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Deep Learning

Syllabus

Tue. 21.4. (1) 1. Supervised Learning (Review 1)
Tue. 28.4. (2) 2. Neural Networks (Review 2)
Tue. 5.5. (3) 3. Regularization for Deep Learning
Tue. 12.5. (4) 4. Optimization for Training Deep Models
Tue. 19.5. (5) 5. Convolutional Neural Networks
Tue. 26.5. (6) 6. Recurrent Neural Networks
Tue. 2.6. — — Pentecoste Break —
Tue. 9.6. (7) 7. Autoencoders
Tue. 16.6. (8) ctd.
Tue. 23.6. (9) 8. Attention Layers
Tue. 30.6. (10) 9. Graph Convolutions and Graph Attention
Tue. 7.7. (11) 10. Generative Adversarial Networks
Tue. 14.7. (12) Q & A
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Deep Learning

Outline
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2. Recurrent Graph Networks
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Deep Learning 1. Supervised Learning for Graphs
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Deep Learning 1. Supervised Learning for Graphs

Graphs

I directed graph G := (V ,E ):

any set V (called vertices) together with
E ⊆ V × V (called edges)

I undirected graph G := (V ,E ):

any set V (called vertices) together with
E ⊆ subsets(V , card = 2) (called edges)

I equivalent to a directed graph with symmetric edges,

i.e., with E
!

= {(w , v) | (v ,w) ∈ E}.

I vertex attributes xvrt ∈ RV×Mvrt

I edge attributes xedge ∈ RE×Medge
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Deep Learning 1. Supervised Learning for Graphs

Some Notation for Graphs

I neighborhood of a vertex v ∈ V in an undirected graph:

N (v) := {w ∈ V | {v ,w} ∈ E}

I fanin and fanout neighborhood of a vertex v ∈ V in a directed graph:

Nin(v) := {w ∈ V | (w , v) ∈ E}
Nout(v) := {w ∈ V | (v ,w) ∈ E}

I Denote the set of graphs with Mvrt vertex features and Medge edge
features (both possibly none) by

graphs(Mvrt,Medge)
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Deep Learning 1. Supervised Learning for Graphs

Graph Classification

I Given a set Dtrain ⊂ graphs(Mvrt,Medge)× RO of pairs of
graphs xn = (Vn,En) and targets yn ∈ RO and

a pairwise loss ` : RO × RO → R on targets
find a prediction model

ŷ : graphs(Mvrt,Medge)→ RO

with minimal loss for test data Dtest ⊂ graphs(Mvrt,Medge)× RO

(from the same distribution):

`(ŷ ;Dtest) :=
1

|Dtest|
∑

(V ,E ,y)∈Dtest

`(y , ŷ(V ,E ))
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Deep Learning 1. Supervised Learning for Graphs

Vertex Classification (aka Node Classification)

I vertex features xvrt are partitoned into two groups,
vertex predictors and vertex targets:

xvrt = concat2(x̃ , y), x̃ ∈ RV×M , y ∈ RV×O

I given the graph (V ,E ),
all vertex predictors x̃ ,
a random subset of vertex targets y |V train , V train ⊂ V , and
a pairwise loss ` : RO × RO → R on targets,

find a prediction ŷ ∈ RV test×O of the remaining vertex targets
V test := V \ V train s.t. their loss w.r.t. the true targets is minimal:

`(ŷ ; y) :=
1

|V test|
∑

v∈V test

`(yv , ŷv )

I called a transductive problem, because
I no model function ŷ is sought, that predicts targets individually for

every instance/node,
I but just the target values for a fixed set of predictors predicted collectively.
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Deep Learning 1. Supervised Learning for Graphs

A New Problem?

I Q: Can we solve vertex classification like any other classification
problem?

I Is there also an edge classification problem?
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Deep Learning 1. Supervised Learning for Graphs

Line Graphs

I line graph of a graph G := (V ,E ):

line(V ,E ) := (E , {{e, f } ⊂ E | |e ∩ f | = 1})

I each original edge becomes a vertex.
I two edges are connected by an edge, if originally they are connected by

a vertex.

[source: wikipedia/line graph]
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Deep Learning 1. Supervised Learning for Graphs

Line Graphs / Features

I G := (V ,E ), G̃ := line(V ,E )

I edges become vertices  edge features become vertex features:

x̃vrt
e := xedge

e , e ∈ E

I vertices become edges  vertex features become edge features:

x̃edge
e,f := xvrt

e∩f e, f ∈ E

I beware, a vertex can become many edges, thus all the edges
represented by the same original vertex have the same features.
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Deep Learning 1. Supervised Learning for Graphs

Edge Classification?

I Is there also an edge classification problem?

I practically: sure.

I methododically: no, it is not a new problem.
I edge classification is the same as vertex classification for the line graph.
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Deep Learning 2. Recurrent Graph Networks

Outline
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Deep Learning 2. Recurrent Graph Networks

Graph Neural Networks

I recurrent latent vertex features zv ∈ RK :

zv
!

=
∑

w∈N (v)

h(zv , zw , x
vrt
v , xvrt

w , xedge
v ,w ) (1)

yv := g(zv , x
vrt
v )

I g , h fully connected neural networks

I Q: How can we compute the latent features?

I zv have to be computed as fixpoints of eq. 1

I thus h needs to be chosen with care: to be contractive.

I Scarselli et al. [2008]
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Deep Learning 2. Recurrent Graph Networks

Gated Graph Sequence Neural Networks
I two types of latent vertex features zv , hv ∈ RK

I stacking several layers: z tv , h
t
v , t = 1, . . . ,T

h0
v := xvrt

v , padded with zeros.

I latent vertex features z t ∈ RV×K :

z t+1
v := (ht)T (xedge

v ,.,. w
out + xedge

.,v ,. w
in), wout,w in ∈ RMedge

I representing the edge features as array xedge ∈ RV×V×Medge

(being zero for non-edges)

I based on all previous latent vertex features ht ∈ RV×K

I latent vertex features ht ∈ RV×K , computed via a GRU RNN:

htv := GRU(z tv , h
t−1
v )

I using z t instead of the sequence inputs x t as done usually.

I being applied to each vertex in isolation!

I Li et al. [2015]
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Deep Learning 2. Recurrent Graph Networks

Gated Graph Sequence Neural Networks

I latent vertex features zv ∈ RK :

z t+1
v := (ht)T (xedge

v ,.,. w
out + xedge

.,v ,. w
in), wout,w in ∈ RMedge

I make it simple: no edge features,
i.e., Medge := 1 and xedge

.,.,1 = A is just the adjacency matrix.

z t+1
v = wout

∑

u∈Nout(v)

htu + w in
∑

u∈Nin(v)

htu

I i.e, this is DeepSet for the fanin and fanout neighborhoods.
(before DeepSet was invented, that is.)
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Deep Learning 3. Graph Convolutions
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Deep Learning 3. Graph Convolutions

Papers on Graph Convolutions (source: Zhang et al. [2020])

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

TABLE 4
A Comparison among Different Graph Convolutional Networks (GCNs). T.C. = Time Complexity, M.G. = Multiple Graphs

Method Type Convolution Readout T.C. M.G. Other Characteristics
Bruna et al. [40] Spectral Interpolation kernel Hierarchical clustering + FC O(N3) No -
Henaff et al. [41] Spectral Interpolation kernel Hierarchical clustering + FC O(N3) No Constructing the graph

ChebNet [42] Spectral/Spatial Polynomial Hierarchical clustering O(M) Yes -
Kipf&Welling [43] Spectral/Spatial First-order - O(M) - -

CayletNet [44] Spectral Polynomial Hierarchical clustering + FC O(M) No -
GWNN [45] Spectral Wavelet transform - O(M) No -

Neural FPs [46] Spatial First-order Sum O(M) Yes -
PATCHY-SAN [47] Spatial Polynomial + an order An order + pooling O(M logN) Yes A neighbor order

LGCN [48] Spatial First-order + an order - O(M) Yes A neighbor order
SortPooling [49] Spatial First-order An order + pooling O(M) Yes A node order

DCNN [50] Spatial Polynomial diffusion Mean O(N2) Yes Edge features
DGCN [51] Spatial First-order + diffusion - O(N2) - -
MPNNs [52] Spatial First-order Set2set O(M) Yes A general framework

GraphSAGE [53] Spatial First-order + sampling - O(NsL) Yes A general framework
MoNet [54] Spatial First-order Hierarchical clustering O(M) Yes A general framework

GNs [9] Spatial First-order A graph representation O(M) Yes A general framework
Kearnes et al. [55] Spatial Weave module Fuzzy histogram O(M) Yes Edge features

DiffPool [56] Spatial Various Hierarchical clustering O(N2) Yes Differentiable pooling
GAT [57] Spatial First-order - O(M) Yes Attention

GaAN [58] Spatial First-order - O(NsL) Yes Attention
HAN [59] Spatial Meta-path neighbors - O(Mφ) Yes Attention
CLN [60] Spatial First-order - O(M) - -
PPNP [61] Spatial First-order - O(M) - Teleportation connections

JK-Nets [62] Spatial Various - O(M) Yes Jumping connections
ECC [63] Spatial First-order Hierarchical clustering O(M) Yes Edge features

R-GCNs [64] Spatial First-order - O(M) - Edge features
LGNN [65] Spatial First-order + LINE graph - O(M) - Edge features

PinSage [66] Spatial Random walk - O(NsL) - Neighborhood sampling
StochasticGCN [67] Spatial First-order + sampling - O(NsL) - Neighborhood sampling

FastGCN [68] Spatial First-order + sampling - O(NsL) Yes Layer-wise sampling
Adapt [69] Spatial First-order + sampling - O(NsL) Yes Layer-wise sampling

Li et al. [70] Spatial First-order - O(M) - Theoretical analysis
SGC [71] Spatial Polynomial - O(M) Yes Theoretical analysis

GFNN [72] Spatial Polynomial - O(M) Yes Theoretical analysis
GIN [73] Spatial First-order Sum + MLP O(M) Yes Theoretical analysis
DGI [74] Spatial First-order - O(M) Yes Unsupervised training

is the element-wise product of their Fourier transforms. Then, a
signal u can be filtered by

u′ = QΘQTu, (6)

where u′ is the output signal, Θ = Θ(Λ) ∈ RN×N is a
diagonal matrix of learnable filters and Λ are the eigenvalues of
L. A convolutional layer is defined by applying different filters to
different input-output signal pairs as follows:

ul+1
j = ρ

(∑fl

i=1
QΘl

i,jQ
Tuli

)
j = 1, ..., fl+1, (7)

where l is the layer, ulj ∈ RN is the jth hidden representation
(i.e., the signal) for the nodes in the lth layer, and Θl

i,j are learn-
able filters. The idea behind Eq. (7) is similar to a conventional
convolution: it passes the input signals through a set of learnable
filters to aggregate the information, followed by some nonlinear
transformation. By using the node features FV as the input layer
and stacking multiple convolutional layers, the overall architecture
is similar to that of a CNN. Theoretical analysis has shown that
such a definition of the graph convolution operation can mimic
certain geometric properties of CNNs and we refer readers to [7]
for a comprehensive survey.

However, directly using Eq. (7) requires learning O(N) pa-
rameters, which may not be feasible in practice. Besides, the filters
in the spectral domain may not be localized in the spatial domain,

i.e., each node may be affected by all the other nodes rather than
only the nodes in a small region. To alleviate these problems,
Bruna et al. [40] suggested using the following smoothing filters:

diag
(
Θl
i,j

)
= K αl,i,j , (8)

where K is a fixed interpolation kernel and αl,i,j are learnable
interpolation coefficients. The authors also generalized this idea to
the setting where the graph is not given but constructed from raw
features using either a supervised or an unsupervised method [41].

However, two fundamental problems remain unsolved. First,
because the full eigenvectors of the Laplacian matrix are needed
during each calculation, the time complexity is at least O(N2)
for each forward and backward pass, not to mention the O(N3)
complexity required to calculate the eigendecomposition, meaning
that this approach is not scalable to large-scale graphs. Second,
because the filters depend on the eigenbasis Q of the graph, the
parameters cannot be shared across multiple graphs with different
sizes and structures.

Next, we review two lines of works trying to solve these
limitations and then unify them using some common frameworks.

4.1.2 The Efficiency Aspect
To solve the efficiency problem, ChebNet [42] was proposed to
use a polynomial filter as follows:

Θ(Λ) =
∑K

k=0
θkΛ

k, (9)

[source: Zhang et al. [2020]]
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Deep Learning 3. Graph Convolutions

Deep Locally Connected Networks
I the vertices of the graph are partitioned into S clusters C1, . . . ,CS

I vertex cluster latent features zs ∈ RK :

z`+1
s,k :=

∑

v∈Cs

h(
K∑

j=1

W `+1
k,j z`v ,j) s = 1, . . . ,S , j = 1, . . . ,K , W `+1 ∈ RK×K

I h : RK → RK is a suitable function (unspecified)

I What actually does h(
∑K

j=1 W
`
k,jz

`
v ,j)?

I instead of summing over Cs , the paper talks just about “pooling”.

I vertex clusters are assembled to a new graph with weighted edges,
by summing and normalizing the weights between vertices of each two
clusters.

I Bruna et al. [2013]
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Deep Learning 3. Graph Convolutions

Spectral Networks

I vertex latent features z ∈ RV×K :

z`+1
.,k := a(

K∑

j=1

Q diag(W `+1
k,j )QT z`.,j), W `−1

k,j ∈ RV

I xedge ∈ RV×V symmetric, xedge ≥ 0 edge weights

I Lap := diag(xedge11)− xedge Weighted Graph Laplacian

I Q ∈ RV×V the eigenvector matrix of the Laplacian:

Lap
!

= Q diag(λ)QT , λ ∈ RV

I Bruna et al. [2013]
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Deep Learning 3. Graph Convolutions

Spectral Networks / Filter Parametrization
I how are the filters W `−1

k,j ∈ RV parametrized (k, j = 1, . . . ,K ) ?

I let’s use just W ∈ RV to denote W `−1
k,j on this slide

I non-parametric filter (not used):

W = θ ∈ RV

I interpolation from fixed size filter θ ∈ RL, L� V with a cubic spline:

W (θ) = qsk(V )θ, qsk(V ) ∈ RV×L cubic spline kernel

I polynom in the eigenvalues λ ∈ RV of the Laplacian:

W (λ; θ) =
D−1∑

d=0

θdλ
d , θ ∈ RD ,D ∈ N degree

I Defferrard et al. [2016]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 28

Note: Here λd denotes elementwise powers: λd := (λdv )v=1:V .



Deep Learning 3. Graph Convolutions

Experiments / Subsampled MNIST

(a) (b)

Figure 3: Subsampled MNIST examples.

5.1 Subsampled MNIST

We first apply the constructions from sections 3.2 and 2.3 to the subsampled MNIST dataset. Figure
3 shows examples of the resulting input signals, and Figures 4, 5 show the hierarchical clustering
constructed from the graph and some eigenfunctions of the graph Laplacian, respectively. The per-
formance of various graph architectures is reported in Table 1. To serve as a baseline, we compute
the standard Nearest Neighbor classifier, which performs slightly worse than in the full MNIST
dataset (2.8%). A two-layer Fully Connected neural network reduces the error to 1.8%. The geo-
metrical structure of the data can be exploited with the CNN graph architectures. Local Receptive
Fields adapted to the graph structure outperform the fully connected network. In particular, two
layers of filtering and max-pooling define a network which efficiently aggregates information to
the final classifier. The spectral construction performs slightly worse on this dataset. We consid-
ered a frequency cutoff of N/2 = 200. However, the frequency smoothing architecture described
in section 3.4, which contains the smallest number of parameters, outperforms the regular spectral
construction.

These results can be interpreted as follows. MNIST digits are characterized by localized oriented
strokes, which require measurements with good spatial localization. Locally receptive fields are
constructed to explicitly satisfy this constraint, whereas in the spectral construction the measure-
ments are not enforced to become spatially localized. Adding the smoothness constraint on the
spectrum of the filters improves classification results, since the filters are enforced to have better
spatial localization.

This fact is illustrated in Figure 6. We verify that Locally Receptive fields encode different templates
across different spatial neighborhoods, since there is no global strucutre tying them together. On the
other hand, spectral constructions have the capacity to generate local measurements that generalize
across the graph. When the spectral multipliers are not constrained, the resulting filters tend to be
spatially delocalized, as shown in panels (c)-(d). This corresponds to the fundamental limitation of
Fourier analysis to encode local phenomena. However, we observe in panels (e)-(f) that a simple
smoothing across the spectrum of the graph Laplacian restores some form of spatial localization
and creates filters which generalize across different spatial positions, as should be expected for
convolution operators.

5.2 MNIST on the sphere

We test in this section the graph CNN constructions on another low-dimensional graph. In this
case, we lift the MNIST digits to the sphere. The dataset is constructed as follows. We first sample
4096 random points S = {sj}j≤4096 from the unit sphere S2 ⊂ R3. We then consider an orthogonal
basis E = (e1, e2, e3) of R3 with ‖e1‖ = 1 , ‖e2‖ = 2 , ‖e3‖ = 3 and a random covariance operator
Σ = (E+W )T (E+W ), whereW is a Gaussian iid matrix with variance σ2 < 1. For each signal xi
from the original MNIST dataset, we sample a covariance operator Σi from the former distribution
and consider its PCA basis Ui. This basis defines a point of view and in-plane rotation which we use

8

[source: Bruna et al. [2013]]

Q: What you see?
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Deep Learning 3. Graph Convolutions

Experiments / Subsampled MNIST

(a) (b)

Figure 4: Clusters obtained with the agglomerative clustering. (a) Clusters corresponding to the
finest scale k = 1, (b) clusters for k = 3 .

(a) (b)

Figure 5: Examples of Eigenfunctions of the Graph Laplacian v2, v20.

Table 1: Classification results on MNIST subsampled on 400 random locations, for different ar-
chitectures. FCN stands for a fully connected layer with N outputs, LRFN denotes the locally
connected construction from Section 2.3 with N outputs, MPN is a max-pooling layer with N
outputs, and SPN stands for the spectral layer from Section 3.2.

method Parameters Error
Nearest Neighbors N/A 4.11

400-FC800-FC50-10 3.6 · 105 1.8
400-LRF1600-MP800-10 7.2 · 104 1.8

400-LRF3200-MP800-LRF800-MP400-10 1.6 · 105 1.3
400-SP1600-10 (d1 = 300, q = n) 3.2 · 103 2.6
400-SP1600-10 (d1 = 300, q = 32) 1.6 · 103 2.3
400-SP4800-10 (d1 = 300, q = 20) 5 · 103 1.8

9

[source: Bruna et al. [2013]]
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Deep Learning 4. Graph Attention
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Deep Learning 4. Graph Attention

Graph Attention Networks (GAT)

I restricted multi-head attention over the vertex neighborhood:

attnres(X ;N )v ,u := I(u ∈ N (v)) attn(X )v ,u, u, v ∈ V

I using the vanilla attention mechanism:

attn(X ; W ,V ) := a(XW TVXT )

sha(X ; W ,V ,U) := attnres(X ; W ,V ) (XUT )

mha(X ) := concat2((sha(X1:V ,slice(h); W h,V h,Uh))h=1:H)QT ,

Q ∈ RKout×HK

I with X := xedge ∈ RV×Medge
the vertex features.

I Veličković et al. [2017]
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Deep Learning 4. Graph Attention

Model Configuration

I 2 GAT layers

1. 8 heads à 8 features, exponential linear unit
2. 1 head à O features, softmax

I L2 regularization λ = 0.0005,

Dropout p = 0.6 for both layers’ inputs and
both layers’ attention weights.
(= random sub-neighborhood)

I has been optimized for first dataset (Cora),
used unchanged for the other two.

I # parameters: Cora: 276k
Citeseer: 712k
Pubmed: 97k

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Note: Exponential linear unit (ELU): elu(z) :=

{
x if x ≥ 0

α(ex − 1) else
.



Deep Learning 4. Graph Attention

Experiments / DatasetsPublished as a conference paper at ICLR 2018

Table 1: Summary of the datasets used in our experiments.

Cora Citeseer Pubmed PPI
Task Transductive Transductive Transductive Inductive
# Nodes 2708 (1 graph) 3327 (1 graph) 19717 (1 graph) 56944 (24 graphs)
# Edges 5429 4732 44338 818716
# Features/Node 1433 3703 500 50
# Classes 7 6 3 121 (multilabel)
# Training Nodes 140 120 60 44906 (20 graphs)
# Validation Nodes 500 500 500 6514 (2 graphs)
# Test Nodes 1000 1000 1000 5524 (2 graphs)

well as inductive), achieving or matching state-of-the-art performance across all of them. This sec-
tion summarizes our experimental setup, results, and a brief qualitative analysis of a GAT model’s
extracted feature representations.

3.1 DATASETS

Transductive learning We utilize three standard citation network benchmark datasets—Cora,
Citeseer and Pubmed (Sen et al., 2008)—and closely follow the transductive experimental setup of
Yang et al. (2016). In all of these datasets, nodes correspond to documents and edges to (undirected)
citations. Node features correspond to elements of a bag-of-words representation of a document.
Each node has a class label. We allow for only 20 nodes per class to be used for training—however,
honoring the transductive setup, the training algorithm has access to all of the nodes’ feature vec-
tors. The predictive power of the trained models is evaluated on 1000 test nodes, and we use 500
additional nodes for validation purposes (the same ones as used by Kipf & Welling (2017)). The
Cora dataset contains 2708 nodes, 5429 edges, 7 classes and 1433 features per node. The Citeseer
dataset contains 3327 nodes, 4732 edges, 6 classes and 3703 features per node. The Pubmed dataset
contains 19717 nodes, 44338 edges, 3 classes and 500 features per node.

Inductive learning We make use of a protein-protein interaction (PPI) dataset that consists of
graphs corresponding to different human tissues (Zitnik & Leskovec, 2017). The dataset contains
20 graphs for training, 2 for validation and 2 for testing. Critically, testing graphs remain com-
pletely unobserved during training. To construct the graphs, we used the preprocessed data provided
by Hamilton et al. (2017). The average number of nodes per graph is 2372. Each node has 50
features that are composed of positional gene sets, motif gene sets and immunological signatures.
There are 121 labels for each node set from gene ontology, collected from the Molecular Signatures
Database (Subramanian et al., 2005), and a node can possess several labels simultaneously.

An overview of the interesting characteristics of the datasets is given in Table 1.

3.2 STATE-OF-THE-ART METHODS

Transductive learning For transductive learning tasks, we compare against the same strong base-
lines and state-of-the-art approaches as specified in Kipf & Welling (2017). This includes label
propagation (LP) (Zhu et al., 2003), semi-supervised embedding (SemiEmb) (Weston et al., 2012),
manifold regularization (ManiReg) (Belkin et al., 2006), skip-gram based graph embeddings (Deep-
Walk) (Perozzi et al., 2014), the iterative classification algorithm (ICA) (Lu & Getoor, 2003) and
Planetoid (Yang et al., 2016). We also directly compare our model against GCNs (Kipf & Welling,
2017), as well as graph convolutional models utilising higher-order Chebyshev filters (Defferrard
et al., 2016), and the MoNet model presented in Monti et al. (2016).

Inductive learning For the inductive learning task, we compare against the four different super-
vised GraphSAGE inductive methods presented in Hamilton et al. (2017). These provide a variety
of approaches to aggregating features within a sampled neighborhood: GraphSAGE-GCN (which
extends a graph convolution-style operation to the inductive setting), GraphSAGE-mean (taking

6
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Table 2: Summary of results in terms of classification accuracies, for Cora, Citeseer and Pubmed.
GCN-64∗ corresponds to the best GCN result computing 64 hidden features (using ReLU or ELU).

Transductive
Method Cora Citeseer Pubmed
MLP 55.1% 46.5% 71.4%
ManiReg (Belkin et al., 2006) 59.5% 60.1% 70.7%
SemiEmb (Weston et al., 2012) 59.0% 59.6% 71.7%
LP (Zhu et al., 2003) 68.0% 45.3% 63.0%
DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%
ICA (Lu & Getoor, 2003) 75.1% 69.1% 73.9%
Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%
Chebyshev (Defferrard et al., 2016) 81.2% 69.8% 74.4%
GCN (Kipf & Welling, 2017) 81.5% 70.3% 79.0%
MoNet (Monti et al., 2016) 81.7 ± 0.5% — 78.8 ± 0.3%

GCN-64∗ 81.4 ± 0.5% 70.9 ± 0.5% 79.0 ± 0.3%
GAT (ours) 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3%

Table 3: Summary of results in terms of micro-averaged F1 scores, for the PPI dataset. GraphSAGE∗
corresponds to the best GraphSAGE result we were able to obtain by just modifying its architecture.
Const-GAT corresponds to a model with the same architecture as GAT, but with a constant attention
mechanism (assigning same importance to each neighbor; GCN-like inductive operator).

Inductive
Method PPI
Random 0.396
MLP 0.422
GraphSAGE-GCN (Hamilton et al., 2017) 0.500
GraphSAGE-mean (Hamilton et al., 2017) 0.598
GraphSAGE-LSTM (Hamilton et al., 2017) 0.612
GraphSAGE-pool (Hamilton et al., 2017) 0.600

GraphSAGE∗ 0.768
Const-GAT (ours) 0.934 ± 0.006
GAT (ours) 0.973 ± 0.002

the other techniques. Specifically, as our setup is supervised, we compare against the supervised
GraphSAGE approaches. To evaluate the benefits of aggregating across the entire neighborhood,
we further provide (as GraphSAGE∗) the best result we were able to achieve with GraphSAGE by
just modifying its architecture (this was with a three-layer GraphSAGE-LSTM with [512, 512, 726]
features computed in each layer and 128 features used for aggregating neighborhoods). Finally,
we report the 10-run result of our constant attention GAT model (as Const-GAT), to fairly evaluate
the benefits of the attention mechanism against a GCN-like aggregation scheme (with the same
architecture).

Our results successfully demonstrate state-of-the-art performance being achieved or matched across
all four datasets—in concordance with our expectations, as per the discussion in Section 2.2. More
specifically, we are able to improve upon GCNs by a margin of 1.5% and 1.6% on Cora and Cite-
seer, respectively, suggesting that assigning different weights to nodes of a same neighborhood may
be beneficial. It is worth noting the improvements achieved on the PPI dataset: Our GAT model
improves by 20.5% w.r.t. the best GraphSAGE result we were able to obtain, demonstrating that our
model has the potential to be applied in inductive settings, and that larger predictive power can be
leveraged by observing the entire neighborhood. Furthermore, it improves by 3.9% w.r.t. Const-GAT
(the identical architecture with constant attention mechanism), once again directly demonstrating the
significance of being able to assign different weights to different neighbors.
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Set Function Representation Theorem

I let X ,Y be any sets, i.e., X := RM , Y := RO .

I any function on (finite/countable) sets of elements from X to Y,

f : sets(X )→ Y

can be written as

f (X ) = g(
∑

x∈X
h(x))

for two suitable functions h : X → RK , g : RK → Y
and a suitable K ∈ N.
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Set Function Representation Theorem / Proof

⇐:

f (π(X )) = g(
∑

x∈π(X )

h(x)) = g(
∑

x∈X
h(x)) = f (X )

⇒: here only for the case that X is countable,
i.e., there exists a injective map c : X → N:

h(x) := 4−c(x), K := 1

 z(X ) :=
∑

x∈X
h(x) is injective (4-ary code of X )

g(z) := f (z−1(z))

and then:

g(
∑

x∈π(X )

h(x)) = g(z(X )) = f (z−1(z(X ))) = f (X )
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DeepSet

I invariant layer:
I input: x ∈ R∗×M (=̂{x1, x2, . . . , xT }, xt ∈ RM , number T of elements variable)

I output: z ∈ RO

z(x) := g(
T∑

t=1

h(xt,.))

h : RM → RK element encoder

g : RK → RO decoder

I aggregation of encoded elements by sum, mean, or max.

I Zaheer et al. [2017]
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Equivariant Layer

I equivariant layer:
I input: x ∈ R∗ (=̂{x1, x2, . . . , xT }, xt ∈ R, number T of elements variable)

I output: z ∈ R∗ with same length

z(x) := a(cx + d(max x)11), c , d ∈ R

I formulated for x ∈ RM , i.e., for M scalar elements

I also a(cx + d1111T x) (sum) or a(cx + d 1
|x|1111T x) (mean)
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Summary
I (Transductive) vertex classification in a graph:

given some labeled vertices, predict the targets/labels of the others.

I Early attempts to build neural networks for graphs used recurrent approaches.

I Graph Convolutions aggregate vertex features
I in the spectral domain:

over vertex neighborhoods in the Eigenspace of the graph Laplacian.

I in the spatial domain: over vertex neighborhoods in the graph directly.

I Graph Attention applies vanilla multi-head attention to the vertices,
restricting it to their neighborhoods.

I Both, graph convolution networks and graph attention networks can be
learned with vanilla backpropagation.

I Graph Attention Networks provide some of the best models currently for
vertex classification.
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Further Readings

I graph convolutions are not yet covered by the textbooks.

I see the referenced papers for details.

I surveys: Zhang et al. [2020]; Wu et al. [2020]; Kinderkhedia [2019]
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