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Deep Learning

Syllabus

Tue. 21.4. (1) 1. Supervised Learning (Review 1)
Tue. 28.4. (2) 2. Neural Networks (Review 2)
Tue. 5.5. (3) 3. Regularization for Deep Learning
Tue. 12.5. (4) 4. Optimization for Training Deep Models
Tue. 19.5. (5) 5. Convolutional Neural Networks
Tue. 26.5. (6) 6. Recurrent Neural Networks
Tue. 2.6. — — Pentecoste Break —
Tue. 9.6. (7) 7. Autoencoders
Tue. 16.6. (8) 8. Generative Adversarial Networks
Tue. 23.6. (9) 9. Recent Advances
Tue. 30.6. (10) 10. Engineering Deep Learning Models
Tue. 7.7. (11) tbd.
Tue. 14.7. (12) Q & A
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Deep Learning

Outline

1. Sequence Data and Problems

2. Recurrent Neural Networks

3. Back Propagation Through Time

4. Gated Units and Long Short-Term Memory (LSTM)

5. Time Series Classification and Forecasting
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Deep Learning 1. Sequence Data and Problems

Sequences

I let X be any set, often called alphabet

I sequences in X :

X ∗ :=
⋃
t∈N

X t

I aka time series

I e.g., (”h”, ”e”, ”l”, ”l”, ”o”) ∈ X ∗ for alphabet
X := {”a”, ”b”, . . . , ”z”}: strings.

I |x | := t if x ∈ X t length of sequence x ∈ X ∗
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Deep Learning 1. Sequence Data and Problems

Sequences / Example
I new corona infections in Germany

I alphabet: — Q: what is the alphabet?

I example: (490, 692, 273, 342) ∈ X ∗
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https://www.worldometers.info/coronavirus/country/germany/



Deep Learning 1. Sequence Data and Problems

Sequences / Example
I new corona infections in Germany

I alphabet: X := N

I example: (490, 692, 273, 342) ∈ X ∗
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Deep Learning 1. Sequence Data and Problems

Sequences / Example
I German stock index DAX

I alphabet: X := R+
0

I example: (11223.71, 11065.93, 11073.87, 11259.11) ∈ X ∗
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Deep Learning 1. Sequence Data and Problems

Sequences of Vectors
I X := RM , M called channels

I e.g., EEG data: measurement at M := 16 electrodes.

[source: https://en.wikipedia.org/wiki/Electroencephalography]
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Deep Learning 1. Sequence Data and Problems

Sequences of Vectors / More Examples

I weather data: temperature, precipitation, wind speed, pressure,
humidity etc.

I infections: new infections, new recoveries, new deaths

I infections: in Lower Saxony, Hamburg, Bremen, Berlin, Hessen etc.

I texts: 60.000 binary word indicators

...
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Deep Learning 1. Sequence Data and Problems

Sequence Problems / 1. Sequence Prediction

I supervised problems with pairs
Dtrain := {(x1, y1), (x2, y2), . . . , (xN , yN)} ⊆ X ×Y

1. sequence / time series classification / regression / prediction:
I input: X := (RM)∗ sequences / time series

I usually with multiple channels

I output: Y := RO (regression) or Y := {0, 1}O (classification)

I example:
I predict thunderstorm from weather data

I predict insolvency from stock quotes

I predict health conditions from ECG (or other medical time-variant data)

I special case: time series forecasting: Y := RM
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Deep Learning 1. Sequence Data and Problems

Sequence Problems / 2. Sequence-to-Sequence Learning
2. sequence-to-sequence learning:

I input: X := (RM)∗ sequences / time series
I usually with multiple channels

I output: Y := (RO)∗ or Y := ({0, 1}O)∗ sequence / time series
I the output sequence is not aligned to the input sequence,

esp. the output sequence can have a different length as the input
sequence.

I loss: average elementwise loss:

`(y , ŷ) :=
1

|y |

|y |∑
t=1

`(yt , ŷt), e.g., = − 1

|y |

|y |∑
t=1

O∑
o=1

yt,o log(ŷt,o)

I example: translation:

input x : Machen wir es kurz.
output y : Let’s make it short

input x : Auf Wiedersehen!
output y : Goodbye!
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Deep Learning 1. Sequence Data and Problems

Sequence Problems / 3. Sequence Labeling

3. sequence labeling:
I input: X := (RM)∗ sequences / time series

I usually with multiple channels

I output: Y := (RO)∗ or Y := ({0, 1}O)∗

I each output representing further measurements for each input index
(aligned sequences),
esp. each output having the same length as the input,
i.e., Dtrain ∈ ((RM × RO)∗)∗ = ((RM+O)∗)∗

I loss: average elementwise loss.

I example: part of speech tagging:

input x : The quick brown jumps over the lazy dog.
output y : DET ADJ NOUN VERB ADP DET ADJ NOUN
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Deep Learning 2. Recurrent Neural Networks

Outline

1. Sequence Data and Problems

2. Recurrent Neural Networks

3. Back Propagation Through Time

4. Gated Units and Long Short-Term Memory (LSTM)

5. Time Series Classification and Forecasting
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Deep Learning 2. Recurrent Neural Networks

From Convolutional Layers to Recurrent Layers
I inputs x ∈ (RM)∗

I convolutions with kernel size 1 (kernels 1×M):

zt := g(xt) = a(Wxt + b), t := 1, . . . , |x |
W∈RK×M , b∈RK , a:R→R

I convolutions with kernel size 2 (kernels 2×M):

zt

= g(xt , xt−1) = a(Wxt+Vxt−1 + b), t := 1, . . . , |x |
W∈RK×M , V∈RK×M , b∈RK , a:R→R

I recurrent layer:

zt := g(xt , zt−1) = a(Wxt+Vzt−1 + b), t := 1, . . . , |x |
W∈RK×M , V∈RK×K , b∈RK , a:R→R, z0∈RK
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Deep Learning 2. Recurrent Neural Networks

From Convolutional Layers to Recurrent Layers

I convolutional layer with kernel size 2:

. . . . . .xt−1 xt xt+1

. . . . . .zt−1 zt zt+1

I recurrent layer:

. . . . . .xt−1 xt xt+1

zt−1 zt zt+1
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Deep Learning 2. Recurrent Neural Networks

RNN with one Hidden Layer

. . . . . .xt−1 xt xt+1

zt−1 zt zt+1

. . . . . .yt−1 yt yt+1

x

z

y

rec.

conv-1

zt := g(xt , zt−1) := a(W 1xt + V 1zt−1 + b1), t := 1, . . . , |x |
W 1∈RK×M , V 1∈RK×K , b1∈RK , a:R→R, z0∈RK

yt := h(zt) := a2(W 2zt + b2), t := 1, . . . , |x |
W 2∈RO×K , b2∈RO , a2:R→R (or RO→RO , e.g., softmax)
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Deep Learning 2. Recurrent Neural Networks

RNN with one Hidden Layer

. . . . . .xt−1 xt xt+1

zt−1 zt zt+1

. . . . . .yt−1 yt yt+1

x

z

y

rec.

conv-1

zt := g(xt , zt−1) := a(W 1xt + V 1zt−1 + b1), t := 1, . . . , |x |
W 1∈RK×M , V 1∈RK×K , b1∈RK , a:R→R, z0∈RK

yt := h(zt) := a2(W 2zt + b2), t := 1, . . . , |x |
W 2∈RO×K , b2∈RO , a2:R→R (or RO→RO , e.g., softmax)

Q: Is a RNN still a computational acyclic graph?
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Deep Learning 2. Recurrent Neural Networks

RNN with L Hidden Layers

I RNN with L hidden layers:

z`t := a(W `z`−1
t + V `z`t−1 + b`), ` := 1, . . . , L + 1; t := 1, . . . , |x |

W `∈RM`×M`−1 , V `∈RM`×M` , b`∈RM` , a:R→R, z`0∈R
M`

z0:=x , M0:=M, zL+1=:y , ML+1:=O, VL+1:=0
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Deep Learning 2. Recurrent Neural Networks

Variants of Deep RNN Architectures

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

Figure 10.13: A recurrent neural network can be made deep in many ways (Pascanu
et al., ). The hidden recurrent state can be broken down into groups organized2014a (a)
hierarchically. Deeper computation (e.g., an MLP) can be introduced in the input-to-(b)
hidden, hidden-to-hidden and hidden-to-output parts. This may lengthen the shortest
path linking different time steps. The path-lengthening effect can be mitigated by(c)
introducing skip connections.

400

[source: Goodfellow et al. 2016, p. 400]
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Deep Learning 3. Back Propagation Through Time

Outline

1. Sequence Data and Problems

2. Recurrent Neural Networks

3. Back Propagation Through Time

4. Gated Units and Long Short-Term Memory (LSTM)

5. Time Series Classification and Forecasting
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Deep Learning 3. Back Propagation Through Time

Gradients w.r.t. Latent Features

I recurrent layer:

u`t := W `z`−1
t + V `z`t−1 + b`, `:=1,...,L+1;t:=1,...,|x |

z`t := a(u`t )

W `∈RM`×M`−1 , V `∈RM`×M` , b`∈RM` , a:R→R, z`0∈R
M`

z0:=x , M0:=M, zL+1=:y , ML+1:=O, VL+1:=0

I objective:

f (x , y ; θ) := `(y , ŷ(x ; θ)) + Ω(θ), θ := (W `,V `, b`, z`0)`=1:L+1

I gradients:

∂f (x , y ; θ)

∂θ
=
∂`(y , ŷ(x ; θ))

∂ŷ

∂ŷ(x ; θ)

∂θ
+
∂Ω(θ)

∂θ
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Deep Learning 3. Back Propagation Through Time

Gradients w.r.t. Latent Features
I recurrent layer:

u`t := W `z`−1
t + V `z`t−1 + b`, `:=1,...,L+1;t:=1,...,|x |

z`t := a(u`t )

W `∈RM`×M`−1 , V `∈RM`×M` , b`∈RM` , a:R→R, z`0∈R
M`

z0:=x , M0:=M, zL+1=:y , ML+1:=O, VL+1:=0

I gradients w.r.t. latent features:

∂ŷ

∂z`t
=

∂ŷ

∂u`+1
t

∂u`+1
t

∂z`t
+

∂ŷ

∂u`t+1

∂u`t+1

∂z`t
=

∂ŷ

∂u`+1
t

W `+1 +
∂ŷ

∂u`t+1

V `

∂ŷ

∂u`t
=

∂ŷ

∂z`t

∂z`t
∂u`t

=
∂ŷ

∂z`t
diag(a′(u`t ))

= (
∂ŷ

∂u`+1
t︸ ︷︷ ︸

bp layers

W `+1 +
∂ŷ

∂u`t+1︸ ︷︷ ︸
bp time

V `) diag(a′(u`t ))
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Deep Learning 3. Back Propagation Through Time

Gradients w.r.t. Parameters
I recurrent layer:

u`t := W `z`−1
t + V `z`t−1 + b`, `:=1,...,L+1;t:=1,...,|x |

z`t := a(u`t )

I gradients w.r.t. parameters:

∂ŷ

∂b`
=
∂zL+1

∂b`

=

|x |∑
t=1

∂ŷ

∂u`t

∂u`t
∂b`

=

|x |∑
t=1

∂ŷ

∂u`t

∂ŷ

∂W `
.,m

=

|x |∑
t=1

∂ŷ

∂u`t

∂u`t
∂W `

.,m

=

|x |∑
t=1

∂ŷ

∂u`t
z`−1
t,m

∂ŷ

∂V `
.,m

=

|x |∑
t=1

∂ŷ

∂u`t

∂u`t
∂V `

.,m

=

|x |∑
t=1

∂ŷ

∂u`t
z`t−1,m

∂ŷ

∂z`0
= already computed above
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∂ŷ

∂b`
=
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?
=



A.
|x |∑
t=1

∂ŷ
∂u`t

∂u`t
∂b`

B.
|x |∑
t=1

∂ŷ
∂u`t

C. ∂ŷ
∂u`t

∂u`t
∂b`

D. 0

=

|x |∑
t=1

∂ŷ

∂u`t

∂u`t
∂b`

=

|x |∑
t=1

∂ŷ

∂u`t

∂ŷ

∂W `
.,m

=

|x |∑
t=1

∂ŷ

∂u`t

∂u`t
∂W `

.,m
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∂ŷ
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∂ŷ

∂u`t

∂u`t
∂b`

=

|x |∑
t=1

∂ŷ
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Deep Learning 3. Back Propagation Through Time

RNN: Prediction / Forward Computation

1 predict-rnn((W `,V `, b`, z`0)`=1:L+1, a, x ,mode) :
2 z0 := x
3 for ` := 1 : L + 1:
4 for t := 1 : |x |:
5 u`t := W `z`−1

t + V `z`t−1 + b`

6 z`t := a(u`t )
7 if mode=”prediction”:

8 return (zL+1
t )t=1:|x|

9 else :

10 return (u`t , z
`
t )`=0:L+1;t=1:|x|
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Deep Learning 3. Back Propagation Through Time

Backpropagation Through Time (BPTT)

1 gradients-rnn((W `,V `, b`, z`0)`=1:L+1, a, x , y , f ) :

2 (u`t , z
`
t )`=0:L+1;t=1:|x| := predict-rnn((W `,V `, b`, z`0)`=1:L+1, a, x , ”all”)

3 for ` := L + 1 : 1 backwards:

4
∂f

∂W ` := 0, ∂f
∂V ` := 0, ∂f

∂b` := 0; ∂f
∂u`

|x|+1

:= 0

5 for t := |x | : 1 backwards:
6 if ` = L + 1:

7
∂f

∂uL+1
t

:= ∂f
∂ŷ (y , zL+1) diag(a′(uL+1

t ))

8 else :

9
∂f
∂u`

t
:= ( ∂f

∂u`+1
t

W `+1 + ∂f
∂u`

t+1
V `) diag(a′(u`t ))

10
∂f

∂W ` += ∂f
∂u`

t
· (z`−1

t )T

11
∂f
∂V ` += ∂f

∂u`
t
· (z`t−1)T

12
∂f
∂b` += ∂f

∂u`
t

13
∂f
∂z`0

:= ∂f
∂u`

1
V `

14 return ( ∂f
∂W ` ,

∂f
∂V ` ,

∂f
∂b` ,

∂f
∂z`0

)`=1:L+1
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Deep Learning 3. Back Propagation Through Time

Backpropagation Through Time (BPTT)

1. compute parameter gradients:

(
∂f

∂W `
,
∂f

∂V `
,
∂f

∂b`
,
∂f

∂z`0
)`=1:L+1 := gradients-rnn(. . .)

2. update parameters:

W ` := W ` − µ ∂f

∂W `

V ` := V ` − µ ∂f

∂V `

b` := b` − µ ∂f
∂b`

z`0 := z`0 − µ
∂f

∂z`0
, ` = 1 : L + 1
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Deep Learning 3. Back Propagation Through Time

Backpropagation Through Time (BPTT)

I mind the details:
I compute gradients for minibatches

I use weight decay / L2 regularization .

I possibly use momentum

I use step length controller for µ, e.g., Adam.
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Deep Learning 4. Gated Units and Long Short-Term Memory (LSTM)

Outline

1. Sequence Data and Problems

2. Recurrent Neural Networks

3. Back Propagation Through Time

4. Gated Units and Long Short-Term Memory (LSTM)

5. Time Series Classification and Forecasting
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Deep Learning 4. Gated Units and Long Short-Term Memory (LSTM)

Long-term Dependencies

I assume no activation functions (a(u) := u)

I zt as a function of x1:

zt(x1) ∝ Vzt−1 ∝ V 2zt−2 ∝ · · · ∝ V t−1z1 ∝ V t−1Wx1

I for V = QΛQT with
orthogonal matrix Q and
diagonal matrix Λ := diag(λ1, λ2, . . . , λK ) the eigenvalues:

zt(x1) ∝ QΛQTQΛQT · · ·QΛQTWx1 = QΛt−1QTWx1

I dimensions with eigenvalue λk < 1: λt−1
k → 0 will vanish

I dimensions with eigenvalue λk > 1: λt−1
k →∞ will explode
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Deep Learning 4. Gated Units and Long Short-Term Memory (LSTM)

Illustrating Vanishing Gradients

Figure 1: Sensitivity to the input at time one, Source: Graves 2008
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Deep Learning 4. Gated Units and Long Short-Term Memory (LSTM)

Gating against Vanishing Gradients

Figure 2: Gating helps to remember, Source: Graves 2008
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Deep Learning 4. Gated Units and Long Short-Term Memory (LSTM)

Gated Recurrent Units (GRUs)
I GRU layer:

z t := v t � z t−1 + (1− v t)� a(W zx t + V z(r t � z t−1))

with v t := a(W vx t + V vz t−1 + bv ) update gate

r t := a(W rx t + V rz t−1 + br ) reset gate

W z ,W v ,W r∈RK×M , V z ,V v ,V r∈RK×K , bz ,bv ,br∈RK

I vt = 1: gate xt  zt closed

I Q: What happens in the following edge cases?
Assign edge cases to possible effects.

edge cases possible effects

a. ∀t : v t = 1 1. usual conv-1 layer
b. ∀t : v t = 0, r t = 1

?
 2. usual recurrent layer

c. ∀t : v t = 0, r t = 0 3. z t = z0 constant in t,
not dependend on x

I edge cases:
I ∀t : v t = 1  z t = z0 constant in t, not dependend on x

I ∀t : v t = 0, r t = 1  usual recurrent layer

I ∀t : v t = 0, r t = 0  usual conv-1 layer
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Deep Learning 4. Gated Units and Long Short-Term Memory (LSTM)

The GRU Cell
x

v r

: �

z : cvx
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Note: dashed: temporal connections. cvx: convex combination u � v + (1− u)� w .



Deep Learning 4. Gated Units and Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM)

f t := a(W f x t + V f z t−1 + bf ) forget gate

g t := a(W gx t + V gz t−1 + bg ) input gate

qt := a(W qx t + V qz t−1 + bq) output gate

st := f t � st−1 + g t � a(W sx t + V sz t−1 + bs) state

z t := a(st)� qt output
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Deep Learning 4. Gated Units and Long Short-Term Memory (LSTM)

The LSTM Cell
x

f g i q
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Deep Learning 4. Gated Units and Long Short-Term Memory (LSTM)

Clipping gradients
RNN produces strongly nonlinear loss functions which create cliffs:

Figure 3: Clipping can avoid exploding gradients, Source: Goodfellow et al., 2016

A simple solution is the gradient clipping heuristic:

if ||g || > v then g :=
gv

||g ||
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Deep Learning 5. Time Series Classification and Forecasting

Outline

1. Sequence Data and Problems

2. Recurrent Neural Networks

3. Back Propagation Through Time

4. Gated Units and Long Short-Term Memory (LSTM)

5. Time Series Classification and Forecasting
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Deep Learning 5. Time Series Classification and Forecasting

RNNs for Time Series Classification

I like convolutional layers, recurrent layers retain the size of the time
dimension.

I like for CNNs, also in RNNs pooling layers could be used to reduce
time resolution

I esp. global pooling for a fixed size of the latent feature vector

I once the time dimension is eliminated,
fully-connected layers can be added.

I CNNs are a well-known architecture for time series classification
sometimes called fully convolutional neural networks [Wang et al.,
2017]

I RNNs are used less frequently this way [Ismail Fawaz et al., 2019].
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Deep Learning 5. Time Series Classification and Forecasting

CNNs for Time Series Classification
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(a)MLP

(b)FCN

(C)ResNet

Fig. 1. The network structure of three tested neural networks. Dash line indicates the operation of dropout.

the Class Activation Map (CAM) to find out the contributing
region in the raw data for the specific labels.

II. NETWORK ARCHITECTURES

We tested three deep neural network architectures to provide
a fully comprehensive baseline.

A. Multilayer Perceptrons

Our plain baselines are basic MLP by stacking three fully-
connected layers. The fully-connected layers each has 500
neurons following two design rules: (i) using dropout [11]
at each layer’s input to improve the generalization capability ;
and (ii) the non-linearity is fulfilled by the rectified linear unit
(ReLU)[12] as the activation function to prevent saturation of
the gradient when the network is deep. The network ends with
a softmax layer. A basic layer block is formalized as

x̃ = fdropout,p(x)

y = W · x̃+ b

h = ReLU(y) (1)

This architecture is mostly distinguished from the seminal
MLP decades ago by the utilization of ReLU and dropout.
ReLU helps to stack the networks deeper and dropout largely
prevent the co-adaption of the neurons to help the model
generalizes well especially on some small datasets. However,
if the network is too deep, most neuron will hibernate as the
ReLU totally halve the negative part. The Leaky ReLU [13]
might help, but we only use three layers MLP with the ReLU
to provide a fundamental baselines. The dropout rates at the

input layer, hidden layers and the softmax layer are {0.1, 0.2,
0.3}, respectively (Figure 1(a)).

B. Fully Convolutional Networks

FCN has shown compelling quality and efficiency for se-
mantic segmentation on images [14]. Each output pixel is a
classifier corresponding to the receptive field and the networks
can thus be trained pixel-to-pixel given the category-wise
semantic segmentation annotation.

In our problem settings, the FCN is performed as a feature
extractor. Its final output still comes from the softmax layer.
The basic block is a convolutional layer followed by a batch
normalization layer [15] and a ReLU activation layer. The
convolution operation is fulfilled by three 1-D kernels with the
sizes {8, 5, 3} without striding. The basic convolution block
is

y = W ⊗ x+ b

s = BN(y)

h = ReLU(s) (2)

⊗ is the convolution operator. We build the final networks
by stacking three convolution blocks with the filter sizes {128,
256, 128} in each block. Unlike the MCNN and MC-CNN, We
exclude any pooling operation. This strategy is also adopted in
the ResNet [16] as to prevent overfitting. Batch normalization
is applied to speed up the convergence speed and help improve
generalization. After the convolution blocks, the features are
fed into a global average pooling layer [17] instead of a fully

[source: Wang et al. 2017, p. 2]
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Note: Here dashed lines for MLP denotes dropout. CNN kernel sizes are 8, 5 and 3.



Deep Learning 5. Time Series Classification and Forecasting

RNNs for Time Series Forecasting

I use the time shifted input as output:

x̃ := x1:T−1, T := |x |y := x2:T , i.e., yt := xt+1

I with forecasting horizion h ∈ N:

x̃ := x1:T−h, T := |x |y := x1+h:T , i.e., yt := xt+h

I possible, because RNNs use only information from earlier time slices.
I works the same for CNNs with kernels having their reference point at

the largest index / on the right, not in the center.
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Deep Learning 5. Time Series Classification and Forecasting

Summary (1/2)
I There are several supervised learning problems for sequence data:

I sequence prediction: scalar/vector targets.

I sequence-to-sequence prediction: an unaligned sequence targets.

I sequence labeling: aligned sequence targets.

I A recurrent layer consists of
I a neuron for each time slice,
I fully connected to the input at the same time and

its sibling neuron a timeslice earlier (same layer).

I A recurrent neural network with a single hidden layer consists of
I a hidden recurrent layer and
I a convolutional output layer with kernel size 1.

I Recurrent layers can be stacked to deep recurrent neural networks.

I In RNNs gradients can be computed and thus parameters learned by
backpropagation through time (bptt).
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Deep Learning 5. Time Series Classification and Forecasting

Summary (2/2)

I In RNNs long-term dependencies suffer from vanishing or
exploding gradients.

I Gating is used to learn relevant dependencies between inputs and
outputs across time.

I Gated Recurrent Units (GRUs) with update and reset gates.

I Long Short-Term Memory (LSTM) with
I forget, input and output gates and
I separate states and outputs
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Deep Learning

Further Readings

I Goodfellow et al. 2016, ch. 10

I Zhang et al. 2020, ch. 8 & 9

I the part of speech example is taken in modified form from [Sarkar,
2016, p. 138].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

33 / 32

Acknowledgement: An earlier version of the slides for this lecture have been written by my
former postdoc Dr Josif Grabocka.



Deep Learning

References

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The Mit Press, Cambridge, Massachusetts, November
2016. ISBN 978-0-262-03561-3.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller. Deep learning for time
series classification: A review. Data Mining and Knowledge Discovery, 33(4):917–963, July 2019. ISSN 1573-756X. doi:
10.1007/s10618-019-00619-1.

Dipanjan Sarkar. Text Analytics with Python: A Practical Real-World Approach to Gaining Actionable Insights from Your Data.
Apress, 2016. ISBN 978-1-4842-2388-8. doi: 10.1007/978-1-4842-2388-8.

Z. Wang, W. Yan, and T. Oates. Time series classification from scratch with deep neural networks: A strong baseline. In 2017
International Joint Conference on Neural Networks (IJCNN), pages 1578–1585, May 2017. doi:
10.1109/IJCNN.2017.7966039.

Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander Smola. Dive into Deep Learning. https://d2l.ai/, 2020.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

34 / 32


	1. Sequence Data and Problems
	2. Recurrent Neural Networks
	3. Back Propagation Through Time
	4. Gated Units and Long Short-Term Memory (LSTM)
	5. Time Series Classification and Forecasting
	Appendix

