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Image Analysis / 1. Fourier Series Representation

Periodic Functions
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Image Analysis / 1. Fourier Series Representation

Periodic Functions

A function f : R→ C is called T -periodic if

f (x + T ) = f (x) ∀x ∈ R

Example: the functions sin and cos are 2π-periodic.

Example: the function sin(ωx) is 2π/ω-periodic.
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Image Analysis / 1. Fourier Series Representation

Periodic Functions / Approximation
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f̂ (x) = 1 sin(x)
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Image Analysis / 1. Fourier Series Representation

Periodic Functions / Approximation
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f̂ (x) = 1 sin(x) + 2 cos x
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Image Analysis / 1. Fourier Series Representation

Periodic Functions / Approximation
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f̂ (x) = 1 sin(x) + 2 cos x + 2 sin 2x
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Image Analysis / 1. Fourier Series Representation

Periodic Functions / Approximation
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f̂ (x) = 1 sin(x) + 2 cos x + 2 sin 2x + 1 cos 2x
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Image Analysis / 1. Fourier Series Representation

Periodic Functions / Approximation
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f̂ (x) = 1 sin(x) + 2 cos x + 2 sin 2x + 1 cos 2x + 3 sin 3x
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Image Analysis / 1. Fourier Series Representation

Periodic Functions / Approximation
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Image Analysis / 1. Fourier Series Representation

Periodic Functions / Approximation
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f̂ (x) = 1 sin(x)+2 cos x+2 sin 2x+1 cos 2x+3 sin 3x+3 cos 3x+2 sin 4x
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Image Analysis / 1. Fourier Series Representation

Periodic Functions / Approximation
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f̂ (x) = 1 sin(x)+2 cos x+2 sin 2x+1 cos 2x+3 sin 3x+3 cos 3x+2 sin 4x+1 cos 4x
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Image Analysis / 1. Fourier Series Representation

Fourier Series Representation

Theorem (Fourier Series Representation). Any continuous,
differentiable and T -periodic function f : R→ C can be written as

f (x) =
a0

2
+

∞∑
k=1

ak cos kωx + bk sin kωx, ω :=
2π

T

with coefficients ak, bk ∈ C, called a Fourier Series of f .

How to compute Fourier coefficients ak, bk for a given function f ?

Jean Baptiste Joseph Fourier (1768–1830),
French Mathematician and Physicist

Note. Actually, the class of functions that can be represented as Fourier series is much larger (see, e.g., [Kö90,
p. 314]).
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Image Analysis / 1. Fourier Series Representation

Trigonometric Addition Formulas

Lemma (Trigonometric Addition Formulas). For all x, y ∈ R:

cos(x + y) = cos x cos y − sin x sin y

sin(x + y) = sin x cos y + sin y cos x
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Image Analysis / 1. Fourier Series Representation

Some Trigonometric Integrals

∫
cos ax cos bx dx =


1

2

(
sin(a + b)x

a + b
+

sin(a− b)x

a− b

)
, if a 6= b

sin(2ax) + 2ax

4a
, else

∫
sin ax sin bx dx =


−1

2

(
sin(a + b)x

a + b
− sin(a− b)x

a− b

)
, if a 6= b

−sin(2ax)− 2ax

4a
, else

∫
sin ax cos bx dx =


−1

2

(
cos(a + b)x

a + b
+

cos(a− b)x

a− b

)
, if a 6= b

sin2(ax)

2a
, else
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Image Analysis / 1. Fourier Series Representation

Some Trigonometric Integrals

The six formulas easily can be proven by differentiation, e.g.,∫
cos ax cos bx dx

?
=

1

2

(
sin(a + b)x

a + b
+

sin(a− b)x

a− b

)
for a 6= b. Derivation d

dx yields:

cos ax cos bx
?
=

1

2

(
(a + b) cos(a + b)x

a + b
+

(a− b) cos(a− b)x

a− b

)
=

1

2
(cos(a + b)x + cos(a− b)x)

=
1

2
(cos ax cos bx− sin ax sin bx + cos ax cos(−bx)− sin ax sin(−bx))

=
1

2
(cos ax cos bx− sin ax sin bx + cos ax cos bx + sin ax sin bx)

= cos ax cos bx
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Image Analysis / 1. Fourier Series Representation

Trigonometric Orthogonality Relations

Let ω ∈ R+. The functions

{sin kωx | k ∈ N, k > 0} ∪ {cos kωx | k ∈ N, k > 0}
are pairwise othogonal with respect to

〈f, g〉 :=

∫ +π/ω

−π/ω

f (x)g(x)dx

i.e., for any two distinct such functions f, g

〈f, g〉 =

∫ +π/ω

−π/ω

f (x)g(x)dx = 0

but
〈f, f〉 =

π

ω
6= 0
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Image Analysis / 1. Fourier Series Representation

Trigonometric Orthogonality Relations

Proof: let f = cos kωx and g = cos lωx with k 6= l, then:

〈f, g〉 =

∫ +π/ω

−π/ω

cos kωx cos lωx dx =

[
1

2

(
sin(k + l)ωx

(k + l)ω
+

sin(k − l)ωx

(k − l)ω

)]+π/ω

−π/ω

=
1

2

(
sin(k + l)π

(k + l)ω
+

sin(k − l)π

(k − l)ω
− sin−(k + l)π

(k + l)ω
− sin−(k − l)π

(k − l)ω

)
=

sin(k + l)π

(k + l)ω
+

sin(k − l)π

(k − l)ω
= 0

but

〈f, f〉 =

[
sin(2kωx) + 2kωx

4kω

]+π/ω

−π/ω

=
sin(2kπ) + 2kπ

4kω
−sin(−2kπ) + (−2kπ)

4kω
=

π

ω
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Image Analysis / 1. Fourier Series Representation

Fourier Series Representation

Theorem (Fourier Series Representation). Any continuous,
differentiable and T -periodic function f : R→ C can be written as

f (x) =
a0

2
+

∞∑
k=1

ak cos kωx + bk sin kωx, ω :=
2π

T

with coefficients ak, bk ∈ C, called a Fourier Series of f .

How to compute Fourier coefficients ak, bk for a given function f ?

ak =
1

π/ω

∫ +π/ω

−π/ω

f (x) cos kωx dx

bk =
1

π/ω

∫ +π/ω

−π/ω

f (x) sin kωx dx

Note. Actually, the class of functions that can be represented as Fourier series is much larger (see, e.g., [Kö90,
p. 314]).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 9/66



Image Analysis / 1. Fourier Series Representation

Fourier Series Representation

Proof.

ak
?
=

1

π/ω

∫ +π/ω

−π/ω

f (x) cos kωx dx

=
1

π/ω

∫ +π/ω

−π/ω

(
a0

2
+

∞∑
l=1

al cos lωx + bl sin lωx

)
cos kωx dx

=
1

π/ω

(∫ +π/ω

−π/ω

a0

2
cos kωx dx +

∞∑
l=1

∫ +π/ω

−π/ω

al cos lωx cos kωx dx

+

∫ +π/ω

−π/ω

bl sin lωx cos kωx dx

)
=

1

π/ω

π

ω
ak

=ak
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Image Analysis / 1. Fourier Series Representation

Fourier Representation / Rectangular function

Let f be the 2π-periodic rectangular
function

f (x) =

 −1, if x ∈ (−π, 0)
0, if x ∈ {−π, 0, π}

+1, if x ∈ (0, π)

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

f (
x)

The Fourier representation of f is

f (x) =
4

π

∑
k∈N odd

sin kx

k

Proof:

bk =
2

π

∫ +π

−π

f(x) sin kx dx =
2

π
2

∫ +π

0

sin kx dx =
4

π

[
−1

k
cos kx

]π

0

=

{ − 4
πk

(0− 1) = 4
πk

, if k odd
− 4

πk
(1− 1) = 0, if k even

ak =
2

π

∫ +π

−π

f(x) cos kx dx = 0

Ã in general, Fourier representations are infinite as in this example!
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Image Analysis / 1. Fourier Series Representation

Fourier Representation / Rectangular function
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Image Analysis / 1. Fourier Series Representation

Fourier Representation / Rectangular function / k = 1
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Image Analysis / 1. Fourier Series Representation

Fourier Representation / Rectangular function / k = 5
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Image Analysis / 1. Fourier Series Representation

Fourier Representation / Rectangular function / k = 21
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Image Analysis / 1. Fourier Series Representation

Eulers Formula

cos x :=
∑
n∈N

(−1)n · x2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

sin x :=
∑
n∈N

(−1)n · x2n+1

(2n + 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

exp x :=
∑
n∈N

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ · · ·

Lemma (Eulers formula). For x ∈ C:
eix = cos(x) + i · sin(x), with i :=

√−1 the imaginary unit

Proof:

eix =
∑
n∈N

(ix)n

n!

=
∑
n∈N

(ix)2n

(2n)!
+
∑
n∈N

(ix)2n+1

(2n + 1)!

=
∑
n∈N

(−1)n
x2n

(2n)!
+ i ·

∑
n∈N

(−1)n
x2n+1

(2n + 1)!

= cos(x) + i sin(x)
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Image Analysis / 1. Fourier Series Representation

Complex Fourier Series Representation

Theorem (Complex Fourier Series Representation). Any
continuous, differentiable and T -periodic function f : R→ C can
be written as

f =
∑
k∈Z

ck eikωx, ω :=
2π

T

with coefficients ck ∈ C, called a Fourier Series of f .

The coefficients of the complex Fourier series can be computed
via

ck =
1

2π/ω

∫ +π/ω

−π/ω

f (x) e−ikωxdx
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Image Analysis / 1. Fourier Series Representation

Complex Fourier Series Representation

Proof.

f =
∑
k∈Z

ck eikωx

=
∑
k∈Z

ck (cos kωx + i sin kωx)

=c0 +

∞∑
k=1

(ck + c−k) cos kωx + (ck − c−k)i sin kωx

=
a0

2
+

∞∑
k=1

ak cos kωx + bk sin kωx

with
a0 = 2c0, ak = ck + c−k, bk = i(ck − c−k)

and vice versa via:

c0 =
a0

2
, ck =

1

2
(ak − ibk), c−k =

1

2
(ak + ibk)
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Image Analysis

1. Fourier Series Representation

2. The Fourier Transform

3. Discrete Signals

4. Discrete Fourier Transform

5. Two-dimensional Fourier Transforms

6. Applications
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Image Analysis / 2. The Fourier Transform

Fourier Transform

Let f : R→ C be a function (that satisfies some regularity
conditions). Then

F : R → C

ω 7→ 1√
2π

∫ +∞

−∞
f (x)e−iωxdx

exists for each ω and is a continuous function called Fourier
Transform of f (aka Fourier spectrum of f ).

One can show that (if F also satisfies some regularity conditions):

f (x) =
1√
2π

∫ +∞

−∞
F (ω)eiωxdω

This is called Inverse Fourier Transform.

We will write F(f ) := F for the Fourier transform of a function f
and F−1(F ) for the inverse Fourier transform of a function F .
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Image Analysis / 2. The Fourier Transform

Fourier Transforms / Examples / Gaussian
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f (x) =
1

σ
· e− x2

2σ2
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F
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F (x) = e−
σ2x2

2
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Image Analysis / 2. The Fourier Transform

Fourier Transforms / Examples / Uniform
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1.
0

x

f (
x)

f (x) = δ(x ∈ [−b, b])

−10 −5 0 5 10
0

1
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3
x

F
 (

x)

F (x) =
2b sin(bx)√

2πx
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Image Analysis / 2. The Fourier Transform

Fourier Transforms / Examples / Cosine
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(x
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f (x) = cos(ωx)

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
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F
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F (x) =

√
π

2
(δ(x− ω) + δ(x + ω))
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Image Analysis / 2. The Fourier Transform

Fourier Transforms / Examples / Sine

0 5 10 15 20

−
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x

si
n 

(x
)

f (x) = sin(ωx)

−2 −1 0 1 2
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
x

Im
(F

(s
in

)(
x)

)

F (x) = i ·
√

π

2
(δ(x− ω)− δ(x + ω))
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Image Analysis / 2. The Fourier Transform

Properties

function h Fourier transform H property name
f F
F f (−x) inverse
af + bg aF + bG linearity
f ∗ g F (x)G(x) convolution

f (x)g(x)
1

2π
F ∗G multiplication

f (x− a) e−iaxF (x) translation
eiaxf (x) F (x− a) modulation
f (x/a) |a|F (ax) scaling
f ∗ F ∗(−x) complex conjugate
f (x) ∈ R F (−x) = F ∗(x) hermitian symmetry
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Image Analysis

1. Fourier Series Representation

2. The Fourier Transform

3. Discrete Signals

4. Discrete Fourier Transform

5. Two-dimensional Fourier Transforms

6. Applications
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Image Analysis / 3. Discrete Signals

Dirac Comb

The symbol

∆T (x) :=
∑
n∈Z

δ(x− Tn)

is called Dirac comb (aka impulse
train, sampling function, Shah
function) with sampling interval T .

−4 −2 0 2 4

0.
0

0.
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0.
4

0.
6

0.
8

1.
0

1.
2

x

f(
x)

Lemma. The Fourier series of the Dirac comb ∆T is

∆T (x) =
1

T

∑
k∈Z

e−i2πk
T x

and its Fourier transform

F(∆T )(x) =
1

T
·∆2π/T (x) =

1

T

∑
n∈Z

δ(x− 2π

T
n)
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Image Analysis / 3. Discrete Signals

Dirac Comb

Proof: Obviously ∆T is periodic with period T . Therefore

f (x) =
∑
k∈Z

ck e−i2πk
T x

with

ck =
1

T

∫ x+T

x

∆T (y) e−i2πk
T ydy

=
1

T

∫ +T/2

−T/2

∆T (y) e−i2πk
T ydy

=
1

T

∫ +T/2

−T/2

δ(y) e−i2πk
T ydy

=
1

T
e−i2πk

T 0

=
1

T
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Image Analysis / 3. Discrete Signals

Sampling
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Image Analysis / 3. Discrete Signals

Sampling
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Sampling a function f at equidistant points T · Z can be understood as

f sampled(x) = f (x) ·∆T (x)
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Image Analysis / 3. Discrete Signals

Fourier Transform of a Sampled Function

Let f : R→ C be a function and
f sampled be a sample of f with sampling period T .

Then its Fourier transform F(f sampled) is 2π/T -periodic and
aggregates the Fourier transform F(f ) over a 2π/T -periodic grid:

F(f sampled)(x) =
∑
n∈Z

F(f )(x + n
2π

T
)

If F(f ) vanishes for |x| > π/T , then the Fourier transform F(f ) is
replicated in a period of the Fourier transform F(f sampled).
Otherwise replicas overlap and the Fourier transform becomes
corrupted. This effect is called aliasing.
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Image Analysis / 3. Discrete Signals

Fourier Transform of a Sampled Function

The maximal occurring frequency

ωmax := max{|x| |x ∈ R,F(f )(x) 6= 0}
of the Fourier transform is called its bandwidth.

The frequency

ωs :=
2π

T
of the sampling function is called its sampling frequency.

Then the sampling frequency must be at least twice the bandwith:

ωs > 2ωmax
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Image Analysis / 3. Discrete Signals

Fourier Transform of a Sampled Function

ωωmax

ωωmax

ωs1

ωωmax

ω
s2

F(f)

F(f_sampled1)

F(f_sampled2)

(cf. [BB08, p. 330])
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Image Analysis / 3. Discrete Signals

Fourier Transform of a Sampled Function

Proof.

F(f sampled)(x) =F(f ·∆T )(x)

=F(f ) ∗ F(∆T )(x)

=F(f ) ∗ 1

T
∆2π/T (x)

=F(f ) ∗ 1

T

∑
n∈Z

δ(x + n
2π

T
)

=
1

T

∑
n∈Z

F(f ) ∗ δ(x + n
2π

T
)

=
1

T

∑
n∈Z

F(f )(x + n
2π

T
)

If |x| < π/T and F(f )(y) vanishes for |y| > π/T , then

F(f sampled)(x) =
1

T
F(f )(x)
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Image Analysis / 3. Discrete Signals

The Fourier Transform of a Discrete Function

Let f be a discrete function:

f (x) =
∑
n∈Z

yn δ(x− n), yn ∈ R

Then its Fourier transform is:

F(f )(ω) =
1√
2π

∫ ∞
−∞

f (x)e−iωxdx

=
1√
2π

∫ ∞
−∞

∑
n∈Z

yn δ(x− n) e−iωxdx

=
1√
2π

∑
n∈Z

∫ ∞
−∞

yn e−iωx δ(x− n)dx

=
1√
2π

∑
n∈Z

yn e−iωn

=
1√
2π

∑
n∈Z

f (n) e−iωn

i.e., a periodic function — or equivalently: a function defined on
an interval.
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Image Analysis

1. Fourier Series Representation

2. The Fourier Transform

3. Discrete Signals

4. Discrete Fourier Transform

5. Two-dimensional Fourier Transforms

6. Applications
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Image Analysis / 4. Discrete Fourier Transform

Definition

Let f : {0, 1, . . . , N − 1} → C be a finite discrete function, then

F : {0, 1, . . . , N − 1} → C

ω 7→ 1√
N

N−1∑
x=0

f (x)(cos(2π
ωx

N
)− i sin(2π

ωx

N
))

=
1√
N

N−1∑
x=0

f (x)e−i2πωx
N

is called discrete Fourier transform of f , denoted DFT(f ).
Then

f (x) =
1√
N

N−1∑
ω=0

F (ω)(cos(2π
ωx

N
) + i sin(2π

ωx

N
))

=
1√
N

N−1∑
ω=0

F (ω)ei2πωx
N

This is called inverse discrete Fourier transform of f , denoted
DFT−1(F )..
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Image Analysis / 4. Discrete Fourier Transform

Example

x f (x) ω F (ω)
0 1 + 0i 0 14.2302 + 0.0000i
1 3 + 0i DFT 1 −5.6745− 2.9198i
2 5 + 0i −→ 2 0.0000 + 0.0000i
3 7 + 0i 3 −0.0176− 0.6893i
4 9 + 0i 4 0.0000 + 0.0000i
5 8 + 0i 5 0.3162 + 0.0000i
6 6 + 0i 6 0.0000 + 0.0000i

7 4 + 0i DFT−1 7 −0.0176 + 0.6893i
8 2 + 0i ←− 8 0.0000 + 0.0000i
9 0 + 0i 9 −5.6745 + 2.9198i

(cf. [BB08, p. 333])

DFT(f )(0) =
1√
10

9∑
x=0

f (x)(cos(2π
0x

10
)− i sin(2π

0x

10
)) =

1√
10

9∑
x=0

f (x) =
45√
10

= 14.2303
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Image Analysis / 4. Discrete Fourier Transform

Example

x f (x) ω F (ω)
0 1 + 0i 0 14.2302 + 0.0000i
1 3 + 0i DFT 1 −5.6745− 2.9198i
2 5 + 0i −→ 2 0.0000 + 0.0000i
3 7 + 0i 3 −0.0176− 0.6893i
4 9 + 0i 4 0.0000 + 0.0000i
5 8 + 0i 5 0.3162 + 0.0000i
6 6 + 0i 6 0.0000 + 0.0000i

7 4 + 0i DFT−1 7 −0.0176 + 0.6893i
8 2 + 0i ←− 8 0.0000 + 0.0000i
9 0 + 0i 9 −5.6745 + 2.9198i

(cf. [BB08, p. 333])

DFT(f )(1) =
1√
10

9∑
x=0

f (x)(cos(2π
1x

10
)− i sin(2π

1x

10
))

=
1√
10

9∑
x=0

f (x) cos(π
x

5
)− i

1√
10

9∑
x=0

f (x) sin(π
x

5
) = −5.6745− 2.9198i
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Image Analysis / 4. Discrete Fourier Transform

Discrete Fourier Transform / Algorithm (naive)

For x ∈ C, denote <(x) its real part and =(x) its imaginary part,
i.e.,

x = <(x) + i=(x), <(x),=(x) ∈ R
(for < one often also uses Re, for = also Im).

To compute the discrete Fourier transform, one computes
dft(f )(ω) for ω = 0, . . . , N − 1 via:

DFT(f )(ω) =
1√
N

N−1∑
x=0

f (x)(cos(2π
ωx

N
)− i sin(2π

ωx

N
))

=
1√
N

N−1∑
x=0

(<(f (x)) + i=(f (x)))(cos(2π
ωx

N
)− i sin(2π

ωx

N
))

=
1√
N

N−1∑
x=0

<(f (x)) cos(2π
ωx

N
) + =(f (x)) sin(2π

ωx

N
)

+ i
1√
N

N−1∑
x=0

−<(f (x)) sin(2π
ωx

N
) + =(f (x)) cos(2π

ωx

N
)
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Image Analysis / 4. Discrete Fourier Transform

Discrete Fourier Transform / Algorithm (naive)

1 dft-naive(sequence f = (f(x)0, f(x)1)x=0,...,N−1) :
2 N := length(f)
3 F := (F (x)0, F (x)1)x=0,...,N−1 = (0, 0)x=0,...,N−1

4 for ω := 0, . . . , N − 1 do
5 c := (c0, c1) := (0, 0)
6 for x := 0, . . . , N − 1 do
7 c0 := c0 + f(x)0 · cos(2πωx/N) + f(x)1 · sin(2πωx/N)
8 c1 := c1 − f(x)0 · sin(2πωx/N) + f(x)1 · cos(2πωx/N)
9 od

10 c0 := c0/
√

N

11 c1 := c1/
√

N
12 F (ω) := c
13 od
14 return F
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Image Analysis / 4. Discrete Fourier Transform

Discrete Fourier Transform / Algorithm (naive)

When computing the values of the discrete Fourier transform for
different arguments ω, the cosine and sine functions repeatedly
are callled with the same arguments:

dft(f )(1):
cos(2π · 0/10)

cos(2π · 1/10)

cos(2π · 2/10)

cos(2π · 3/10)

cos(2π · 4/10)

cos(2π · 5/10)

cos(2π · 6/10)

cos(2π · 7/10)

cos(2π · 8/10)

cos(2π · 9/10)

dft(f )(2):

cos(2π · 0/10)

cos(2π · 2/10)

cos(2π · 4/10)

cos(2π · 6/10)

cos(2π · 8/10)

cos(2π · 10/10) = cos(2π · 0/10)

cos(2π · 12/10) = cos(2π · 2/10)

cos(2π · 14/10) = cos(2π · 4/10)

cos(2π · 16/10) = cos(2π · 6/10)

cos(2π · 18/10) = cos(2π · 8/10)

Caching the expensive sine and cosine computations accelerates
the algorithm!
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Image Analysis / 4. Discrete Fourier Transform

Discrete Fourier Transform / Algorithm (naive, cached)

1 dft-naive-cached(sequence f = (f(x)0, f(x)1)x=0,...,N−1) :
2 N := length(f)
3 for ω := 0, . . . , N − 1 do
4 C(ω) := cos(2πω/N)
5 S(ω) := sin(2πω/N)
6 od
7 F := (F (x)0, F (x)1)x=0,...,N−1 = (0, 0)x=0,...,N−1

8 for ω := 0, . . . , N − 1 do
9 c := (c0, c1) := (0, 0)

10 for x := 0, . . . , N − 1 do
11 c0 := c0 + f(x)0 · C(ωx mod N) + f(x)1 · S(ωx mod N)
12 c1 := c1 − f(x)0 · S(ωx mod N) + f(x)1 · C(ωx mod N)
13 od
14 c0 := c0/

√
N

15 c1 := c1/
√

N
16 F (ω) := c
17 od
18 return F
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Image Analysis / 4. Discrete Fourier Transform

Fast Fourier Transform (Gauss ca. 1805; Cooley/Tukey 1965)

The naive algorithm for DFT still has complexity O(N 2).

The Fast Fourier Transform algorithm is based on a decomposition of
the DFT for sequences f of even length N :

DFT(f )(ω) =DFT(feven)(ω mod N/2) + e−i2πω/NDFT(fodd)(ω mod N/2)

for ω = 0, . . . , N − 1
and where

feven(x) :=f (2x), x = 0, . . . , N/2

fodd(x) :=f (2x + 1)
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Image Analysis / 4. Discrete Fourier Transform

Fast Fourier Transform / Proof

Proof.

DFT(f )(ω) =

N−1∑
x=0

f (x)e−i2πωx
N

=

N−1∑
x=0 even

f (x)e−i2πωx
N +

N−1∑
x=0 odd

f (x)e−i2πωx
N

=

N/2−1∑
x=0

f (2x)e−i2πω2x
N +

N/2−1∑
x=0

f (2x + 1)e−i2π
ω(2x+1)

N

=

N/2−1∑
x=0

feven(x)e
−i2π ωx

N/2 + e−i2πω/N

N/2−1∑
x=0

fodd(x)e
−i2π ωx

N/2

=DFT(feven)(ω) + e−i2πω/NDFT(fodd)(ω)

or more exaclty, as DFT(feven)(ω) is only defined for ω < N/2:

=DFT(feven)(ω mod N/2) + e−i2πω/NDFT(fodd)(ω mod N/2)
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Image Analysis / 4. Discrete Fourier Transform

Fast Fourier Transform / Real version

DFT(f )(ω) =DFT(feven)(ω mod N/2) + e−i2πω/NDFT(fodd)(ω mod N/2)

=DFT(feven)(ω mod N/2)

+ (cos 2πω/N − i sin 2πω/N)DFT(fodd)(ω mod N/2)

and thus

<(DFT(f )(ω)) =<(DFT(feven)(ω mod N/2))

+ cos 2πω/N · <(DFT(fodd)(ω mod N/2))

+ sin 2πω/N · =(DFT(fodd)(ω mod N/2))

=(DFT(f )(ω)) ==(DFT(feven)(ω mod N/2))

+ cos 2πω/N · =(DFT(fodd)(ω mod N/2))

− sin 2πω/N · <(DFT(fodd)(ω mod N/2))
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Image Analysis / 4. Discrete Fourier Transform

Fast Fourier Transform / Algorithm

1 fft(sequence f = (f(x)0, f(x)1)x=0,...,N−1) :
2 N := length(f)
3 if N is even
4 F := (F (x)0, F (x)1)x=0,...,N−1 = (0, 0)x=0,...,N−1

5 A := fft((f(x))x=0,2,4,...,N−2)
6 B := fft((f(x))x=1,3,5,,...,N−1)
7 for ω := 0, . . . , N − 1 do
8 a := A(ω mod N/2)
9 b := B(ω mod N/2)

10 F (ω)0 := a0 + cos 2πω/N · b0 + sin 2πω/N · b1

11 F (ω)1 := a1 + cos 2πω/N · b1 − sin 2πω/N · b0

12 od
13 return
14 else
15 F := dft-naive-cached(f)
16 fi
17 return F
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Image Analysis / 4. Discrete Fourier Transform

Fast Fourier Transform / Outlook

• The computation of cos 2πω/N and sin 2πω/N also can be done
recursively using the addition formulas.

• In this way, FFT best is applied to sequences of length 2n

(called radix-2 case).

• The FFT decomposition works with any factorization
N = N1 ·N2 in a similar way, and thus also for sequences of
length other than 2n.

• FFT has complexity O(N log N) (if N is a power of 2).

• An early experiment from 1969 reports a runtime of 13 1/2
hours for computing the DFT of a sequence of length 2048 by
the naive method and 2.4 seconds using FFT.

• In practice, FFT is implemented in a linearized version
avoiding explicit recursions (see [CLRS03, p. 839]).
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Image Analysis / 4. Discrete Fourier Transform

Types of Fourier Transforms

type of function f sup f sup F(f ) type of Fourier decomp.

general (integrable) function R R (general) Fourier
decomposition

periodic function,
function on interval

interval
I ⊆ R

Z Fourier series

general (integrable) discrete
function (sum of Diracs)

Z interval
I ⊆ R

discrete-time Fourier
transform

periodic discrete function,
finite discrete function
(finite sum of Diracs)

finite
I ⊆ Z

I discrete Fourier transform
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3. Discrete Signals

4. Discrete Fourier Transform

5. Two-dimensional Fourier Transforms

6. Applications

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 42/66

Image Analysis / 5. Two-dimensional Fourier Transforms

General Fourier Transform in 2D

For two-dimensional functions f : R× R→ C Fourier Transforms,
Fourier Series and Discrete Fourier Transforms can be defined
analogously.

Let f : R× R→ C be a function (that satisfies some regularity
conditions). Then

F : R× R → C

(ω1, ω2) 7→ 1

2π

∫ +∞

−∞

∫ +∞

−∞
f (x, y) e−iω1x e−iω2y dy dx

exists for each (ω1, ω2) and is a continuous function called
Fourier Transform of f (aka Fourier spectrum of f ).

One can show that (if F also satisfies some regularity conditions):

f (x, y) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
F (ω1, ω2)e

iω1xeiω2ydω1dω2

This is called Inverse Fourier Transform.

We will write F(f ) := F for the Fourier transform of a function f
and F−1(F ) for the inverse Fourier transform of a function F .
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Image Analysis / 5. Two-dimensional Fourier Transforms

Bases in 2D
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Image Analysis / 5. Two-dimensional Fourier Transforms

Fourier Series in 2D

If f : R× R→ C is (T1, T2)-periodic, i.e.,

f (x, y) = f (x + T1, y + T2) ∀x, y ∈ R

then f can already be reconstructed from Z-many Fourier
coefficients:

f (x, y) =
1

2π

∑
n∈Z

∑
m∈Z

F (n, m) e
i2π
T1

nx
e
i2π
T2

my

with

F (n, m) :=
1

2π

∫ +T1/2

−T1/2

∫ +T2/2

−T2/2

f (x, y) e−inω1x e−imω2y dy dx
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Image Analysis / 5. Two-dimensional Fourier Transforms

Discrete Fourier Transform in 2D

If f is discrete, i.e.,

f (x, y) =
∑
n∈Z

∑
m∈Z

yn,mδ(x− T1n, y − T2m), yn,m ∈ R

then its Fourier transform is periodic:

f (x, y) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
F (ω1, ω2) eiω1x eiω2y dω1 dω2

with
F (ω1, ω2) :=

1

2π

∑
n∈Z

∑
m∈Z

f (n, m) e−iω1n e−iω2m
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Image Analysis / 5. Two-dimensional Fourier Transforms

Discrete Fourier Transform in 2D

And finally, if f is discrete and finite, i.e.,

f (x, y) =

N−1∑
n=0

M−1∑
m=0

yn,m δ(x− n, y −m), yn,m ∈ R

then its Fourier transform is periodic and made from finitely many
components:

f (x, y) =
1√
NM

N−1∑
n=0

M−1∑
m=0

F (ω1, ω2) eiω1x eiω2y

with

F (ω1, ω2) :=
1√
NM

N−1∑
n=0

M−1∑
m=0

f (n, m) e−iω1n e−iω2m
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Image Analysis / 5. Two-dimensional Fourier Transforms

Discrete Fourier Transform in 2D / Algorithm (naive, cached)

1 dft-2d-naive-cached(array f = (f(x)0, f(x)1)x=0,...,N−1,y=0,...,M−1) :
2 for ω := 0, . . . , N − 1 do
3 C1(ω) := cos(2πω/N)
4 S1(ω) := sin(2πω/N)
5 od
6 for ω := 0, . . . , M − 1 do
7 C2(ω) := cos(2πω/M)
8 S2(ω) := sin(2πω/M)
9 od

10 F := (F (x)0, F (x)1)x=0,...,N−1,y=0,...,M−1 = (0, 0)x=0,...,N−1,y=0,...,M−1

11 for ω1 := 0, . . . , N − 1 do
12 for ω2 := 0, . . . , M − 1 do
13 c := (c0, c1) := (0, 0)
14 for x := 0, . . . , N − 1 do
15 for y := 0, . . . , M − 1 do
16 C := C1(ω1x mod N) · C2(ω2y mod M)− S1(ω1x mod N) · S2(ω2y mod M)
17 S := S1(ω1x mod N) · C2(ω2y mod M) + C1(ω1x mod N) · S2(ω2y mod M)
18 c0 := c0 + f(x)0 · C − f(x)1 · S
19 c1 := c1 − f(x)0 · S + f(x)1 · C
20 od
21 od
22 c0 := c0/

√
NM

23 c1 := c1/
√

NM
24 F (ω) := c
25 od
26 od
27 return F
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Image Analysis / 5. Two-dimensional Fourier Transforms

Discrete Fourier Transform in 2D / Separability

F (ω1, ω2) :=
1√
NM

N−1∑
n=0

M−1∑
m=0

f (n, m) e−iω1n e−iω2m

=
1√
N

N−1∑
n=0

(
1√
M

M−1∑
m=0

f (n, m) e−iω2m

)
e−iω1n

=
1√
N

N−1∑
n=0

DFT((f (n, m))m=1,...,M)(ω2) e−iω1n
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Image Analysis / 5. Two-dimensional Fourier Transforms

Discrete Fourier Transform in 2D / FFT

1 fft-2d(array f = (f(x)0, f(x)1)x=0,...,N−1,y=0,...,M−1) :
2 G := (G(x)0, G(x)1)x=0,...,N−1,y=0,...,M−1 = (0, 0)x=0,...,N−1,y=0,...,M−1

3 for ω1 := 0, . . . , N − 1 do
4 G(ω1, .) := fft(f(ω1, y)y=0,...,M−1)
5 od
6 F := (F (x)0, F (x)1)x=0,...,N−1,y=0,...,M−1 = (0, 0)x=0,...,N−1,y=0,...,M−1

7 for ω2 := 0, . . . , M − 1 do
8 F (., ω2) := fft(G(x, ω2)x=0,...,N−1)
9 od

10 return F
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Image Analysis / 5. Two-dimensional Fourier Transforms

Power Spectrum

The fourier spectrum of

– a discrete N ×M gray-scale image f ,
i.e., with one channel,

is

– a discrete N ×M image F with complex intensity values,
i.e., two channels.

For visualization one usually shows the power spectrum defined
as:

Fpower(f )(x) :=
√

(<F(f )(x))2 + (=F(f )(x))2

The power spectrum measures the absolute value of the complex
amplitude.
The complementary information θ called phase is not shown.
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Image Analysis / 5. Two-dimensional Fourier Transforms

What does Power Spectrum mean? — Complex Coordinates

Cartesian coordinates: Polar coordinates:

Re x

Im x

r

θ

x = (<x,=x) ∈ R× R

<x =r cos θ

=x =r sin θ

x = (r, θ) ∈ R+
0 × [0, 2π)

r =
√

(<x)2 + (=x)2

θ =

 arctan(<x/=x), if x > 0, y > 0
arctan(<x/=x) + π, if y < 0
arctan(<x/=x) + 2π, if x > 0, y < 0

x = <x + i=x = r cos θ + ir sin θ = reiθ
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Image Analysis / 5. Two-dimensional Fourier Transforms

Example

image f : power spectrum Fpower(f ):
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Image Analysis / 5. Two-dimensional Fourier Transforms

Displaying Fourier Power Spectra

For displaying spectra, some further conventions are used:

• As the scale of many power spectra is dominated by a few
large values, one usually plots

logFpower(f )(x) or (Fpower(f )(x))
1
2

instead of the raw power spectrum values Fpower(f )(x).

• Usually, the centered spectrum is shown, i.e., the intensities
for

x ∈ {−N/2,−N/2 + 1, . . . ,−1, 0, 1, . . . , N/2− 1, N/2}
and

y ∈ {−M/2,−M/2 + 1, . . . ,−1, 0, 1, . . . ,M/2− 1, M/2}
instead of the intensities for 0, 1, . . . , N − 1 and 0, 1, . . . ,M − 1.
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Image Analysis / 5. Two-dimensional Fourier Transforms

Centered Spectrum

A

C D

B
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Image Analysis / 5. Two-dimensional Fourier Transforms

Centered Spectrum

A

C D

B

A

C D

BA

C D

B

A

C D

B
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Image Analysis / 5. Two-dimensional Fourier Transforms

Centered Spectrum

original spectrum:

A

C D

B

centered spectrum:

D

B A

C
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Image Analysis / 5. Two-dimensional Fourier Transforms

Example

image f : power spectrum Fpower(f ):
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Image Analysis / 5. Two-dimensional Fourier Transforms

Symmetry of Fouier Power Spectra for Real Images

Usually images are real, i.e., f (x) ∈ R (not C).

For real functions, we know that

F(f )(−x) = F∗(f )(x)

is hermitian (with x∗ := <x− i=x).

As x ∈ C has the same radius as x∗:

r(x) =
√

(<x)2 + (=x)2
?
= r(x∗) = r(<x− i=x) =

√
(<x)2 + (−=x)2

for real functions F(f ) and F∗(f ) have the same radius and thus

Fpower(f )(−x) = Fpower(f )(x)

i.e., the power spectrum is symmetric around the origin.
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Image Analysis / 5. Two-dimensional Fourier Transforms

Symmetry of Fouier Power Spectra for Real Images

image f : power spectrum Fpower(f ):

Spectra of real images are symmetric around the origin (red circle).

So storing just half of the power spectrum is sufficient
(e.g., above green line — any line through the origin will do).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 55/66

Image Analysis / 5. Two-dimensional Fourier Transforms

Another Example

image f : power spectrum Fpower(f ):
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Image Analysis

1. Fourier Series Representation

2. The Fourier Transform

3. Discrete Signals

4. Discrete Fourier Transform

5. Two-dimensional Fourier Transforms

6. Applications
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Image Analysis / 6. Applications

Low Pass Filters

High frequencies are responsible for sharp edges,
low frequencies for constant and slowly changing areas.

Low pass filters

– retain only low frequencies ω ≤ ωmax,
– i.e., filter out high frequencies.
– and thus smooth / blur an image.
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Image Analysis / 6. Applications

Low Pass Filters / Example

image f : power spectrum Fpower(f ):
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Image Analysis / 6. Applications

Low Pass Filters / Example

image f : power spectrum Fpower(f ):
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Image Analysis / 6. Applications

Low Pass Filters / Example

image f : power spectrum Fpower(f ):
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Image Analysis / 6. Applications

High Pass Filters

High frequencies are responsible for sharp edges,
low frequencies for constant and slowly changing areas.

High pass filters

– retain only high frequencies ω ≥ ωmin,
– i.e., filter out low frequencies.
– and thus sharpen an image and detect edges.
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Image Analysis / 6. Applications

High Pass Filters / Example

image f : power spectrum Fpower(f ):
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Image Analysis / 6. Applications

High Pass Filters / Example

image f : power spectrum Fpower(f ):
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Image Analysis / 6. Applications

High Pass Filters / Example

image f : power spectrum Fpower(f ):
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Image Analysis / 6. Applications

Band Pass Filters

High frequencies are responsible for sharp edges,
low frequencies for constant and slowly changing areas.

Band pass filters

– retain only frequencies ω ∈ [ωmin, ωmax] in a given interval
(the frequency band),

– i.e., filter out low and high frequencies.
– and thus detect edges.
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Image Analysis / 6. Applications

Band Pass Filters / Example

image f : power spectrum Fpower(f ):
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Image Analysis / 6. Applications

Band Pass Filters / Example

image f : power spectrum Fpower(f ):
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Image Analysis / 6. Applications

Reducing Periodic Noise

image f : power spectrum Fpower(f ):
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Image Analysis / 6. Applications

Reducing Periodic Noise

image f : power spectrum Fpower(f ):
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Image Analysis / 6. Applications

Reducing Periodic Noise

image f : power spectrum Fpower(f ):

Periodic noise can be reduced by filtering out the frequencies
belonging to the periodic noise pattern.

This also can be understood as a simple method for inpainting.
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Image Analysis / 6. Applications

Reducing Salt and Pepper Noise

image f : power spectrum Fpower(f ):
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Image Analysis / 6. Applications

Reducing Salt and Pepper Noise

image f : power spectrum Fpower(f ):

Reducing non-periodic noise patterns via frequency filters is
difficult.
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Image Analysis / 6. Applications

Deconvolution via Fourier Transform

Assume, an image f has been corrupted by a convolution with a
kernel k (e.g., blurred):

g = k ∗ f

If the kernel k is known, one can “undo” the convolution using the
Fourier transform:

F(g) = F(k ∗ f ) = F(k) · F(f )

F(f ) =
F(g)

F(k)

f = F−1F(f ) = F−1

(F(g)

F(k)

)
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Image Analysis / 6. Applications

Schedule

Schedule until Christmas:

• next Tue., 9.12., no lecture.

• next Wed., 10.12, 10-12 lecture.

• Tue., 16.12., no lecture.

• Wed., 17.12, 10-12 lecture.
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Image Analysis / 6. Applications
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