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Periodic Functions o S

A function f : R — Cis called T-periodic if
fle+T)=f(zr) VxeR

Example: the functions sin and cos are 2r-periodic.

Example: the function sin(wx) is 27 /w-periodic.
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flz) = 1sin(z) +
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f(z) = 1sin(z) + 2cosz + 2sin 2z +
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flz) = 1sin(a) + 2 cos x + 2sin 2z + 1 cos 2z +
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fla) = 1sin(2)+2 cos a+2sin 2z+1 cos 2x+3 sin 3x+3 cos 3x4+2sin dz+1 cos Lo
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Theorem (Fourier Series Representation). Any continuous,
differentiable and 7T-periodic function f : R — C can be written as

S 2
f(z) :%JrZakcoskwarbksinkwx, w ::%

k=1
with coefficients a;, b, € C, called a Fourier Series of f.

How to compute Fourier coefficients ay, by, for a given function f ?

Jean Baptiste Joseph Fourier (1768-1830),
French Mathematician and Physicist

Note. Actually, the class of functions that can be represented as Fourier series is much larger (see, e.g., [K690,

p. 314]).
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Trigonometric Addition Formulas s

Lemma (Trigonometric Addition Formulas). For all =,y € R:

cos(z + y) =cosxcosy — sinxsiny
sin(x + y) =sinx cosy + siny cos &
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1 (sin(a+b)x sin(a—0b)z\ .

2 ( a+b M-  Ma7b

/ cos ax cos bxr dx = <
sin(2ax) + 2ax

L 4da

else

Y

( . .
1 (sin(a+b)z sin(a —b)z\ .
_5( a+b  a—b  Ma7b
/Sina:csinbxdx = <

sin(2ax) — 2ax
L 4a

else

Y

(1 (cos(a+b)x cos(a—b)x
— if b
2( a+b o a—b )’Ia#
/sinaa:cosbxdx = <

. 9
sin (aaz)’ olse
(  2a
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Some Trigonometric Integrals

The six formulas easily can be proven by differentiation, e.g.,

/cos az cos by dx = 1 sin(a + b)x n sin(a — b)x

for a # b. Derivation - yields:

Cosaxcosbxil (a+) Cos(a+b>$+(a—b> cos(a — b)x
2 a—+b a—b

= = (cos(a + b)x + cos(a — b)x)

(cos ax cos bx — sin ax sin bx + cos ax cos(—bx) — sin ax sin(—bzx))

= —(cos ax cos bxr — sin ax sin bx + cos ax cos bx + sin ax sin bx)

N RN RN —

= cos ax cos bx
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Let w € R*. The functions
{sinkwz |k € N,k >0} U{coskwz |k € N,k > 0}

are pairwise othogonal with respect to
+m/w
o) = [ _ J@gtays
l.e., for any two distinct such functions f, ¢
+7/w
)= | _ J@gteyd =0

but -
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Proof: let f = cos kwx and g = coslwz with k # [, then:

1 (Sin(k + Dwx  sin(k — l)wx)} o fw

+7/w
{f, g :/_W/w cos kwx cos lwx dx = [5 (k+ 1w + (k — w

1 (sin(k+D)mr  sin(k —O)r  sin—(k+Dm  sin—(k—10)m
_5( Gtlw o h—Dw  htlw  (h—Dw )
_sin(k+ )7 sin(k -1 0
CE PR

—7/w

but

4kw 4kw w

 [sin(2kw) 4 2kwa o/  sin(2km) + 2k sin(—2kw) + (=2k7)
.y = | - .

—7/w
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Theorem (Fourier Series Representation). Any continuous,
differentiable and 7T-periodic function f : R — C can be written as
ao = . 2w
flz) = 0 + ;ak cos kwz + by sin kwx, w = rd

with coefficients a;., b, € C, called a Fourier Series of .

How to compute Fourier coefficients a;, b, for a given function f ?

1 +7r/w
ar = W—W/w/w f(z) cos kwz dx

1 +m/w
b = —/ f(z)sin kwzx dz

B 7T/W —7/w

Note. Actually, the class of functions that can be represented as Fourier series is much larger (see, e.g., [K690,
p. 314)).
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Fourier Series Representation

Proof.

;1 [T
aj i—/ f(z) cos kwx dx

7T/W —7/w

1 +m/w ao 00
—/ —+ Z a; coslwx + by sinlwz | cos kwx dx

T w e \ 2 S
1 +7/w o0 +7/w
- / @COS kwzx daz+Z/ a; cos lwx cos kwx dx
7'('/(,0 /w 2 =1 —7/w
+7/w
+/ by sin lwzx cos kwx dx
—7/w
1 =
T/ww
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Fourier Representation / Rectangular function

Let f be the 2r-periodic rectangular

function
—1, ifx € (—7r70>
f($>: 0, ifze {—71',0,71-} o |
+1, if z € (0,7)

The Fourier representation of f is S a4 o 1 s

in k
f(a:):% Z smka:

keN odd

Proof:

2 [t 2 [T 41 1 N -4(0-1)=2, ifkodd

I -) @i = ainkrdr = — | —Z q ks — Ly Tk’

by = . f(z)sinkx dx 772/0 sin kx dx - { kcoska { _?{(1_1):0, if 1 even
2 +7

ap = — f(z)coskxdr =0

~» in general, Fourier representations are infinite as in this example!

10/66

.\,,IQTSIJEP}/EA

VA,

2003

g &,
“Sysat

o
e

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Image Analysis, winter term 2008

11/66



TS )
T
%

Image Analysis / 1. Fourier Series Representation

G)“‘\\U"cr%
R\J
Bysal

&

Fourier Representation / Rectangular function

o
—
o
o
X o
~— s
- o
bt
S
[
©
<

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Image Analysis, winter term 2008 12/66
Image Analysis / 1. Fourier Series Representation gi},’s’%
Fourier Representation / Rectangular function/ k =1 ey

o-_ /\
—
o _|
o
X ©
N— N
- o
0
p
|
o
T \/

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 12/66



el Sty

i

G)“‘.\U nig 7
R\
i

(%L.lsa

Image Analysis / 1. Fourier Series Representation %

Fourier Representation / Rectangular function/ £ =5
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2n 2 4 6
x N T
CoS T 1= —1)"- =1
Z< ) (2n)! 2041 6!
net 2n+1 3 5 7
x" x> x x
sinx = g )= = -4 4.
(=1 (2n + 1)! 3l 5 7!
neN ) ; A
" N A
=D R TR T TI

neN
Lemma (Eulers formula). For z € C:

" = cos(x) + 1 -sin(z), with i := /—1 the imaginary unit

ei:t _ Z <Z§|>

nEN

Proof:

: >2n+1

(i
Z (2n +1)!

_Z ol Z 2n+1)

neN
= cos(x )+zsm( )
M
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Complex Fourier Series Representation %@m s

Theorem (Complex Fourier Series Representation). Any
continuous, differentiable and T-periodic function f : R — C can

be written as i
. T
f= ch ekt ==

T
keZ
with coefficients ¢, € C, called a Fourier Series of f.

The coefficients of the complex Fourier series can be computed

via
1 e —ikw:cd
T /W flz)e™rde
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Complex Fourier Series Representation 5

Proof.
f _ Z cr eikwx
keZ
= Z ¢ (cos kwx + isin kwz)
keZ

o0
=cy + Z(ck + c_y) cos kwr + (cp — c_p)isin kwx
k=1

o0
5 + Z aj. cos kwx + by sin kwx

k=1
with
ag = 2cy, arp=cp+c_, bp=r1i(cy—c_g)
and vice versa via:

ag

1 1
co = 5 Ccp = §<6Lk — ’Lbk>, C_| = §<ak + Zbk>
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1. Fourier Series Representation

2. The Fourier Transform

3. Discrete Signals

4. Discrete Fourier Transform

5. Two-dimensional Fourier Transforms

6. Applications
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Fourier Transform

Let f : R — C be a function (that satisfies some regularity
conditions). Then

F:R—>C

+00
wo— — —wadx
V2T / f

exists for each w and is a continuous function called Fourier
Transform of f (aka Fourier spectrum of f).

One can show that (if £ also satisfies some regularity conditions):

1 +00 o
f(:v):\/—Q_W/OO F(w)e™*dw

This is called Inverse Fourier Transform.

We will write F(f) := F for the Fourier transform of a function f
and F~1(F) for the inverse Fourier transform of a function F.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Fourier Transforms / Examples / Gaussian e “a;
10 5 0 : 10 10 5 0 : 10
1 a2
f)=—-ea .
g oz
Fz)=e 2
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Fourier Transforms / Examples / Uniform 2002 ¥
10 5 0 ; 10 10 5 0 ; 10

f(z) =d(z € [-b,b]) _ 2bsin(br)

\V2Tx
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Fourier Transforms / Examples / Cosine % o ©
0 ; 10 20 4 0 ) .
f(x) = cos(wx) T
F(z)=/=((x —w)+(z+w))

2
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0 5 10 15 20 -2 -1 0 1 2
X X
f(z) = sin(wz) [
F(z)=1- 5(5@ —w) — (x4 w))
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Properties a0 ¥

function h Fourier transform H property name

f F

F f(—x) inverse

af +bg  aF +bG linearity

fxg F(z)G(x) convolution
f(z)g(z) %F * G multiplication

flx —a) e "F(z) translation

e f(z) F(x—a) modulation

f(z/a) la|F'(ax) scaling

fr F*(—x) complex conjugate
flzx)eR F(—x)=F*(z) hermitian symmetry

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 21/66
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1. Fourier Series Representation

2. The Fourier Transform

3. Discrete Signals

4. Discrete Fourier Transform

5. Two-dimensional Fourier Transforms

6. Applications
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Image Analysis / 3. Discrete Signals 30'»:,;%

Dirac Comb e

The symbol

1.2

= Z d(x —Tn)
nez
is called Dirac comb (aka impulse
train, sampling function, Shah
function) with sampling interval T'.

1.0

0.8

f(x)
0.6
1

0.4

0.2

Lemma. The Fourier series of the Dirac comb A7 is
1 2mk
Are) = 7> e
keZ
and its Fourier transform
F(Ar)(z) = T - Dgry7(T) 25 T — —n

nez
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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1514,
@S
%

Image Analysis / 3. Discrete Signals

G)“‘\\U"cr%
R\J
Bysal

&

Dirac Comb

Proof: Obviously At is periodic with period 7. Therefore

2k,
flz) = Z cpe ' T
keZ
with
1 x+T onk
= T/x Ar(y)e™" T Vdy
1 +T/2 -
T / Ar(y) e T vdy
T J 1
1 +T/2 i
= = / 5y) e vdy
T J 1
1 o
_ T 6—2%0
1
T
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Sampling 5 2008 ©

10
|

f(x)

Sampling a function f at equidistant points 7" - Z can be understood as

fEMPE () = fla) - Ar(z)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Fourier Transform of a Sampled Function ey

Let f : R — C be a function and
fsampled he g sample of f with sampling period 7.

Then its Fourier transform F( fsampled) is o7 /T-periodic and
aggregates the Fourier transform F(f) over a 2x/T-periodic grid:

F(F) (1) = 37 F () o+ 0 )

nez
If 7(f) vanishes for |z| > = /T, then the Fourier transform F(f) is
replicated in a period of the Fourier transform F( fsampled),

Otherwise replicas overlap and the Fourier transform becomes
corrupted. This effect is called aliasing.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 25/66
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a@d;

Fourier Transform of a Sampled Function

The maximal occurring frequency
Winax -= max{|z| |z € R, F(f)(x) # 0}

of the Fourier transform is called its bandwidth.

The frequency )
i

T
of the sampling function is called its sampling frequency.

Wy

Then the sampling frequency must be at least twice the bandwith:

wS > 2leaX

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
26/66
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Image Analysis / 3. Discrete Signals giﬁ’%
Fourier Transform of a Sampled Function ey
1T 1 17 17 17 11 T T 1 >
()}
F(f_sampled1)
I 11 I I 11 [ >
O‘)max ®
(081
AF(f_sampled2)
I I\K/I TK/I I\{I I\/I(D I\/I T/I I 0)
e (cf. [BB08, p. 330])

- ®._.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Fourier Transform of a Sampled Function ey
Proof.
(foamPed) (z) =F(f - Ar)(x)
=F(f) * F(Ar)(z)
1
=F(f) = TA%/T(x)
1 2T
=F(f) *TZ(S(JHL”T)
nez
1 2
=7 > F() * 3 +n)
nez
1 2T
—=> F(f)z+ no)
nez
If |2| < =/T and F(f)(y) vanishes for |y| > = /T, then
1
F(f2m) () = F(f)(a)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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The Fourier Transform of a Discrete Function % o0

Let f be a discrete function:
:zyn(S(x_n)v yneR

nez
Then its Fourier transform is:
1 > —IwWxr
F(f)w) =—= f(af)e dz

i

nez

@z/ o™ 8

nez

i.e., a periodic function — or equivalently: a function defined on
an interval.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 29/66
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1. Fourier Series Representation

2. The Fourier Transform

3. Discrete Signals

4. Discrete Fourier Transform

5. Two-dimensional Fourier Transforms

6. Applications
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Image Analysis / 4. Discrete Fourier Transform gi},’s’%
Definition o ©

Let f:{0,1,..., N — 1} — C be afinite discrete function, then
F:{0,1,....N—1} = C

N-1
1 wx .. wT
w Wi 2 f(x)(cos(QwW) — ZSIH(QWW»
1”7]\771
_ T 67127%7'\]—33
P
is called discrete Fourier transform of f, denoted DFT(f).

Then

F(w)(cos(Qﬂw—]\j:) + 1 sin(QWw—]\:;))

F(w)ei%%

This is called inverse discrete Fourier transform of /, denoted
DFT'(F)..
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ge Analysis / 4. Discrete Fourier Transform % % :
Example ® 2002 ¥

r f(x) w F(w)

0 1402 0 14.2302 + 0.0000z

1 3+0:¢ DFT 1 —5.6745— 2.9198:

254+0 — 2  0.0000 4+ 0.0000z

3 7402 3 —0.0176 — 0.689317

4 9+ 0 4 0.0000 4 0.0000z

5 8402 5 0.3162 + 0.00002

6 6+0z 6  0.0000 + 0.00002

7 4+0i DFT™' 7 —0.0176 + 0.6893i

8 240t «— 8 0.0000 + 0.0000z

9 0+ 0z 9 —5.6745 + 2.9198¢

(cf. [BBOS, p. 333))

) 0 1 & 45
COb 27T— —8in(27r—)) = — r) = —— = 14.2303

=0

DFT(f

ﬂ\
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Image Analysis / 4. Discrete Fourier Transform g:)’s’
Example %%* 2008

z [flz) w F(w)

0 1+0e 0 14.2302 + 0.000012

1 3+0: DFT 1 —5.6745— 2.9198i

254+0 — 2  0.0000 4+ 0.0000z

3 7402 3 —0.0176 — 0.6893¢

4 9402 4 0.0000 4 0.0000z

5 8402 5 0.3162 + 0.00002

6 6+0z 6 0.0000 + 0.00002

7 44+0i DFT' 7 —0.0176 4 0.6893i

8 240 «— &8 0.0000+4 0.0000z

9 0+ 0z 9 —5.6745 + 2.919&:

(cf. [BBOS, p. 333))

DFT(f)(1) :\/LI_O Z f(x)(cos(2n—) — 281n(2ﬂ1—x))
1 < x o1 ’ ., :
i z_; fa)cos(mz) - Vi z_; f(w)sin(ms) = =5.6745 — 2.9198;
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Image Analysis / 4. Discrete Fourier Transform

Discrete Fourier Transform / Algorithm (naive)

G)“‘\\u"cr%
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=\
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For x € C, denote R(z) its real part and (z) its imaginary part,

i.e.,
r=Rx)+iS(x), R),S(x)eR

(for R one often also uses Re, for & also Im).

To compute the discrete Fourier transform, one computes
dft(f)(w) forw =0,..., N — 1 via:

DFT(f)(w) Z% o, (m)(cos<2ﬂw—;> - isin@”w—;))
x=0
1 N - wx . wx
=7 R + 185 eonen ) = isifen’)
1 Nl wT ~ : W
:ﬁ 2 R(f(x)) cos(27rw) + S(f(x)) sm(27rw)

—R(f(x)) sin(2m o2 ) + S(f(x)) cos(2m—r)

1
\/__ i N N
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Image Analysis / 4. Discrete Fourier Transform

Discrete Fourier Transform / Algorithm (naive)

G’“‘\\unq

1 dft-naive(sequence f = (f()o, f(1)1)en 1)
2 N :=length(f)

3 F = (F()o, F(2)1)a=0,.,N—1 = (0,0)3=0,. N1
4 forw:=0,...,N—1do

5  c¢:=(co, 1) :=(0,0)

6 forx:=0,...,N—1do

7 co :=co + f(x)o - cos(2nwz/N) + f(x); - sin(2rwz/N)
8 c1:=c1 — f(x)g - sin(2rwx/N) + f(x); - cos(2nwz/N)
o od

10 o= co/VN

11 ¢, =c1/VN

12 Fw):=c¢

13 od

14 return F

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 33/66
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Image Analysis / 4. Discrete Fourier Transform
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Discrete Fourier Transform / Algorithm (naive)

When computing the values of the discrete Fourier transform for
different arguments w, the cosine and sine functions repeatedly
are callled with the same arguments:

dft(f)(1): dft(f)(2):
cos(2 - 0/10) cos(2 - 0/10)
cos(2m - 1/10) cos(2 - 2/10)
cos(2m - 2/10) cos(2m - 4/10)
cos(2 - 3/10) cos(2m - 6/10)
cos(2m - 4/10) cos(2m - 8/10)
cos(2m - 5/10) cos(2m - 10/10) = cos(27 - 0/10)
cos(2m - 6/10) cos(2m - 12/10) = cos(2m - 2/10)
cos(2m - 7/10) cos(2m - 14/10) = cos(2m - 4/10)
cos(2m - 8/10) cos(2m - 16/10) = cos(27 - 6/10)
cos(2m - 9/10) cos(2m - 18/10) = cos(27 - 8/10)

Caching the expensive sine and cosine computations accelerates
the algorithm!

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Image Analysis / 4. Discrete Fourier Transform giﬁ&%
Discrete Fourier Transform / Algorithm (naive, cached) ey

! dft-naive-cached(sequence f = (f(2)o, f()1)—o, . 1) :
2 N :=length(f)

3forw:=0,..., N—1do

4 C(w) := cos(2mw/N)

S(w) :=sin(2rw/N)

forw:=0,...,N—1do
C

11 co:=co+ f(x)o- C(wrmod N) + f(z); - S(wx mod N)
( S

12 c1:=c1— f(x)o- S(wrmod N) + f(z); - C(wx mod N)
13 od

14 co = co/VN

15 ¢ =c1/VN

16 Flw):=c

17 od

18 return F'

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 35/66
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Image Analysis / 4. Discrete Fourier Transform

Fast Fourier Transform (Gauss ca. 1805; Cooley/Tukey 1965)

“ayselt

G);_\,‘.\U nig (/

@

The naive algorithm for DFT still has complexity O(N?).

The Fast Fourier Transform algorithm is based on a decomposition of
the DFT for sequences f of even length N:

DFT(f)(w) =DFT(f2**")(w mod N/2) + e~ 2*/DFT( f°%) (., mod N/2)

forw=0,...,N —1

and where
[ (x) :=f(2z), x=0,...,N/2
foM @) =f(2x + 1)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Image Analysis / 4. Discrete Fourier Transform g“:j’*
Fast Fourier Transform / Proof % s

Proof.
N—-1
DFT(f)(w) =) f(z)e %
=0
N—-1

=0 eve =0 odd
N/2— N/2—-1 (2 )
T+
Z fR)e N + N [+ 1) x
=0 =0
N/2— N/2-1
Z feven 6 iQWﬁf/Ig_‘_e—iQﬂw/N Z fodd(aj)e—ﬂﬁ;\‘;ffz
=0

:DFT<feven>< )+€—i27rw/NDFT(fodd)(w>
or more exaclty, as DFT(f¢*")(w) is only defined for w < N/2:

=DFT(f®*")(w mod N/2) + e 2™/NDFT( f°%)(w mod N/2)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 37/66
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Image Analysis / 4. Discrete Fourier Transform

G)“‘.\U"cr(/
&
-

Ly5at"

Fast Fourier Transform / Real version

DFT(f)(w) =DFT(£®®")(w mod N/2) + e~ *™/NDFT(f°%)(w mod N/2)
—DFT(f%*")(w mod N/2)
+ (cos 2w /N — isin 2rw /N)DFT(f°%)(w mod N/2)

and thus

R(DFT(f)(w)) =R(DFT(f%*")(w mod N/2))
+ cos 2nw /N - R(DFT(f°%)(w mod N/2))
+ sin 27w /N - S(DFT(f°%)(w mod N/2))

S(DFT(f)(w)) =X(DFT(f*"*")(w mod N/2))
+ cos 2w /N - S(DFT(f°%)(w mod N/2))
— sin 27w/N - R(DFT(f°%)(w mod N/2))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Image Analysis / 4. Discrete Fourier Transform giﬁ&%
Fast Fourier Transform / Algorithm ey

1 fit(sequence f = (£(x)o, /())amo v 1) :
2 N :=length(f)

3 If NViseven

F = (F(x)o, F(2)1)=0,..n—1 = (0,0)3=0,. .N-1

N

s A= fft((f(2))e=024,..82)

6 B :=M((f(2))r=135..N-1)

7 forw:=0,...,N—1do

8 a := A(w mod N/2)

0 b := B(wmod N/2)

10 F(w)o := ag + cos2nw/N - by + sin 27w /N - by
11 F(w); :=ay + cos2nw/N - by —sin 27w /N - by
12 od

13 return

14 else

15 F := dft-naive-cached( f)

16 fi

17 return F

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 39/66
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Image Analysis / 4. Discrete Fourier Transform

Fast Fourier Transform / Outlook

c_}'\,\\uﬂy

e The computation of cos 2rw/N and sin 2rw/N also can be done
recursively using the addition formulas.

¢ In this way, FFT best is applied to sequences of length 2"
(called radix-2 case).

e The FFT decomposition works with any factorization
N = N; - N,y in a similar way, and thus also for sequences of

length other than 2".
e FFT has complexity O(Nlog N) (if N is a power of 2).

e An early experiment from 1969 reports a runtime of 13 1/2
hours for computing the DFT of a sequence of length 2048 by
the naive method and 2.4 seconds using FFT.

e In practice, FFT is implemented in a linearized version
avoiding explicit recursions (see [CLRS03, p. 839]).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 40/66
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Image Analysis / 4. Discrete Fourier Transform :

)
Types of Fourier Transforms 'd&

gy &,

5

o

2003

type of function f sup f sup F(f) type of Fourier decomp.

general (integrable) function R R (general) Fourier
decomposition

periodic function, interval Z Fourier series

function on interval I CR

general (integrable) discrete 7Z interval  discrete-time Fourier
function (sum of Diracs) ICR transform

periodic discrete function, finite I discrete Fourier transform
finite discrete function I CZ

(finite sum of Diracs)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 41/66
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Image Analysis gP %
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1. Fourier Series Representation

2. The Fourier Transform

3. Discrete Signals

4. Discrete Fourier Transform

5. Two-dimensional Fourier Transforms

6. Applications
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Image Analysis / 5. Two-dimensional Fourier Transforms gi%’s’%
General Fourier Transform in 2D o S

For two-dimensional functions f : R x R — C Fourier Transforms,
Fourier Series and Discrete Fourier Transforms can be defined
analogously.

Let f: R x R — C be a function (that satisfies some regularity
conditions). Then

F:-RxR — C
1 +00 +00 _ )
(wr, wa) = o / flz,y)e ™ e dy dx

exists for each (w1, ws) and is a continuous function called
Fourier Transform of f (aka Fourier spectrum of f).

One can show that (if F' also satisfies some regularity conditions):

1 +00 +00 ‘ '
f(xa y) = 2_/ / F<w17 w2>€lwlxelw2ydwldWQ
T J - —00

This is called Inverse Fourier Transform.

We will write F(f) := F for the Fourier transform of a function f
and F~1(F) for the inverse Fourier transform of a function F.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 42/66
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Image Analysis / 5. Two-dimensional Fourier Transforms
Bases in 2D
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Image Analysis / 5. Two-dimensional Fourier Transforms g“‘r/,@

. . 2l

Fourier Series in 2D T 208 ¥

If f:R xR — Cis (11, T»)-periodic, i.e.,
flx,y) = flx+Ty,y+T) Vr,yeR

then f can already be reconstructed from Z-many Fourier
coefficients:

27

1 2m 420
[z, y) = 2—2 E F(n,m)eT"™ R"™
s

nezZ mez

with

| [02 T2 _ _
F(n,m) = — / flz,y)e "1 e dy dx
TJ-m/2 J-Ty)2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 44/66



Image Analysis / 5. Two-dimensional Fourier Transforms

Discrete Fourier Transform in 2D

If fis discrete, i.e.,
- Z Z yn,mé(x — Tn, Y- TQm)v Ynm € R

neZ mez

then its Fourier transform is periodic:

1 400 400 ' _
flz,y) = %/ / F(wr, ws) €1 "2V dwy dwsy
—00 J—00

with
—iwom

F(wi,wy) = ZZ]‘ n,m)e “1"e

nEZ me

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Image Analysis / 5. Two-dimensional Fourier Transforms

&,

G’“‘\\unq

Discrete Fourier Transform in 2D

And finally, if f is discrete and finite, i.e.,
N-1M-1

:ZZymm(S(a@—n,y—m), yn,meR

n=0 m=0

then its Fourier transform is periodic and made from finitely many

Components:
1 N—-1M-1
flay) = —==> > Flwy,wy) e "
NM n=0 m=0
with [
Fv<w17 w2> - Z Z —iwin e—z’wgm
n=0 m=0

45/66
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Image Analysis / 5. Two-dimensional Fourier Transforms

G);_\,‘\\u Mg e,
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Discrete Fourier Transform in 2D / Algorithm (naive, cached)

1 dft-2d-naive-cached(array f = (f(x)o, f()1)a=0, . N—1y=0..0M—1)
2 forw:=0,...,N—1do

3 C(w) := cos(2rw/N)

4 S1(w) :=sin(2rw/N)

5 od

6 forw:=0,....,M —1do

7 Cs(w) := cos(2mw /M)

8 So(w) := sin(2rw/M)

o od

10 [:= (F(m)mF(«x)l)m:O ,,,,, N—1,y=0,..M—1 = (070)1:0 ..... N—1,y=0,....M—1

1 forw; :=0,...,N—1do

12 for ws :=0,...,M —1do

13 ¢ := (co, 1) :==(0,0)

14 forz:=0,...,N—1do

15 fory:=0,...,M —1do

16 C := Ci(wiz mod N) - Cy(way mod M) — Sy (wyz mod N) - Sy (way mod M)
17 S := S1(wiz mod N) - Cy(wey mod M) + C(wyz mod N) - Sy (way mod M)
18 co:=co+ f(x)o-C— f(z)- S

19 =01 — f(x)o- S+ f(z)-C

20 od

21 od

2 5;: co/VNM
23 Cc = Cl/\/N]VI

24 Fw):=c¢

25 od

26 od

27 return F
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 47/66
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Image Analysis / 5. Two-dimensional Fourier Transforms gP’S’%
Discrete Fourier Transform in 2D / Separability e
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Image Analysis / 5. Two-dimensional Fourier Transforms 3 P %
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Discrete Fourier Transform in 2D / FFT

2003
1 fft-2d(array f = (f(2)o, f(2)1)e=0.. N—14=0..0—1)
2 G = (G(ﬂf)o, G(IL")1)xzo,...,N—1,y:0,...,M—1 = (0, O)xzo,.,.,N—l,y:O,,..,M—l
3 f_rw1 :0,,N—1®
4 Glwy,.) = M(f(w1,9)y=0,..-1)
5 od
6 F = (F(ﬂf)o;F($)1)m:0 ..... N-1,y=0,...M—-1 = (070>x:0 ..... N-1,y=0,....M—1
7 fﬂwg :0,,M—1®
8 F(, C(JQ) = fft(G([L’, u]g)m:o 77777 N—l)
9 od
10 return F
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 49/66
Image Analysis / 5. Two-dimensional Fourier Transforms gi,’s’%
) d;
Power Spectrum ® 2000

The fourier spectrum of

— a discrete N x M gray-scale image f,
i.e., with one channel,

is

—adiscrete N x M image F' with complex intensity values,
i.e., two channels.

For visualization one usually shows the power spectrum defined
as:

FPOT(f) () o= /RF(F) @) + (SF ()2

The power spectrum measures the absolute value of the complex

amplitude.
The complementary information 6 called phase is not shown.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 50/66
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Image Analysis / 5. Two-dimensional Fourier Transforms g“% 3
What does Power Spectrum mean? — Complex Coordinates %z ©
Cartesian coordinates: Polar coordinates:
A A
Imx {_________ x — X
: ro~
| e
[ - [ I
Re x
_ +
r=Rz,3r) e R xR v =(r,0) € Ry x [0, 2m)
r=y/(R1)2 + (J)?
R =r cosf arctan(Rz /), ifz >0,y >0

S =rsin b 0 = arctan(Rz/Sz)+ 7, ify <0
arctan(Rz /Sx) + 27, if 2 > 0,y <0

r=Rr +iSr = rcosh + irsin @ = ret?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Image Analysis / 5. Two-dimensional Fourier Transforms g“‘p/f’%
1
Example ® 2o ¥

power spectrum FPOWer( f):

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 52/66
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Displaying Fourier Power Spectra

For displaying spectra, some further conventions are used:

¢ As the scale of many power spectra is dominated by a few
large values, one usually plots

log FP"N(f)(x)  or (FPI(f)(x))*
instead of the raw power spectrum values FPYe'(f)(x).

e Usually, the centered spectrum is shown, i.e., the intensities
for

ze€{-NJ/2,—N/2+1,...,-1,0,1,...,N/2 —1,N/2}
and

ye{-=M/2,—M/2+1,...,—1,0,1,... . M/2—1,M/2}
instead of the intensities for0,1,...,N —1and0,1,...,M — 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008
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Image Analysis / 5. Two-dimensional Fourier Transforms g“i,’s’%
Centered Spectrum ® a0ce ¥

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Image Analysis / 5. Two-dimensional Fourier Transforms c’“v %

Centered Spectrum

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 54/66

Image Analysis / 5. Two-dimensional Fourier Transforms g“i,d %
Centered Spectrum ey

original spectrum: centered spectrum:

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 54/66



qerSilE
REELET
s A

Image Analysis / 5. Two-dimensional Fourier Transforms g“%

Example

power spectrum FPOWer( f):

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Image Analysis / 5. Two-dimensional Fourier Transforms g“i,’s’%
Symmetry of Fouier Power Spectra for Real Images 5 2008

Usually images are real, i.e., f(z) € R (not C).

For real functions, we know that
F(f)(—z)=F(f)(x)

is hermitian (with z* .= Rz — i Sx).

As z € C has the same radius as x*:

r(z) = /(R2)2 + (S2)2 = r(27) = r(Rz — iS2) = /(R2)2 + (—S7)2

for real functions F(f) and F*(f) have the same radius and thus
FPOE(f) (=) = FPO(f) ()

l.e., the power spectrum is symmetric around the origin.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2008 55/66



Image Analysis / 5. Two-dimensional Fourier Transforms g“P %
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Symmetry of Fouier Power Spectra for Real Images

power spectrum FPOVer( f):

Spectra of real images are symmetric around the origin (red circle).

So storing just half of the power spectrum is sufficient
(e.g., above green line — any line through the origin will do).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Image Analysis, winter term 2008 55/66
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Image Analysis / 5. Two-dimensional Fourier Transforms S

(1

Another Example ® 2008 7

image f: power spectrum FPOWe( f):

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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1. Fourier Series Representation

2. The Fourier Transform

3. Discrete Signals

4. Discrete Fourier Transform

5. Two-dimensional Fourier Transforms

6. Applications
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Low Pass Filters Ly

High frequencies are responsible for sharp edges,
low frequencies for constant and slowly changing areas.

Low pass filters

— retain only low frequencies w < wmax,
— i.e., filter out high frequencies.
— and thus smooth / blur an image.
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Low Pass Filters / Example

power spectrum FPOVer( f):
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Low Pass Filters / Example ey

power spectrum FPOWe( f):
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Low Pass Filters / Example

power spectrum FPOWer( f):
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High Pass Filters ® 2002 ¥

High frequencies are responsible for sharp edges,
low frequencies for constant and slowly changing areas.

High pass filters

— retain only high frequencies w > wmin,
— i.e., filter out low frequencies.
— and thus sharpen an image and detect edges.
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High Pass Filters / Example

power spectrum FPOVer( f):
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image f: power spectrum FPOVer( f):
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High Pass Filters / Example 2 00 ¢

power spectrum FPOVer( f):

image f:

60/66
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High frequencies are responsible for sharp edges,
low frequencies for constant and slowly changing areas.

Band pass filters

— retain only frequencies w € [wmin, wmax] iN @ given interval
(the frequency band),
— i.e., filter out low and high frequencies.

— and thus detect edges.
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Image Analysis / 6. Applications
Band Pass Filters / Example

2003

power spectrum FPOWer( f):
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Band Pass Filters / Example
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image f: power spectrum FPOVer( f):
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Reducing Periodic Noise et

power spectrum FPOWer( f):
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image f: power spectrum FPOWe( f):
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Reducing Periodic Noise B S

power spectrum FPOWer( f):

Periodic noise can be reduced by filtering out the frequencies
belonging to the periodic noise pattern.

This also can be understood as a simple method for inpainting.
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Reducing Salt and Pepper Noise ey

power spectrum FPOWe( f):
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power spectrum FPOVer( f):

Reducing non-periodic noise patterns via frequency filters is
difficult.
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Deconvolution via Fourier Transform ey

Assume, an image f has been corrupted by a convolution with a
kernel k£ (e.g., blurred):

g=kxf
If the kernel k is known, one can “undo” the convolution using the
Fourier transform:

Flg) = Flk £) = (k) (1)
F =5
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Schedule 2008

Schedule until Christmas:
e next Tue., 9.12., no lecture.

e next Wed., 10.12, 10-12 lecture.
e Tue., 16.12., no lecture.

e Wed., 17.12, 10-12 lecture.
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