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Deep Learning

Syllabus

Tue. 21.4. (1) 1. Supervised Learning (Review 1)
Tue. 28.4. (2) 2. Neural Networks (Review 2)
Tue. 5.5. (3) 3. Regularization for Deep Learning
Tue. 12.5. (4) 4. Optimization for Training Deep Models
Tue. 19.5. (5) 5. Convolutional Neural Networks
Tue. 26.5. (6) 6. Recurrent Neural Networks
Tue. 2.6. — — Pentecoste Break —
Tue. 9.6. (7) 7. Autoencoders
Tue. 16.6. (8) 8. Attention Layers
Tue. 23.6. (9) 9. Generative Adversarial Networks
Tue. 30.6. (10) 10. Recent Advances
Tue. 7.7. (11) 11. Engineering Deep Learning Models
Tue. 14.7. (12) Q & A
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Deep Learning 1. Modelling Pairwise Interactions

From Linear Models to Pairwise Interactions

I M predictors: x ∈ RM , scalar output y ∈ R

I linear model (= polynomial model of order 1):

y(x) :=
M∑

m=1

wmxm = wT x

I Q: How can we model pairwise interactions between predictors?

I polynomial model of order 2:

y(x) :=
M∑

m=1

M∑
m′=1

Wm,m′xmxm′ = xTWx , W ∈ RM×M
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Deep Learning 1. Modelling Pairwise Interactions

Polynomial Model of Order 2

I M predictors: x ∈ RM , scalar output y ∈ R

I linear model (= polynomial model of order 1):

y(x) :=
M∑

m=1

wmxm = wT x

I polynomial model of order 2:

y(x) :=
M∑

m=1

M∑
m′=1

Wm,m′xmxm′ = xTWx , W ∈ RM×M
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Deep Learning 1. Modelling Pairwise Interactions

Matrix Factorization
I two nominal predictors x1, x2

I represented by indicators in x1 ∈ {0, 1}A and x2 ∈ {0, 1}B
I e.g., for recommender systems:

ratings y depending on users (A) and items (B)

y(x1, x2) := (Wx1)T (Vx2), W∈RK×A,V∈RK×B ,K∈N latent dimension

= xT1 W TVx2

= xT
(

0 1
2W

TV
1
2V

TW 0

)
x , x :=

(
x1

x2

)
I = polynomial model of order 2,

with low rank approximation of the interaction matrix W̃
of special form:

= xT W̃ x , W̃ :=

(
0 1

2W
TV

1
2V

TW 0

)
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Deep Learning 1. Modelling Pairwise Interactions

Factorization Machine

I M predictors: x ∈ RM , scalar output y ∈ R

y(x) :=
M∑

m=1

M∑
m′=1

W T
.,mV.,m′xmxm′ , W ,V ∈ RK×M

= xW TVx

I = polynomial model of order 2,
with low rank approximation of the interaction matrix W̃ :

= xT W̃ x , W̃ := W TV
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Deep Learning 2. Attention Layers

Pairwise Feature Interactions for all Pairs of Instances

I previous section: pairwise feature interaction for a single instance.
I pairwise interaction

I of M features

I of a single pair (x , x) of a single input vector x with itself

I yielding a scalar output.

I this section: pairwise feature interaction for all pairs of instances.
I pairwise interaction

I of M features

I of all pairs (xt , xs) of two elements of a sequence of length T

I yielding a T × T matrix output.
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Deep Learning 2. Attention Layers

Attention Layer

I sequence of length T , each element with M predictors: X ∈ RT×M

I output again of dimensions T × K (layer)

attn(X )t,s := a((XT
t,.W

TVXs,.)), V ,W ∈ RL×M , L ∈ N

Z (X )t :=
T∑
s=1

attn(X )t,s (XUT )s,., U ∈ RK×M

I pairwise interactions,
with low rank approximation of the interaction matrix
and nonlinear activation a

I output a weighted sum of outputs (XUT )s,. from all elements s,
weighted by their pairwise interaction / attention.
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Deep Learning 2. Attention Layers

Attention Layer / Matrix Notation

I elementwise notation:

attn(X )t,s := a((Xt,.W
TVXT

s,.)), V ,W ∈ RK×M

Z (X )t :=
T∑
s=1

attn(X )t,s (XUT )s,., U ∈ RK×M

 more compact matrix notation:

attn(X ) = a(XW TVXT )

Z (X ) := attn(X )XUT
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Deep Learning 2. Attention Layers

Attention Layer

X

T

M

inputs

XUT

T

K

values

XW T

T
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T

ke
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a(XW TVXT )
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have?

I Q: How many
operations does
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need?



Deep Learning 2. Attention Layers
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Assume M = K = L.

I Q: How many
parameter does
an attention layer
have?

I Q: How many
operations does
an attention layer
need?

# parameters: 3M2

# operations: O(T 2M)



Deep Learning 2. Attention Layers

Query-Key-Value Metaphor

I originally used activation function:
I rowwise softmax, scaled:

a(Z ) := (softmax(
Zt,.√
L

))t=1:T

I query-key-value metaphor:

queryt := Wxt , keyt := Vxt , valuet := Uxt

zt =
T∑
s=1

softmax(
queryTt keys√

L
) values

I Vaswani et al. 2017
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Deep Learning 2. Attention Layers

Multi-Head Attention Layer

I let’s call the layer so far single head attention:

sha(X ; W ,V ,U) := attn(X ; W ,V ) (XUT )

I multi-head attention (with H heads):
I split the input feature-wise into H parts of size M/H
I single-head attention for each split
I concatentate output features again

mha(X ) := concat2((sha(X1:T ,slice(h); W h,V h,Uh))h=1:H)QT ,

Q ∈ RKout×HK

slice(h;M/H) := (1 +
hM

H
, 2 +

hM

H
, . . . ,

M

H
+

hM

H
)
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Deep Learning 2. Attention Layers

Multi-Head Attention Layer

I in effect, the (elementwise) pairwise feature interaction matrix is
blockdiagonal:

W̃ =


(W 1)TV1 0 . . . 0

0 (W 2)TV2
. . .

...
...

. . .
. . . 0

0 . . . 0 (WH)TVH
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Deep Learning 2. Attention Layers

Attention vs. Convolutions

I restricted attention: attention restricted to diagonal band:

attnres(X ;K )t,s := I(|t − s| ≤ K

2
) attn(X )t,s

I window size K ∈ N allows to trade off # operations vs. path length
I path length: number of operations between zt and xs for any s, t.

layer # parameters # operations path length

convolutional KM2 TKM2 T/K
attention 3M2 T 2M 1

restricted attention 3M2 TKM T/K

T sequence length,M input/embedding dimension,K window size
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Deep Learning 3. Equivariant Layers and Order-Dependence

Separable Layers

I a layer z : RT×M → RT×K is called separable (in T ) if
its output is the stacking of the outputs of some function on single
slices each:

f (X ) = (g(Xt,.))t=1:T , ∃g : RM → RK

or equiv. f (X )t = g(Xt,.), ∀t = 1, . . . ,T

I i.e., the t-th output element depends only on the t-th input element,
and not on any other input elements at s.

I example: convolutions with kernel size 1:

f (X ) := XW T , W ∈ RK×M

as f (X )t = Xt,.W
T

I counterexample: convolutions with kernel size > 1.
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Deep Learning 3. Equivariant Layers and Order-Dependence

Equivariant Layers
I a layer z : RT×M → RT×K is called equivariant (in T ) if

I first permuting the input in T and then applying z
yields the same result as

I first applying z and then permuting its output in T
(with the same permutation π)

z(π(X )) = π(z(X )), ∀X ∈ RT×M , ∀π ∈ permutations({1, 2, . . . ,T})
π(X ) := (Xπ(t),1:M)t=1:T

I i.e., the t-th output element depends only on
I the t-th input element and
I the (multi)set of all input elements {X1,.,X2,., . . . ,XT ,.}

(but not their order) — often called context in ML.

I examples:
I all separable layers, e.g., convolutions with kernel size 1.
I attention layers

I counterexample: convolutions with kernel size > 1.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 3. Equivariant Layers and Order-Dependence

Make Equivariant Layers Order-Dependend Again

I add the position as additional channel:

X̃ := concat2(X , (t)t=1:T ) ∈ RT×(M+1)

I alternatively, one can superimpose the encoded input with a
positional encoding
(to make it easier to regress on the position):

PE(t)2k := sin(
t

100002k/K
), k = 1, . . . ,

K

2

PE(t)2k+1 := cos(
t

100002k/K
)

X̃ := XW T + (PE(t))t=1:T , W ∈ RK×M
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Deep Learning 4. Example: Machine Translation

Parallel Corpora (Europarl Corpus)

I parallel corpus: same text in two (or more) languages.

I example:

English text:

Resumption of the session
I declare resumed the session of the European
Parliament adjourned on Friday 17 December
1999, and I would like once again to wish you a
happy new year in the hope that you enjoyed a
pleasant festive period. Although, as you will
have seen, the dreaded ’millennium bug’ failed
to materialise, still the people in a number of
countries suffered a series of natural disasters
that truly were dreadful. You have requested a
debate on this subject in the course of the next
few days, during this part-session.

German text:

Wiederaufnahme der Sitzungsperiode
Ich erkläre die am Freitag, dem 17. Dezember
unterbrochene Sitzungsperiode des
Europäischen Parlaments für
wiederaufgenommen, wünsche Ihnen nochmals
alles Gute zum Jahreswechsel und hoffe, daß Sie
schöne Ferien hatten. Wie Sie feststellen
konnten, ist der gefürchtete ”Millenium-Bug ”
nicht eingetreten. Doch sind Bürger einiger
unserer Mitgliedstaaten Opfer von schrecklichen
Naturkatastrophen geworden. Im Parlament
besteht der Wunsch nach einer Aussprache im
Verlauf dieser Sitzungsperiode in den nächsten
Tagen.
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Deep Learning 4. Example: Machine Translation

WMT-2014 Task

I Shared Task Machine Translation
of the ACL 2014 Ninth Workshop on Statistical Machine Translation
(WMT-2014)

I parallel datasets:
corpus size fr-en de-en

Europarl v7 628 MB + +
Common Crawl Corpus 876 MB + +

UN corpus 2.3 GB +
News Commentary 77 MB + +

109 French English corpus 2.3 GB +
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Deep Learning 4. Example: Machine Translation

BLEU score (1/3)
I BLEU: Bilingual Evaluation Understudy

I model a text as a sequence of sentences,
and a sentence as a sequence of tokens.

I n-gram frequencies of a sequence y :
I how often does each sequence a of length n occur in a sequence y :
fn(y) := (|{i | i = 1, . . . , |y |, yi :i+|a|−1 = a}|)a∈An

e.g., f1(”hello”,”world”, ”hello”) = {”hello” : 2, ”world” : 1}
e.g., f2(”hello”,”world”, ”hello”) = {”hello world” : 1, ”world hello” : 1}

I compare two sentences/sequences y , ŷ ∈ A∗

I n-gram precision: which fraction of predicted n-grams occur in the
ground truth:

pn(y , ŷ) :=
11TA min(fn(ŷ), fn(y))

|ŷ | − n + 1
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Deep Learning 4. Example: Machine Translation

BLEU score (2/3)

I compare two sentences/sequences y , ŷ ∈ A∗

I n-gram precision: which fraction of predicted n-grams occur in the
ground truth:

pn(y , ŷ) :=
11TA min(fn(ŷ), fn(y))

|ŷ | − n + 1

e.g., p1((”hello”,”world”), (”hello”, ”hello”)) =
1

2
e.g., p1((”hello”,”world”, ”how”, ”do”, ”you” ”do”)

(”hello”, ”world”, ”how”, ”do”, ”going”)) =
4

5

e.g., p2(. . .) =
3

4
, , p3(. . .) =

2

3
, p4(. . .) =

1

2
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Deep Learning 4. Example: Machine Translation

BLEU score (3/3)
I brevity penalty (as precision favors short predictions ŷ):

brev(y , ŷ) := e
−max(0,|y |−|ŷ |) 1

|ŷ|

I BLEU score (sometimes called BLEU-4):
I geometric mean of the 1- to 4-gram precisions
I times brevity penality:

bleu(y , ŷ) := brev(y , ŷ) (p1(y , ŷ)p2(y , ŷ)p3(y , ŷ)p4(y , ŷ))
1
4 ∈ [0, 1]

e.g., bleu((”hello”,”world”, ”how”, ”do”, ”you” ”do”)

(”hello”, ”world”, ”how”, ”do”, ”going”))

= e−
1
5 (

4

5
· 3

4
· 2

3
· 1

2
)

1
4 ≈ 0.819 · 0.669 ≈ 0.548

I to get a BLEU > 0, at least one 4-gram has to match.
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Deep Learning 4. Example: Machine Translation

The Transformer Network
I construct output sequence ŷ token by token,

starting from a sequence containg just a start token ŷ0,
with a network g (called decoder):

p(ŷ1 | ∅) := g(ŷ0)

p(ŷt | ŷ1:t−1) := g(ŷ0:t−1)

I use input sequence x as additional input,
encoded once with a network h (called encoder):

p(ŷ1 | ∅, x) := g(ŷ0, h(x))

p(ŷt | ŷ1:t−1, x) := g(ŷ0:t−1, h(x))

I specifically the encoder is using 6 attenion layers
I the decoder is using also 6 attention layers,

I the output of the encoder provides keys and values,
I the decoder provides the queries.
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Deep Learning 4. Example: Machine Translation

The Transformer Network / Architecture

Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the

3

[source: Vaswani et al. 2017]
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Deep Learning 4. Example: Machine Translation

Evaluation on WMT-2014

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model
BLEU Training Cost (FLOPs)

EN-DE EN-FR EN-DE EN-FR
ByteNet [15] 23.75
Deep-Att + PosUnk [32] 39.2 1.0 · 1020
GNMT + RL [31] 24.6 39.92 2.3 · 1019 1.4 · 1020
ConvS2S [8] 25.16 40.46 9.6 · 1018 1.5 · 1020
MoE [26] 26.03 40.56 2.0 · 1019 1.2 · 1020
Deep-Att + PosUnk Ensemble [32] 40.4 8.0 · 1020
GNMT + RL Ensemble [31] 26.30 41.16 1.8 · 1020 1.1 · 1021
ConvS2S Ensemble [8] 26.36 41.29 7.7 · 1019 1.2 · 1021
Transformer (base model) 27.3 38.1 3.3 · 1018

Transformer (big) 28.4 41.0 2.3 · 1019

Label Smoothing During training, we employed label smoothing of value εls = 0.1 [30]. This
hurts perplexity, as the model learns to be more unsure, but improves accuracy and BLEU score.

6 Results

6.1 Machine Translation

On the WMT 2014 English-to-German translation task, the big transformer model (Transformer (big)
in Table 2) outperforms the best previously reported models (including ensembles) by more than 2.0
BLEU, establishing a new state-of-the-art BLEU score of 28.4. The configuration of this model is
listed in the bottom line of Table 3. Training took 3.5 days on 8 P100 GPUs. Even our base model
surpasses all previously published models and ensembles, at a fraction of the training cost of any of
the competitive models.

On the WMT 2014 English-to-French translation task, our big model achieves a BLEU score of 41.0,
outperforming all of the previously published single models, at less than 1/4 the training cost of the
previous state-of-the-art model. The Transformer (big) model trained for English-to-French used
dropout rate Pdrop = 0.1, instead of 0.3.

For the base models, we used a single model obtained by averaging the last 5 checkpoints, which
were written at 10-minute intervals. For the big models, we averaged the last 20 checkpoints. We
used beam search with a beam size of 4 and length penalty α = 0.6 [31]. These hyperparameters
were chosen after experimentation on the development set. We set the maximum output length during
inference to input length + 50, but terminate early when possible [31].

Table 2 summarizes our results and compares our translation quality and training costs to other model
architectures from the literature. We estimate the number of floating point operations used to train a
model by multiplying the training time, the number of GPUs used, and an estimate of the sustained
single-precision floating-point capacity of each GPU 5.

6.2 Model Variations

To evaluate the importance of different components of the Transformer, we varied our base model
in different ways, measuring the change in performance on English-to-German translation on the
development set, newstest2013. We used beam search as described in the previous section, but no
checkpoint averaging. We present these results in Table 3.

In Table 3 rows (A), we vary the number of attention heads and the attention key and value dimensions,
keeping the amount of computation constant, as described in Section 3.2.2. While single-head
attention is 0.9 BLEU worse than the best setting, quality also drops off with too many heads.

5We used values of 2.8, 3.7, 6.0 and 9.5 TFLOPS for K80, K40, M40 and P100, respectively.

8

[source: Vaswani et al. 2017]
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Evaluation on WMT-2014 EN-DE / Leaderboard
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Deep Learning 4. Example: Machine Translation

Summary (1/2)
I Attention layers model pairwise interactions between input/latent

channels with a low-rank pairwise interaction weights matrix.
I like factorization models

I can be interpreted as query–key–value scheme

I A multi-head attention layer models attention between groups of
input/latent channels.

I Restricted attention layers restrict attention in sequence dimension
to a window.

I Compared to convolutions, attention layers
I have fewer parameters: 3M2 vs. KM2,
I restricred attention layers allow to trade off # operations and path

length through the window size K w/o increasing the number of
parameters
— # operations: TKM, path length: T/K.
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Deep Learning 4. Example: Machine Translation

Summary (2/2)

I The transformer network is a sequence to sequence model that
I models the next output element as function of

I the output sequence so far (decoder) and

I the input sequence (encoder).

I using attentions between
I inputs (encoder) and

I inputs and previous outputs (decoder)

I For machine translation, the transformer network is one of the most
accurate models.
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Further Readings

I Zhang et al. 2020, ch. 10

I Jay Alammar (2020), Visualizing A Neural Machine Translation
Model (Mechanics of Seq2seq Models With Attention and The
Illustrated Transformer, blog post, https://jalammar.github.io/
visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention

I The attention mechanism has been introduced into the deep learning
literature by Bahdanau et al. 2014, there still on top of recurrent
layers.

I The described attention layer is the one of Vaswani et al. 2017.

I Factorization machines: Rendle 2010 — Matrix factorization: Srebro
et al. 2005, Mnih and Salakhutdinov 2008.

I Attention mechanism are not covered by Goodfellow et al. 2016.
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