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Deep Learning

Syllabus

Tue. 21.4. (1) 1. Supervised Learning (Review 1)
Tue. 28.4. (2) 2. Neural Networks (Review 2)
Tue. 5.5. (3) 3. Regularization for Deep Learning
Tue. 12.5. (4) 4. Optimization for Training Deep Models
Tue. 19.5. (5) 5. Convolutional Neural Networks
Tue. 26.5. (6) 6. Recurrent Neural Networks
Tue. 2.6. — — Pentecoste Break —
Tue. 9.6. (7) 7. Autoencoders
Tue. 16.6. (8) 8. Generative Adversarial Networks
Tue. 23.6. (9) 9. Recent Advances
Tue. 30.6. (10) 10. Engineering Deep Learning Models
Tue. 7.7. (11) tbd.
Tue. 14.7. (12) Q & A
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Deep Learning 1. Dimensionality Reduction and Semi-Supervised Learning (Review)

Dimensionality Reduction / Via Feature Reconstruction
Given a dataset D = (x1, x2, . . . , xN) ∈ (RM)∗,

an embedding dimension K ∈ N, and
a pairwise loss ` : RM × RM → R,

find an embedding / encoder

z : RM → RK

and a reconstruction map / (auto)decoder

x̂ : RK → RM

with minimal reconstruction error

`(z , r ;D) :=
1

N

N∑
n=1

`(xn, x̂(z(xn)))

I K � M
I otherwise there is a trivial solution z(x) := x , x̂(z) = z with error 0.

I z is called lower-dimensional / latent representation.
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Deep Learning 1. Dimensionality Reduction and Semi-Supervised Learning (Review)

Linear Dimensionality Reduction / Linear Autoencoders

I restrict encoder z and decoder x̂ to be linear:

z(x) := Wx , x̂(z) = Vz , W ∈ RK×M ,V ∈ RM×K

 x̂(x) = VWx

Q: Are linear autoencoders useful?

I view xprotok := V1:M,k as an instance prototype.

I every instance is reconstructed as linerar combinaton of these
prototypes:

x̂ =
K∑

k=1

zkx
proto
k

I for `(x , x̂) = ||x − x̂ ||22: principle components analysis (PCA)
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Deep Learning 1. Dimensionality Reduction and Semi-Supervised Learning (Review)

What is Dimensionality Reduction Useful For?

I to visualize data (K = 2 or K = 3)

I to compress data for transmitting or storage

I for feature compression instead of feature selection

I for semi-supervised learning
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Deep Learning 1. Dimensionality Reduction and Semi-Supervised Learning (Review)

Semi-supervised Learning

Given a labeled dataset Dtrain = ((x1, y1), . . . , (xN , yN)) ∈ (RM × RO)∗,
an unlabeled dataset Dunlab = (x ′1, x

′
2, . . . , x

′
N′) ∈ (RM)∗,

a pairwise loss ` : RO × RO → R,

find a model

ŷ : RM → RO

with minimal error on fresh data (from the same distribution):

`(ŷ ;Dtest) :=
1

|Dtest|
∑

(x ,y)∈Dtest

`(y , ŷ(x))

I the unlabeled data is usually way larger than the labeled on.

Q: what is the unlabeled data useful for?
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Deep Learning 1. Dimensionality Reduction and Semi-Supervised Learning (Review)

Semi-supervised Learning / Using the Unlabeled Data

I unlabeled data is usually used to learn a latent representation,

I and then the target regressed on the latent representation z ,
not the original representation x .

I sequential training:
I first train x̂ (and z), then fix z and train ŷ .
I advantage: simple.
I disadvantage: latent representation is not informed by the task ŷ .

I concurrent training:
I alternate between training x̂ and ŷ .
I joint loss:

`(ŷ , x̂ ;Dtrain,Dunlab) = `Y (ŷ ;Dtrain) + α`X (x̂ ;Dtrain|x ∪ Dunlab)

I auxiliary loss weight α and latent dimensionality K are hyperparameters
(as well as the choice of the reconstruction loss `X )
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`(ŷ , x̂ ;Dtrain,Dunlab) = `Y (ŷ ;Dtrain) + α`X (x̂ ;Dtrain|x ∪ Dunlab)

I auxiliary loss weight α and latent dimensionality K are hyperparameters
(as well as the choice of the reconstruction loss `X )

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 26

x

z

x̂ ŷ
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Deep Learning 2. Autoencoders

Autoencoders / Single Layer

I PCA / linear autoencoder:

x̂(x) := VWx  W 2W 1x  W 2(W 1x + b1) + b2

I autoencoder: chose encoder and decoder to be a fully connected
neural network with L layers each.

I most simple case: a single layer L = 1:

x̂(x) := relu(W 2 relu(W 1x + b1) + b2)
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Deep Learning 2. Autoencoders

Autoencoders / Multiple Layers
I general case: multiple layers L each:

I encoder block z1,1:L1 :

z1,` := relu(W 1,`z1,`−1 + b1,`)

z1,0:=x, M1,0:=M, h:=z1,L, M1,L:=K ,

W 1,`∈RM1,`×M1,`−1 , b1,`∈RM1,`

I decoder block z2,1:L2 :

z2,` := relu(W 2,`z2,`−1 + b2,`)

z2,0:=h, M1,0:=K , x̂ :=z2,L, M2,L:=M,

W 2,`∈RM2,`×M2,`−1 , b2,`∈RM2,`

I Q: What type of architecture does such a deep autoencoder have?

I an autoencoder is a vanilla fully connected
feedforward neural network
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Deep Learning 2. Autoencoders

Autoencoders

I usually, depth and layer sizes of encoder and decoder blocks are
chosen antisymmetric:

L1 = L2, M2,` = M1,L1−`

I create the information bottleneck gradually, layer by layer.

[source: licdn.com]
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Deep Learning 2. Autoencoders

Learning Autoencoders

I an autoencoder is a vanilla fully connected feedforward neural
network.

I thus an autoencoder is learnt via vanilla backpropagation.

I from unlabeled data D = (x1, x2, . . . , xN) ∈ (RM)∗

to labeled training data for autoencoders:

Dtrain := ((x1, x1), (x2, x2), . . . , (xN , xN)) ∈ (RM × RM)∗

`(x , x̂ ;Dtrain) :=
1

N

N∑
n=1

||xn − x̂(xn)||22 =
1

N

N∑
n=1

M∑
m=1

(xn,m − x̂m(xn))2
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Deep Learning 2. Autoencoders

Regularizing Autoencoders

I one-layer autoencoders are often just structurally regularize: K � M.

I deeper autoencoders and more generally, a more fine-grainded
regularization is useful.

I use standard regularizations such as L2, drop-out

f (θ) := `(x̂ ; θ) + λ||θ||22

I also L1 regularization is possible:

f (θ) := `(x̂ ; θ) + λ||θ||1
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Deep Learning 2. Autoencoders

Enforcing Properties of the Latent Representations

I sparse autoencoders:

f (θ;Dtrain) := `(x̂ ; θ,Dtrain) + λ
1

N

N∑
n=1

||h(xn; θ)||1

I encourages sparse latent representations h(xn).

I thus also has a regularizing effect for the encoder.
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Deep Learning 2. Autoencoders

Denoising Autoencoders

I goal: make the autoencoder more robust to small variations in the
input.

I corrupt the input with noise.

I still require the autoencoder to decode to the clean, original instance:

`(x̂ ;Dtrain) := Eε∼pnoise`(x , x̂(z(x + ε)))

I e.g., pnoise := NM(0, σ2) with a small noise variance σ2.

I during training, draw a fresh corruption ε and add to instance xn,
before it is input into the network. So for each batch:

Dtrain
noise := ((xn + εn, xn) | n = 1 : N, εn ∼ pnoise)

I basically a data augmentation technique.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 26



Deep Learning 2. Autoencoders

Contractive Autoencoders

I goal: make the autoencoder more robust to small variations in the
input.

I penalize large gradients of the latent representaitons h w.r.t. the
inputs x :

f (θ;Dtrain) := `(x̂ ; θ,Dtrain) + λ
1

N

N∑
n=1

||∂h(xn; θ)

∂x
||2F

I e.g., for a single layer autoencoder:

||∂h(xn; θ)

∂x
||2F =

K∑
k=1

M∑
m=1

(
∂hk(xn)

∂xm
)2 =

K∑
k=1

M∑
m=1

(a′(W T
k.,x + bk)Wk,m)2

6=
i.g.
||W ||2F
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Deep Learning 3. Layers Parametrizing Distributions
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Deep Learning 3. Layers Parametrizing Distributions

Layers Parametrizing Distributions
I univariate normal (K = 1):

M`−1 := 2, µ := z`−11 , σ := ez
`−1
2

p(z` | z`−1) := N (z` | µ, σ2)

I multivariate normal (K ), diagonal covariance matrix:

M`−1 := 2K , µ := z`−11:K , Σ := diag(e2z
`−1
K+1:2K )

p(z` | z`−1) := NK (z` | µ,Σ)

I multivariate normal (K ), full covariance matrix:

M`−1 :=
K (K + 1)

2
, µ := z`−11:K , A := reshape(z`−1

K+1:K(K+1)
2

), Σ := ATA

p(z` | z`−1) := NK (z` | µ,Σ)
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Note: Here, reshape reshapes the K(K−1)
2

entries into a lower triangular K × K matrix A
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Deep Learning 3. Layers Parametrizing Distributions

Layers Parametrizing Distributions (2/2)

I bernoulli:

M`−1 := 1, p1 := logistic(z`−11 )

p(z` | z`−1) := Ber(z` | p1) = z`p1 + (1− z`)(1− p1)

I multinoulli (K ):

M`−1 := K , p := softmax(z`−1)

p(z` | z`−1) := Mult(z` | p) =
K∏

k=1

p
I(z`=k)
k
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Deep Learning 3. Layers Parametrizing Distributions

Layers Parametrizing Distributions / Value Computation

I value computation / forwards:
I sample z` ∼ p(z` | z`−1)

I to estimate output probabilities, take S samples:

p(x | z) =
1

S

S∑
s=1

p(x | z`,(s)), z`,(s) ∼ p(z` | z`−1)

I Q: but how to compute gradients ∂z`

∂z`−1

required for backpropagation?
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Deep Learning 3. Layers Parametrizing Distributions

Layers Parametrizing Distributions / Gradient Computation

I gradient computation / backwards

I reparameterization trick:
I reparametrize z` as a differentiable function in

I the previous layer and
I random noise ε (independent from the previous layer):

z` | z`−1 = g(z`−1, ε), ε ∼ pnoise

I e.g., univariate normal:

p(z` | z`−1) = N (z` | µ, σ2)  z` = µ+ σε, ε ∼ N (ε | 0, 1)

I now ∂z`

∂z`−1 is straight-forward to compute.
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Deep Learning 3. Layers Parametrizing Distributions

Layers Parametrizing Distributions / Gradient Computation

I reparametrization trick for multivariate normal with diagonal
covariance:

p(z` | z`−1) = NK (z` | µ, diag(σ21. . . . , σ
2
K ))

 z` = µ+ (σ1, . . . , σK )T � ε, ε ∼ NK (ε | 0, 1)

= µ+ diag(σ1, . . . , σK )ε

I reparametrization trick for multivariate normal with full covariance:

p(z` | z`−1) = NK (z` | µ,Σ), with Σ = ATA

 z` = µ+ Aε, ε ∼ NK (ε | 0, 1)
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Deep Learning 3. Layers Parametrizing Distributions

Layers Parametrizing Distributions / Gradient Computation

I neural networks with layers parametrizing distributions
can be learnt with vanilla backpropagation

I after applying the reparametrization trick

I random noise ε is viewed as additional input

I for autoencoders with point reconstructions x̂(z):

min f (θ;D) :=
1

N

N∑
n=1

Ez∼p(z|xn)`(xn, x̂(z))

I for autoencoders with distributions p(x̂ | z) of reconstructions:

min f (θ;D) := − 1

N

N∑
n=1

Ez∼p(z|xn) log p(x̂ = xn | z)
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Deep Learning 4. Variational Autoencoders

Variational Lower Bound
I variational autoencoders distinguish between

I the true latent posterior p(z | x) and
I the estimated latent posterior p(ẑ | x)

— usually denoted q(z | x) in the literature.
I maximize log likelihood:

log p(x̂ = x)

= Eẑ∼p(ẑ|x) log p(x̂ = x)

= Eẑ∼p(ẑ|x) log
p(x̂ = x , z = ẑ)

p(z = ẑ | x)

= Eẑ∼p(ẑ|x) log
p(x̂ = x , z = ẑ)

p(ẑ | x)

p(ẑ | x)

p(z = ẑ | x)

= Eẑ∼p(ẑ|x) log p(x̂ = x , z = ẑ)− Eẑ∼p(ẑ|x) log p(ẑ | x)

+ Eẑ∼p(ẑ|x)
log p(ẑ | x)

log p(z = ẑ | x)
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Deep Learning 4. Variational Autoencoders

Variational Lower Bound

log p(x̂ = x) = Eẑ∼p(ẑ|x) log p(x̂ = x , z = ẑ)

=H(p(ẑ|x))︷ ︸︸ ︷
−Eẑ∼p(ẑ|x) log p(ẑ | x)

+ Eẑ∼p(ẑ|x)
log p(ẑ | x)

log p(z = ẑ | x)︸ ︷︷ ︸
=KL(p(ẑ|x),p(z|x))

= Eẑ∼p(ẑ|x) log p(x̂ = x , z = ẑ) + H(p(ẑ | x)) + KL(p(ẑ | x), p(z | x))

I Entropy H(q)

I Kullback-Leibler divergence KL(q, p) ≥ 0
I cannot be computed as p(z = ẑ | x) is not accessible,

only conceptual.

I drop it and use the remaining terms as a lower bound.
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Deep Learning 4. Variational Autoencoders

Variational Lower Bound

I evidence lower bound (ELBO) / variational lower bound:

ELBO := log p(x̂ = x)− KL(p(ẑ | x), p(z | x))

= Eẑ∼p(ẑ|x) log p(x̂ = x , z = ẑ) + H(p(ẑ | x))

I conceptually:
I maximize the likelihood of the data and

I minimize the KL divergence, i.e.,

make estimated posterior latent distribution p(ẑ | x) and
true posterior latent distribution p(z | x) similar.

I technically:
I maximize the joint likelihood of the data and the estimated latent

representations, and

I maximize the entropy of the estimated latent representations.
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Deep Learning 4. Variational Autoencoders

Variational Lower Bound

I entropy for univariate normal:

H(N (µ, σ2)) ∝ log σ

I entropy for multivariate normal with diagonal covariance matrix:

H(NK (µ, (σ21, . . . , σ
2
K )) ∝

K∑
k=1

log σk

I entropy for multivariate normal with full covariance matrix:

H(N (µ,Σ)) ∝ . . .
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Deep Learning 4. Variational Autoencoders

Variational Autoencoders
I Variational Autoencoders are autoencoders with

1. a layer parametrizing a normal distribution as latent representation
layer h,

I usually with a diagonal covariance matrix
(factorized Gaussian posteriors).

M1,`−1 := 2K , µ := z`−1
1,1:K , Σ := diag(e2z

`−1
K+1:2K )

p(z` | z`−1) := N K (z` | µ,Σ)

2. using the variational lower bound ELBO as loss
I i.e., for a diagonal covariance matrix and scalar normal output
N (x̂ | µout(xn, ẑ), σ2

out(xn, ẑ)), minimize:

f (θ) = −ELBO

= − 1

N
(

N∑
n=1

Eẑ∼p(ẑ|xn) log p(x̂ = xn, z = ẑ) +
K∑

k=1

log(Σk,k(xn)))

=
1

N
(

N∑
n=1

Eẑ∼p(ẑ|xn) log(σout(xn, ẑ)) + (
xn − µout(xn, ẑ)

σout(xn, ẑ)
)2 − 2

K∑
k=1

z`−1
K+1:2K (xn))
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Deep Learning 4. Variational Autoencoders

Summary

I Dimensionality reduction can be accomplished via reconstructing
the features of each instance from a lower dimensional / lower
complexity latent representation (autoencoding).

I Principal Components Analysis (PCA) is a linear autoencoder.

I Adding a non-linear activation function to the latent layer yields a
single layer autoencoder.

I More generally, any feed-forward neural network can be interpreted as
deep autoencoder,

I picking any of its layers as latent representation h,
I the layers up to h are interpreted as encoder,
I the layers after h are interpreted as decoder.
I but usually, layer sizes are chosen anti-symmetric and the middle layer

is chosen as latent representation h.
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Deep Learning 4. Variational Autoencoders

Summary (2/2)
I Autoencoders are vanilla feed-forward neural networks, esp.

I they can be trained via vanilla back-propagation.
I they should be regularized.

I standard: L2, drop-out
I special: sparse autoencoders with an L1 regularization on the latent

representation h

I Layers representing distributions
I can be modeled by parametrizing distributions by values from the

previous layer.
I can be used forwards simply by sampling from the distribution.
I can compute gradients by the reparametrization trick.

I Variational Autoencoders
I represent the latent features by a distribution (not just a point

estimate)
I usually a multivariate normal with diagonal covariance matrix,

I use a variational lower bound ELBO as loss.
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Deep Learning

Further Readings

I Goodfellow et al. 2016, ch. 13 & 14.

I variational autoencoders:
I Kingma and Welling [2019]
I Goodfellow et al. 2016, ch. 20.

I autoencoders are not covered explicitely by Zhang et al. 2020.
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