

# Deep Learning

7. Autoencoders

#### Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

# Syllabus



| Tue. 21.4. | (1)  | 1. Supervised Learning (Review 1)        |
|------------|------|------------------------------------------|
| Tue. 28.4. | (2)  | 2. Neural Networks (Review 2)            |
| Tue. 5.5.  | (3)  | 3. Regularization for Deep Learning      |
| Tue. 12.5. | (4)  | 4. Optimization for Training Deep Models |
| Tue. 19.5. | (5)  | 5. Convolutional Neural Networks         |
| Tue. 26.5. | (6)  | 6. Recurrent Neural Networks             |
| Tue. 2.6.  |      | — Pentecoste Break —                     |
| Tue. 9.6.  | (7)  | 7. Autoencoders                          |
| Tue. 16.6. | (8)  | 8. Generative Adversarial Networks       |
| Tue. 23.6. | (9)  | 9. Recent Advances                       |
| Tue. 30.6. | (10) | 10. Engineering Deep Learning Models     |
| Tue. 7.7.  | (11) | tbd.                                     |
| Tue. 14.7. | (12) | Q & A                                    |

#### Outline



- 1. Dimensionality Reduction and Semi-Supervised Learning (Review)
- 2. Autoencoders
- 3. Layers Parametrizing Distributions
- 4. Variational Autoencoders

#### Outline



#### 1. Dimensionality Reduction and Semi-Supervised Learning (Review)

#### 2. Autoencoders

- 3. Layers Parametrizing Distributions
- 4. Variational Autoencoders

# Dimensionality Reduction / Via Feature Reconstruction Given a dataset $\mathcal{D} = (x_1, x_2, \dots, x_N) \in (\mathbb{R}^M)^*$ , an embedding dimension $K \in \mathbb{N}$ , and a pairwise loss $\ell : \mathbb{R}^M \times \mathbb{R}^M \to \mathbb{R}$ , find an embedding / encoder

and a reconstruction map / (auto)decoder  $\hat{\mathbf{x}} \cdot \mathbb{R}^{K} \to \mathbb{R}^{M}$ 

with minimal reconstruction error

$$\ell(z,r;\mathcal{D}) := \frac{1}{N} \sum_{n=1}^{N} \ell(x_n, \hat{x}(z(x_n)))$$

► *K* ≪ *M* 

• otherwise there is a trivial solution  $z(x) := x, \hat{x}(z) = z$  with error 0.

#### ► z is called lower-dimensional / latent representation.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



×



#### Linear Dimensionality Reduction / Linear Autoencoders

• restrict encoder z and decoder  $\hat{x}$  to be linear:

$$egin{aligned} & z(x) \coloneqq \mathcal{W}x, \quad \hat{x}(z) = \mathcal{V}z, \quad \mathcal{W} \in \mathbb{R}^{\mathcal{K} imes \mathcal{M}}, \mathcal{V} \in \mathbb{R}^{\mathcal{M} imes \mathcal{K}} \ & & \hat{x}(x) = \mathcal{V}\mathcal{W}x \end{aligned}$$

Q: Are linear autoencoders useful?



# Linear Dimensionality Reduction / Linear Autoencoders

• restrict encoder z and decoder  $\hat{x}$  to be linear:

$$egin{aligned} & z(x) := Wx, \quad \hat{x}(z) = Vz, \quad W \in \mathbb{R}^{K imes M}, V \in \mathbb{R}^{M imes K} \ & & & \hat{x}(x) = VWx \end{aligned}$$

- view  $x_k^{\text{proto}} := V_{1:M,k}$  as an instance prototype.
- every instance is reconstructed as linerar combinaton of these prototypes:

$$\hat{x} = \sum_{k=1}^{K} z_k x_k^{\text{proto}}$$

► for  $\ell(x, \hat{x}) = ||x - \hat{x}||_2^2$ : principle components analysis (PCA)

#### Universiter Fildesheim

# What is Dimensionality Reduction Useful For?

- to visualize data (K = 2 or K = 3)
- to compress data for transmitting or storage
- ► for feature compression instead of feature selection
- ► for semi-supervised learning

#### Semi-supervised Learning

Given a labeled dataset  $\mathcal{D}^{\text{train}} = ((x_1, y_1), \dots, (x_N, y_N)) \in (\mathbb{R}^M \times \mathbb{R}^O)^*$ , an **unlabeled dataset**  $\mathcal{D}^{\text{unlab}} = (x'_1, x'_2, \dots, x'_{N'}) \in (\mathbb{R}^M)^*$ , a pairwise loss  $\ell : \mathbb{R}^O \times \mathbb{R}^O \to \mathbb{R}$ ,

find a model

$$\hat{y}: \mathbb{R}^M \to \mathbb{R}^O$$

with minimal error on fresh data (from the same distribution):

$$\ell(\hat{y}; \mathcal{D}^{\mathsf{test}}) := \frac{1}{|\mathcal{D}^{\mathsf{test}}|} \sum_{(x,y) \in \mathcal{D}^{\mathsf{test}}} \ell(y, \hat{y}(x))$$

► the unlabeled data is usually way larger than the labeled on.
Q: what is the unlabeled data useful for?





#### University -Fildesheift

# Semi-supervised Learning / Using the Unlabeled Data

- ▶ unlabeled data is usually used to learn a latent representation,
- ► and then the target regressed on the latent representation z, not the original representation x.



# Jniversitat

ŵ

# Semi-supervised Learning / Using the Unlabeled Data

- ► unlabeled data is usually used to learn a latent representation,
- ► and then the target regressed on the latent representation z, not the original representation x.
- sequential training:
  - first train  $\hat{x}$  (and z), then fix z and train  $\hat{y}$ .
  - advantage: simple.
  - disadvantage: latent representation is not informed by the task  $\hat{y}$ .

- unlabeled data is usually used to learn a latent representation,
- $\blacktriangleright$  and then the target regressed on the latent representation z, not the original representation x.
- sequential training:
  - first train  $\hat{x}$  (and z), then fix z and train  $\hat{y}$ .
  - advantage: simple.
  - disadvantage: latent representation is not informed by the task  $\hat{y}$ .
- ► concurrent training:
  - alternate between training  $\hat{x}$  and  $\hat{y}$ .
  - ▶ joint loss:

$$\ell(\hat{y}, \hat{x}; \mathcal{D}^{\mathsf{train}}, \mathcal{D}^{\mathsf{unlab}}) = \ell_Y(\hat{y}; \mathcal{D}^{\mathsf{train}}) + \alpha \ell_X(\hat{x}; \mathcal{D}^{\mathsf{train}}|_x \cup \mathcal{D}^{\mathsf{unlab}})$$

 $\blacktriangleright$  auxiliary loss weight  $\alpha$  and latent dimensionality K are hyperparameters (as well as the choice of the reconstruction loss  $\ell_X$ )



X

#### Outline



#### 1. Dimensionality Reduction and Semi-Supervised Learning (Review)

#### 2. Autoencoders

- 3. Layers Parametrizing Distributions
- 4. Variational Autoencoders

#### Autoencoders / Single Layer



► PCA / linear autoencoder:

$$\hat{x}(x) := VWx \rightsquigarrow W^2W^1x \rightsquigarrow W^2(W^1x + b^1) + b^2$$

- autoencoder: chose encoder and decoder to be a fully connect z neural network with L layers each.
- most simple case: a single layer L = 1:

$$\hat{x}(x) := \operatorname{relu}(W^2 \operatorname{relu}(W^1 x + b^1) + b^2)$$

# Autoencoders / Multiple Layers

- ▶ general case: multiple layers *L* each:
- encoder block  $z^{1,1:L_1}$ :

$$z^{1,\ell} := \mathsf{relu}(W^{1,\ell}z^{1,\ell-1} + b^{1,\ell})$$
  
$$z^{1,0:=x, \quad M_{1,0}:=M, \quad h:=z^{1,L}, \quad M_{1,L}:=K}$$
  
$$W^{1,\ell} \in \mathbb{R}^{M_{1,\ell} \times M_{1,\ell-1}, \quad b^{1,\ell} \in \mathbb{R}^{M_{1,\ell}}}$$

• decoder block  $z^{2,1:L_2}$ :

$$z^{2,\ell} := \operatorname{relu}(W^{2,\ell}z^{2,\ell-1} + b^{2,\ell})$$

$$z^{2,0} := h, \quad M_{1,0} := K, \quad \hat{x} := z^{2,L}, \quad M_{2,L} := M,$$

$$W^{2,\ell} \subset \mathbb{D}^{M_2,\ell \times M_2,\ell-1} \qquad b^{2,\ell} \subset \mathbb{D}^{M_2,\ell}$$

► Q: What type of architecture does such a deep autoen 2;er\_have?



 $x = z^{1,0}$ 

71,2

 $z^{1,L_1-1}$ 

z<sup>2,1</sup>

z<sup>2,2</sup>

 $\hat{x} = z^{2,L_2}$ 

 $h = z^{1,L_1} = z^{2,0}$ 

Deep Learning 2. Autoencoders

#### Autoencoders / Multiple Layers

- ▶ general case: multiple layers *L* each:
- encoder block  $z^{1,1:L_1}$ :

$$z^{1,\ell} := \operatorname{relu}(W^{1,\ell}z^{1,\ell-1} + b^{1,\ell})$$

$$z^{1,0:=x, M_{1,0}:=M, h:=z^{1,\ell}, M_{1,L}:=K, M_{1,\ell}\in\mathbb{R}^{M_{1,\ell}\times M_{1,\ell-1}, b^{1,\ell}\in\mathbb{R}^{M_{1,\ell}}}$$

• decoder block  $z^{2,1:L_2}$ :

$$z^{2,\ell} := \operatorname{relu}(W^{2,\ell}z^{2,\ell-1} + b^{2,\ell})$$

$$z^{2,0:=h, M_{1,0}:=K, \hat{x}:=z^{2,L}, M_{2,L}:=M, \hat{y}^{2,\ell} \in \mathbb{R}^{M_{2,\ell} \times M_{2,\ell-1}, b^{2,\ell} \in \mathbb{R}^{M_{2,\ell}}}$$

$$x = z^{1,0}$$

$$z^{1,1}$$

$$z^{1,2}$$

$$z^{1,l_{1}-1}$$

$$h = z^{1,l_{1}} = z^{2,0}$$

$$z^{2,1}$$

$$z^{2,1}$$

$$z^{2,l_{2}-1}$$

$$x = z^{2,l_{2}}$$

 an autoencoder is a vanilla fully connected feedforward neural network

Deep Learning 2. Autoencoders

#### Autoencoders

- Shiversiter Fildeshelf
- usually, depth and layer sizes of encoder and decoder blocks are chosen antisymmetric:

$$L_1 = L_2, \quad M_{2,\ell} = M_{1,L_1-\ell}$$

► create the information bottleneck gradually, layer by layer.



[source: licdn.com]

#### Learning Autoencoders

- an autoencoder is a vanilla fully connected feedforward neural network.
- ► thus an autoencoder is learnt via vanilla backpropagation.
- ▶ from unlabeled data D = (x<sub>1</sub>, x<sub>2</sub>,..., x<sub>N</sub>) ∈ (R<sup>M</sup>)\* to labeled training data for autoencoders:

$$\mathcal{D}^{train} := ((x_1, x_1), (x_2, x_2), \dots, (x_N, x_N)) \in (\mathbb{R}^M \times \mathbb{R}^M)^*$$
  
 $\ell(x, \hat{x}; \mathcal{D}^{train}) := rac{1}{N} \sum_{n=1}^N ||x_n - \hat{x}(x_n)||_2^2 = rac{1}{N} \sum_{n=1}^N \sum_{m=1}^M (x_{n,m} - \hat{x}_m(x_n))^2$ 



Deep Learning 2. Autoencoders

#### Regularizing Autoencoders

- Shiversite Hildesheif
- one-layer autoencoders are often just structurally regularize:  $K \ll M$ .
- deeper autoencoders and more generally, a more fine-grainded regularization is useful.
- ► use standard regularizations such as L2, drop-out

$$f(\theta) := \ell(\hat{x}; \theta) + \lambda ||\theta||_2^2$$

► also L1 regularization is possible:

$$f(\theta) := \ell(\hat{x}; \theta) + \lambda ||\theta||_1$$



# Enforcing Properties of the Latent Representations

sparse autoencoders:

$$f(\theta; \mathcal{D}^{\mathsf{train}}) := \ell(\hat{x}; \theta, \mathcal{D}^{\mathsf{train}}) + \lambda \frac{1}{N} \sum_{n=1}^{N} ||h(x_n; \theta)||_1$$

- encourages sparse latent representations  $h(x_n)$ .
- ► thus also has a regularizing effect for the encoder.

# Denoising Autoencoders



- goal: make the autoencoder more robust to small variations in the input.
- corrupt the input with noise.
- ▶ still require the autoencoder to decode to the clean, original instance:

$$\ell(\hat{x}; \mathcal{D}^{\mathsf{train}}) := \mathbb{E}_{\epsilon \sim \rho_{\mathsf{noise}}} \ell(x, \hat{x}(z(x + \epsilon)))$$

- e.g.,  $p_{\text{noise}} := \mathcal{N}_M(0, \sigma^2)$  with a small noise variance  $\sigma^2$ .
- ► during training, draw a fresh corruption e and add to instance x<sub>n</sub>, before it is input into the network. So for each batch:

$$\mathcal{D}_{\mathsf{noise}}^{\mathsf{train}} := ((x_n + \epsilon_n, x_n) \mid n = 1 : N, \epsilon_n \sim p_{\mathsf{noise}})$$

basically a data augmentation technique.

Note:

# Contractive Autoencoders

- goal: make the autoencoder more robust to small variations in the input.
- penalize large gradients of the latent representations h w.r.t. the inputs x:

$$f(\theta; \mathcal{D}^{\mathsf{train}}) := \ell(\hat{x}; \theta, \mathcal{D}^{\mathsf{train}}) + \lambda \frac{1}{N} \sum_{n=1}^{N} || \frac{\partial h(x_n; \theta)}{\partial x} ||_F^2$$

• e.g., for a single layer autoencoder:

$$\begin{split} ||\frac{\partial h(x_{n};\theta)}{\partial x}||_{F}^{2} &= \sum_{k=1}^{K} \sum_{m=1}^{M} \left(\frac{\partial h_{k}(x_{n})}{\partial x_{m}}\right)^{2} = \sum_{k=1}^{K} \sum_{m=1}^{M} \left(a'(W_{k..,}^{T}x+b_{k})W_{k,m}\right)^{2} \\ &\neq ||W||_{F}^{2} \\ \end{split}$$
Remember the Frobenius matrix norm  $||A||_{F} := \sum_{n=1}^{N} \sum_{m=1}^{M} (A_{n,m})^{2}.$ 



#### Outline



#### 1. Dimensionality Reduction and Semi-Supervised Learning (Review)

#### 2. Autoencoders

#### 3. Layers Parametrizing Distributions

4. Variational Autoencoders

#### Universiter Fildesheim

#### Layers Parametrizing Distributions

• univariate normal (K = 1):

$$egin{aligned} & \mathcal{M}_{\ell-1} := 2, \quad \mu := z_1^{\ell-1}, \quad \sigma := e^{z_2^{\ell-1}} \ & \mathcal{p}(z^\ell \mid z^{\ell-1}) := \mathcal{N}(z^\ell \mid \mu, \sigma^2) \end{aligned}$$

▶ multivariate normal (K), diagonal covariance matrix:

$$egin{aligned} \mathcal{M}_{\ell-1} &:= 2\mathcal{K}, \quad \mu := z_{1:\mathcal{K}}^{\ell-1}, \quad \Sigma := ext{diag}(e^{2z_{\mathcal{K}+1:2\mathcal{K}}^{\ell-1}}) \ \mathcal{p}(z^\ell \mid z^{\ell-1}) &:= \mathcal{N}_\mathcal{K}(z^\ell \mid \mu, \Sigma) \end{aligned}$$

▶ multivariate normal (*K*), full covariance matrix:

$$\begin{split} M_{\ell-1} &:= \frac{K(K+1)}{2}, \quad \mu := z_{1:K}^{\ell-1}, \quad A := \mathsf{reshape}(z_{K+1:\frac{K(K+1)}{2}}^{\ell-1}), \quad \Sigma := A^T A\\ p(z^\ell \mid z^{\ell-1}) &:= \mathcal{N}_K(z^\ell \mid \mu, \Sigma) \end{split}$$

Note: Here, reshape reshapes the  $\frac{K(K-1)}{2}$  entries into a lower triangular  $K \times K$  matrix A with zeros on the diagonal.

# Layers Parametrizing Distributions (2/2)



► bernoulli:

$$egin{aligned} & M_{\ell-1} := 1, \quad p_1 := \mathsf{logistic}(z_1^{\ell-1}) \ & p(z^\ell \mid z^{\ell-1}) := \mathsf{Ber}(z^\ell \mid p_1) = z^\ell p_1 + (1-z^\ell)(1-p_1) \end{aligned}$$

▶ multinoulli (*K*):

$$egin{aligned} &\mathcal{M}_{\ell-1}:=\mathcal{K}, \quad p:=\operatorname{softmax}(z^{\ell-1})\ &p(z^\ell\mid z^{\ell-1}):=\operatorname{Mult}(z^\ell\mid p)=\prod_{k=1}^K p_k^{\mathbb{I}(z^\ell=k)} \end{aligned}$$

# Layers Parametrizing Distributions / Value Computation

- ► value computation / forwards:
  - sample  $z^{\ell} \sim p(z^{\ell} \mid z^{\ell-1})$
  - ► to estimate output probabilities, take *S* samples:

$$p(x \mid z) = \frac{1}{S} \sum_{s=1}^{S} p(x \mid z^{\ell,(s)}), \quad z^{\ell,(s)} \sim p(z^{\ell} \mid z^{\ell-1})$$

► Q: but how to compute gradients <del>∂z<sup>ℓ</sup> / ∂z<sup>ℓ-1</sup></del> required for backpropagation?

# Layers Parametrizing Distributions / Gradient Computation

- gradient computation / backwards
- reparameterization trick:
  - reparametrize  $z^{\ell}$  as a differentiable function in
    - the previous layer and
    - random noise  $\epsilon$  (independent from the previous layer):

$$z^\ell \mid z^{\ell-1} = g(z^{\ell-1},\epsilon), \quad \epsilon \sim p_{\mathsf{noise}}$$

• e.g., univariate normal:

$$p(z^{\ell} \mid z^{\ell-1}) = \mathcal{N}(z^{\ell} \mid \mu, \sigma^2) \quad \rightsquigarrow \quad z^{\ell} = \mu + \sigma \epsilon, \quad \epsilon \sim \mathcal{N}(\epsilon \mid 0, 1)$$

• now 
$$\frac{\partial z^{\ell}}{\partial z^{\ell-1}}$$
 is straight-forward to compute.

# Layers Parametrizing Distributions / Gradient Computation

 reparametrization trick for multivariate normal with diagonal covariance:

$$p(z^{\ell} \mid z^{\ell-1}) = \mathcal{N}_{\mathcal{K}}(z^{\ell} \mid \mu, \operatorname{diag}(\sigma_{1}^{2}, \dots, \sigma_{\mathcal{K}}^{2}))$$
  

$$\Rightarrow \quad z^{\ell} = \mu + (\sigma_{1}, \dots, \sigma_{\mathcal{K}})^{T} \odot \epsilon, \quad \epsilon \sim \mathcal{N}_{\mathcal{K}}(\epsilon \mid 0, 1)$$
  

$$= \mu + \operatorname{diag}(\sigma_{1}, \dots, \sigma_{\mathcal{K}})\epsilon$$

► reparametrization trick for multivariate normal with full covariance:

$$p(z^{\ell} \mid z^{\ell-1}) = \mathcal{N}_{\mathcal{K}}(z^{\ell} \mid \mu, \Sigma), \quad \text{with } \Sigma = A^{T}A$$
$$\rightsquigarrow \quad z^{\ell} = \mu + A\epsilon, \quad \epsilon \sim \mathcal{N}_{\mathcal{K}}(\epsilon \mid 0, 1)$$

# Layers Parametrizing Distributions / Gradient Computation

- neural networks with layers parametrizing distributions can be learnt with vanilla backpropagation
  - ► after applying the reparametrization trick
  - random noise  $\epsilon$  is viewed as additional input
- for autoencoders with point reconstructions  $\hat{x}(z)$ :

$$\min f(\theta; \mathcal{D}) := \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{z \sim p(z|x_n)} \ell(x_n, \hat{x}(z))$$

► for autoencoders with distributions  $p(\hat{x} \mid z)$  of reconstructions:

$$\min f(\theta; \mathcal{D}) := -\frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{z \sim p(z|x_n)} \log p(\hat{x} = x_n \mid z)$$

#### Outline



#### 1. Dimensionality Reduction and Semi-Supervised Learning (Review)

- 2. Autoencoders
- 3. Layers Parametrizing Distributions
- 4. Variational Autoencoders

- variational autoencoders distinguish between
  - the true latent posterior  $p(z \mid x)$  and
  - the estimated latent posterior  $p(\hat{z} \mid x)$ 
    - usually denoted  $q(z \mid x)$  in the literature.
  - maximize log likelihood:

$$\begin{split} \log p(\hat{x} = x) \\ &= \mathbb{E}_{\hat{z} \sim p(\hat{z}|x)} \log p(\hat{x} = x) \\ &= \mathbb{E}_{\hat{z} \sim p(\hat{z}|x)} \log \frac{p(\hat{x} = x, z = \hat{z})}{p(z = \hat{z} \mid x)} \\ &= \mathbb{E}_{\hat{z} \sim p(\hat{z}|x)} \log \frac{p(\hat{x} = x, z = \hat{z})}{p(\hat{z} \mid x)} \frac{p(\hat{z} \mid x)}{p(z = \hat{z} \mid x)} \\ &= \mathbb{E}_{\hat{z} \sim p(\hat{z}|x)} \log p(\hat{x} = x, z = \hat{z}) - \mathbb{E}_{\hat{z} \sim p(\hat{z}|x)} \log p(\hat{z} \mid x) \\ &+ \mathbb{E}_{\hat{z} \sim p(\hat{z}|x)} \frac{\log p(\hat{z} \mid x)}{\log p(z = \hat{z} \mid x)} \end{split}$$





$$\log p(\hat{x} = x) = \mathbb{E}_{\hat{z} \sim p(\hat{z}|x)} \log p(\hat{x} = x, z = \hat{z}) \underbrace{-\mathbb{E}_{\hat{z} \sim p(\hat{z}|x)} \log p(\hat{z} \mid x)}_{=\mathbb{E}_{\hat{z} \sim p(\hat{z}|x)} \log p(\hat{z} \mid x)} + \underbrace{\mathbb{E}_{\hat{z} \sim p(\hat{z}|x)} \frac{\log p(\hat{z} \mid x)}{\log p(z = \hat{z} \mid x)}}_{=\mathsf{KL}(p(\hat{z}|x), p(z|x))}$$

 $\mathbb{L}_{\hat{z}\sim p(\hat{z}|x)} \log P(x)$  $(p(z \mid x), p(z \mid x))$ 

- Entropy H(q)
- Kullback-Leibler divergence  $KL(q, p) \ge 0$ 
  - cannot be computed as  $p(z = \hat{z} \mid x)$  is not accessible, only conceptual.
  - drop it and use the remaining terms as a lower bound.



• evidence lower bound (ELBO) / variational lower bound:

$$\begin{split} \mathsf{ELBO} &:= \log p(\hat{x} = x) - \mathsf{KL}(p(\hat{z} \mid x), p(z \mid x)) \\ &= \mathbb{E}_{\hat{z} \sim p(\hat{z} \mid x)} \log p(\hat{x} = x, z = \hat{z}) + H(p(\hat{z} \mid x)) \end{split}$$

- ► conceptually:
  - maximize the likelihood of the data and
  - minimize the KL divergence, i.e.,

make estimated posterior latent distribution  $p(\hat{z} \mid x)$  and true posterior latent distribution  $p(z \mid x)$  similar.

- ► technically:
  - maximize the joint likelihood of the data and the estimated latent representations, and
  - ▶ maximize the entropy of the estimated latent representations.



entropy for univariate normal:

$$H(\mathcal{N}(\mu, \sigma^2)) \propto \log \sigma$$

entropy for multivariate normal with diagonal covariance matrix:

$$H(\mathcal{N}_{K}(\mu,(\sigma_{1}^{2},\ldots,\sigma_{K}^{2}))\propto\sum_{k=1}^{K}\log\sigma_{k}$$

▶ entropy for multivariate normal with full covariance matrix:

$$H(\mathcal{N}(\mu, \Sigma)) \propto \dots$$

#### Variational Autoencoders



- ► Variational Autoencoders are autoencoders with
  - 1. a layer parametrizing a normal distribution as latent representation layer h,
    - usually with a diagonal covariance matrix (factorized Gaussian posteriors).

$$\begin{split} M_{1,\ell-1} &:= 2K, \quad \mu := z_{1,1:K}^{\ell-1}, \quad \Sigma := \mathsf{diag}(e^{2z_{K+1:2K}^{\ell-1}})\\ p(z^{\ell} \mid z^{\ell-1}) &:= \mathcal{N}_{K}(z^{\ell} \mid \mu, \Sigma) \end{split}$$

- 2. using the variational lower bound ELBO as loss
  - i.e., for a diagonal covariance matrix and scalar normal output *N*(*x̂* | µ<sub>out</sub>(*x<sub>n</sub>*, *ẑ*), σ<sup>2</sup><sub>out</sub>(*x<sub>n</sub>*, *ẑ*)), minimize:

$$f(\theta) = - \mathsf{ELBO}$$

$$= -\frac{1}{N} (\sum_{n=1}^{N} \mathbb{E}_{\hat{z} \sim p(\hat{z}|x_n)} \log p(\hat{x} = x_n, z = \hat{z}) + \sum_{k=1}^{K} \log(\Sigma_{k,k}(x_n)))$$
  
$$= \frac{1}{N} (\sum_{n=1}^{N} \mathbb{E}_{\hat{z} \sim p(\hat{z}|x_n)} \log(\sigma_{\text{out}}(x_n, \hat{z})) + (\frac{x_n - \mu_{\text{out}}(x_n, \hat{z})}{\sigma_{\text{out}}(x_n, \hat{z})})^2 - 2\sum_{k=1}^{K} z_{K+1:2K}^{\ell-1}(x_n, \hat{z})$$

#### Summary



- Dimensionality reduction can be accomplished via reconstructing the features of each instance from a lower dimensional / lower complexity latent representation (autoencoding).
- ► Principal Components Analysis (PCA) is a linear autoencoder.
- Adding a non-linear activation function to the latent layer yields a single layer autoencoder.
- More generally, any feed-forward neural network can be interpreted as deep autoencoder,
  - ▶ picking any of its layers as latent representation *h*,
  - the layers up to *h* are interpreted as **encoder**,
  - ► the layers after *h* are interpreted as **decoder**.
  - ▶ but usually, layer sizes are chosen anti-symmetric and the middle layer is chosen as latent representation *h*.

# Summary (2/2)



- Autoencoders are vanilla feed-forward neural networks, esp.
  - ► they can be trained via vanilla back-propagation.
  - they should be regularized.
    - ► standard: L2, drop-out
    - special: sparse autoencoders with an L1 regularization on the latent representation h

#### Layers representing distributions

- can be modeled by parametrizing distributions by values from the previous layer.
- ► can be used forwards simply by sampling from the distribution.
- can compute gradients by the **reparametrization trick**.

#### Variational Autoencoders

- represent the latent features by a distribution (not just a point estimate)
  - usually a multivariate normal with diagonal covariance matrix,
- use a variational lower bound ELBO as loss.

#### Further Readings



- ▶ Goodfellow et al. 2016, ch. 13 & 14.
- variational autoencoders:
  - ▶ Kingma and Welling [2019]
  - ► Goodfellow et al. 2016, ch. 20.
- ► autoencoders are not covered explicitely by Zhang et al. 2020.

Acknowledgement: An earlier version of the slides for this lecture have been written by my former postdoc Dr Josif Grabocka. Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

#### References



Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The Mit Press, Cambridge, Massachusetts, November 2016. ISBN 978-0-262-03561-3.

Diederik P. Kingma and Max Welling. An introduction to variational autoencoders. arXiv preprint arXiv:1906.02691, 2019.

Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander Smola. Dive into Deep Learning. https://d2l.ai/, 2020.