g^t &:= a(W^g x^t + V^g z^{t-1} + b^g) \quad \text{input gate} \\ q^t &:= a(W^q x^t + V^q z^{t-1} + b^q) \quad \text{output gate} \\ s^t &:= f^t \odot s^{t-1} + g^t \odot a(W^s x^t + V^s z^{t-1} + b^s) \quad \text{state} \\ z^t &:= a(s^t) \odot q^t \quad \text{output} \end{split}$$

The LSTM Cell

Clipping gradients RNN produces strongly nonlinear loss functions which create cliffs:

Figure 3: Clipping can avoid exploding gradients, Source: Goodfellow et al., 2016

A simple solution is the gradient clipping heuristic:

$$\text{if } ||g|| > v \text{ then } g := \frac{gv}{||g||}$$

Outline

- 1. Sequence Data and Problems
- 2. Recurrent Neural Networks
- 3. Back Propagation Through Time
- 4. Gated Units and Long Short-Term Memory (LSTM)
- 5. Time Series Classification and Forecasting

RNNs for Time Series Classification

- ► like convolutional layers, recurrent layers retain the size of the time dimension.
- ► like for CNNs, also in RNNs **pooling layers** could be used to reduce time resolution
 - ► esp. global pooling for a fixed size of the latent feature vector
- once the time dimension is eliminated, fully-connected layers can be added.
- CNNs are a well-known architecture for time series classification sometimes called fully convolutional neural networks [Wang et al., 2017]
- ▶ RNNs are used less frequently this way [Ismail Fawaz et al., 2019].

CNNs for Time Series Classification

Note: Here dashed lines for MLP denotes dropout. CNN kernel sizes are 8, 5 and 3.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

L

RNNs for Time Series Forecasting

$$\tilde{x} := x_{1:T-1}, \quad T := |x|y \qquad := x_{2:T}, \quad \text{i.e., } y_t := x_{t+1}$$

• with forecasting horizoon $h \in \mathbb{N}$:

$$\tilde{x} := x_{1:T-h}, \quad T := |x|y \qquad := x_{1+h:T}, \quad \text{i.e., } y_t := x_{t+h}$$

▶ possible, because RNNs use only information from earlier time slices.

works the same for CNNs with kernels having their reference point at the largest index / on the right, not in the center.

Summary (1/2)

- ► There are several supervised learning problems for sequence data:
 - ► sequence prediction: scalar/vector targets.
 - ► sequence-to-sequence prediction: an unaligned sequence targets.
 - ► sequence labeling: aligned sequence targets.
- ► A recurrent layer consists of
 - ► a neuron for each time slice,
 - fully connected to the input at the same time and

its sibling neuron a timeslice earlier (same layer).

- ► A recurrent neural network with a single hidden layer consists of
 - a hidden recurrent layer and
 - ► a convolutional output layer with kernel size 1.
- ► Recurrent layers can be stacked to **deep recurrent neural networks**.
- In RNNs gradients can be computed and thus parameters learned by backpropagation through time (bptt).

Summary (2/2)

- In RNNs long-term dependencies suffer from vanishing or exploding gradients.
- Gating is used to learn relevant dependencies between inputs and outputs across time.
 - Gated Recurrent Units (GRUs) with update and reset gates.
 - Long Short-Term Memory (LSTM) with
 - forget, input and output gates and
 - separate states and outputs

Further Readings

- ► Goodfellow et al. 2016, ch. 10
- ► Zhang et al. 2020, ch. 8 & 9
- ► the part of speech example is taken in modified form from [Sarkar, 2016, p. 138].

References

- Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The Mit Press, Cambridge, Massachusetts, November 2016. ISBN 978-0-262-03561-3.
- Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller. Deep learning for time series classification: A review. Data Mining and Knowledge Discovery, 33(4):917–963, July 2019. ISSN 1573-756X. doi: 10.1007/s10618-019-00619-1.
- Dipanjan Sarkar. Text Analytics with Python: A Practical Real-World Approach to Gaining Actionable Insights from Your Data. Apress, 2016. ISBN 978-1-4842-2388-8. doi: 10.1007/978-1-4842-2388-8.
- Z. Wang, W. Yan, and T. Oates. Time series classification from scratch with deep neural networks: A strong baseline. In 2017 International Joint Conference on Neural Networks (IJCNN), pages 1578–1585, May 2017. doi: 10.1109/IJCNN.2017.7966039.

Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander Smola. Dive into Deep Learning. https://d2l.ai/, 2020.