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Image Analysis / 1. Haar Wavelets 3 %
Basis Functions % 2008 ¥
Fourier Analysis: Wavelets:
Y(x) = cosx 1, z €0,3)
Y(z) = haar(z) = ¢ -1, z €[5, 1)
0, else
R ; g ; o ; : o
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Image Analysis / 1. Haar Wavelets gP’S’%

Basis Functions Ly

Fourier Analysis: Wavelets:
V() == cos 2wz Yoi(z) =V2¢ - haar(2°z — t)

L, z€(27°t,27°(t+3))
=V25-4 =1, z €27t +3),277(t+1))
0, else

2s/2

2-st  2-5(+1/2)  2-5(t+1)

->2 |
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Image Analysis / 1. Haar Wavelets 3 %
Basis Functions ® 2008 ¥

2003
t=0 t=1 t=2
1 1 1
s=0 0 0
1 1 L -1
o112 212 - 212 |
s=1
_az2_]| a2 ] _gi2 —|
24— 2 |, 2 |,
s=2 0
2 J 2 J o] J
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Image Analysis / 1. Haar Wavelets giﬁ’s’%
Orthogonality of Basis Functions ey

Obviously, two distinct Haar basis functions ), ; and 1y »» with
s,t,s',t' € Z are orthogonal:

<¢s7t7 ws’,t’> = /_ 'Qbs,t(x) . Y,Z)s/’t/(l’) dr =10

And
<¢s,t>¢s,t> =1
Proof.
If they have the same scale (s = s), then their support does not
overlap.

If they have different scale, say s > s, then v, is constant on the
support of ¥y 4, i.e., the integral averages to zero.

(1hs1,s,) integrates v/2¢ - v/22 = 2° over the support 2.
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Image Analysis / 1. Haar Wavelets g% %
Wavelet Representation kvt

Theorem (Wavelet Representation). Let v, ,, s,t € Z be a set of
Wavelet basis functions.
Every function f : R — R (satisfying some regularity conditions)

can be written as
Fl@) =) cortsila)

SEZ teZ

with coefficients ¢, ; € R.

The coefficients c,, can be computed as follows:

i | Z F(ehbop(a)da
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Image Analysis / 1. Haar Wavelets Ui%’s’%
Haar Wavelet Representation ey

For the Haar basis functions this yields
flo)=>"> ¢ V2ohaar(2'z —t)
SEL tEZ

and

275 (t+3) 275 (t41)
Cst = V28 / f(x)dx — / f(z)dx
2

25t 5 (t+1)
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Image Analysis / 1. Haar Wavelets g% %
Haar Wavelets / Computing Coefficients B S

The values of integrals with a simple rectangle impulse on
different scales can be computed recursively:

27 (t+1)

Qs t ::@ f(x> dx

2-5¢
1

Qs t :E (@st12t + Qsp12641)

The coefficients of the Haar wavelet can be computed from these
values via {
Cst = ﬁ (as+1.,2t - as+1,2t+1>
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Image Analysis / 1. Haar Wavelets Ui%’s’%
Haar Wavelets / Discrete Wavelet Transform Ly

For a finite discrete signal f of length 2" the function can already
be represented by a finite sum of Haar wavelets:

-1 2"ts—1
flo)=a_no+ > Y cy-V2ohaar(2'z —1)
s=—n t=0

i.e., a composition of Haar wavelets with supports 2, 4, 8 etc.

The initial a values are just the signal values:

275 (t+1)
As=0,t ::/ f(l’) dx
2

.y
t+1
= flo)dx
t
<t+1

= flx) = f(t)
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Image Analysis / 1. Haar Wavelets 3 % %
Haar Wavelets / Computing Coefficients / Example B ©

Let
f - (173747472707 27 1)

Then the discrete Haar wavelet transform of f can be computed
as follows:

S 0 1 2 3 4 5 6
ap=f] 1 3 4 4 2 0 2 1
a1 283 5H.66 141 212 — — — —

¢y |—141 000 141 071 — — — —
a_s 6 25 — — - - - =
cy -2 05 — -— - - - -
a_s 601 - - - - - - =
c_3 247 — - — - - - _

DWThaar(f) = (6.01,2.47, —2, —0.5, —1.41,0.00, 1.41, 0.71)
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Image Analysis / 1. Haar Wavelets giﬁ’s’%
Haar Wavelets / Computing Coefficients / Example ey

o - 1 //\
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Haar Wavelets / Computing Coefficients / Example
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Image Analysis / 1. Haar Wavelets g“i.d %
Haar Wavelets / Computing Coefficients / Example ey
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Image Analysis / 1. Haar Wavelets

Haar Wavelets / Computing Coefficients

1 dwt-haar(sequence f = (f())z=0,..2n-1) :
2 Ci= (Cst)s 0,....,n—1; t=0,...,25—1 ‘=
3 a:= (as,t)s:&...,n; t=0,...,25—1 = 0
4 any = f(t), t=0,....2"—1
fors:=n—1,...,0do
fort:=0,...,2° —1do

5
6
7 Qs = (as+1,2t + as+1,2t+1)/\/§
8
9

0,.
0

)

Cst = (Ast1.2t — as+1,2t+1)/\/§

)
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Image Analysis / 1. Haar Wavelets

Haar Wavelets / Inverse Discrete Wavelet Transform

The DWT easily can be inverted: from

1
st = ﬁ (@st12t + Qst12641)

1
Cst = E <a5+1,2t - @s+1,2t+1)

we get

As4+12t = \/5 (as,t + Cs,t)/2
As4+12t+1 = \/5 (as,t - Cs,t)/2

&,

G’“‘\\U"Q
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Image Analysis / 1. Haar Wavelets 3 % %
Haar Wavelets / Inverse Discrete Wavelet Transform % o S

idwt-haalcoefficientsc = (¢s¢)s—o... n—1; t=0,..2:-1,0') :
a .= (as,t>5:O,...,n; t=0,...,25—1 = 0
Qp,0 ‘= a
for s:=0,....,n—1do
fort:=0,...,2°—1do

As41,2t = (as,t + Cs,t)/\/§
As41,2¢4+1 = (as,t - Cs,t)/ﬂ

© 00 N O O A~ W DN PP

=0,...,2"—1 = a/n,aj, r = 0, ceey 2n — 1

=
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-
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1. Haar Wavelets
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Image Analysis / 2. Daubechies Wavelets g% 3
Haar Wavelets / Matrix Notation ket

A single iteration from scale s + 1 to s of the discrete Haar
wavelet transform can be described by matrix multiplication:

i\ (1o \ (e

C
0 aq
ag 1 1 a$+1
! 1 1 —1 2
S _
&) =
: \/§ s+1
A1
s
a,,

NSV Ay
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Image Analysis / 2. Daubechies Wavelets gi,d’s’%
Daubechies Wavelets / Definition ey

Ingrid Daubechies (*1954) generalized the Haar wavelets to a
family of wavelets now called Daubechies wavelets D;:

( as \ ( Wy w1 wo o WE \ ( CL5+1 \
0 0
e -1 —Wk—2 Wg-3 <o T Wo ai“
a({ Wy w1 oo WE agﬂ
o5 o Wp—1 —WE—2 ... —Wy .
1 =
. s+1
: a
) n—1
S .
Un—1 w w w w :
s 2 ce E—1 0 1 s5+1
Ch—1 Aop—1
Wk—3 - —Wo Wp—1 —WE—-2

The coefficients wy, wy, ..., w,_; are called the wavelet filter
coefficients.
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Image Analysis / 2. Daubechies Wavelets giﬁ&%
Daubechies Wavelets / Definition % S

The matrix D, should satisfy two conditions:
1. Orthogonality, i.e., D, D] = 1:

k—1-2m
Z wiwgmH:O, m:1,2,...,k/2—1
1=0

2. Approximation of order /2, i.e., the first £/2 moments

vanish.
For D, this means:
w3 — wy +wy —wy =0
Ows — 1wy + 2wy — 3wy =0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Course on Image Analysis, winter term 2008
(.\\‘lefsilc"fp&l

Image Analysis / 2. Daubechies Wavelets : % %
Daubechies Wavelets / Definition Ly

g e,

5

o

In general, this are k conditions for the k coefficients of Dy
leading to a unique solution:

1 1
w(D2):(EaE>
(D>_<1+\/§ 3+ V3 3—\/31—\/§>
BN BN BN BTN

D, is the Haar wavelet.

w(Dg) also can be computed analytically; the coefficients of the
higher order Daubechies wavelets can only be computed

numerically.
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Image Analysis / 2. Daubechies Wavelets g% %
Daubechies Wavelets / DWT Algorithm B ©

1 dwt-daubechigsequence = (f(z))z=o,. 201, k) :

2 w:= (w(x))z—0,. k1 := getDaubechiesWaveletCoefficiefits
3 C= (Cs,t)szo,.,.,n—l; t=0,...,25—1 = 0

4.0 := <as,t)s=0,...,n; t=0,...,25—1 +— 0

5 ant = f(t), t=0,...,2" -1

6 fors:=n—1,...,0do

7 fort:=0,...,2°—1do

8 asy =0

9 Cst =10

10 forx:=0,....k—1do

1 Qst = Qs T Qg1 2t 4o mod2s+1 w(x)

12 Csit = Cst + Qsi12t42 modas+1 (—1)*w(k — 1 — x)
13 od

14 od

15 od

16 return (ag, c)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Image Analysis / 2. Daubechies Wavelets giﬁ’s’%
Generic DWT Algorithm (1/2) ey

1 dwt-generic(sequence f = (f(x))s—0.. on_1, Wavelet transform W) :
2 C:= (Cs,t)S:O,.A.,nfl;t:O,...,QSfl =0

3 a:= (as,t)szo,...,n; t=0,...,25—1 +— 0

4 any = f(t), t=0,...,2" -1

s fors:=n—1,...,0do

6 (cs.., as,) = dwt-iteration(asq, , W)

7 od

8 return (agy,c)

9

10 dwt-iteration(sequence f = (f(x)),—o,. an+1-1, Wavelet transform W) :
11 a = (CLt)tZO,“.,Q'rL,l =0

12 ¢c= (Ct>t:0,...,2"—1 =0

13 fort:=0,...,2" —1do

14 (at, ) = W((fartamod 2"+1>x:0,...,2”+1—1)

15 od

16 return (c, a)
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Image Analysis / 2. Daubechies Wavelets ~:~°% %
Generic DWT Algorithm (2/2)

1 W-haafsequence = (a(t))i—o.. on-1) :

return ((ap + a1)/v2, (ag — a1)/v/2)

2

3

4 W-daubechies{sequence = (a(t))t—o,. 2n-1) :

5 w:= (w(x)).—0,. 1 := getDaubechiesWaveletCoefficiefits
6 a =0

7¢c:=0

g forz:=0,....k—1do

9 a :=d + a, w(z)

10 d=cd+a, (-1)"wk—-1-x)

11 od

=
N

return (a,c)
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Image Analysis / 2. Daubechies Wavelets giﬁ’s’%
Daubechies Wavelets / Inverse DWT Algorithm ey
As Dy is orthogonal, one can easily compute the inverse of the
DWT via:
T
( CLS—H \ / Wy w1 W3 o WE—1 \ ( o \
a2+1 Wg—-1 —Wk-2 w3 <. Wy C?
§+1 wo wy ... Wg—1 2
s _ _ a
. . Wp—1 Wi —2 e Wy s
: +1 N .
an1 :
: a; 4
K 51 ) W9 e WE_q wy Wy \ s )
Aop—1 _ _ Cn—1
(10)) ce Wi—-1 Wy w1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Image Analysis / 2. Daubechies Wavelets ;;»P
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Daubechies Wavelets / Inverse DWT Algorithm

idwt-daubechiegoefficientsc = (¢s¢)s—0.. n—1. =0, 2:-1,0", k) :
w = (w(x))4—0.. k1 = getDaubechiesWaveletCoefficiefis
a = (as,t>s:0 ..... n; t=0,...,25—1 -— 0
ago = a
for s:=0,...,n—1do
fort:=0,...,2°—1do
forz:=0,...,k—1do
Qs41,2¢+2 mod2s+l ‘= Ag41 2t+x mod2s+1 + Qs t+2 mod2s w(a:)
Qs11,2641+2 mod2s+! 1= Qs 26+1+2 mod2s+! + Cs tramodes (—1)"w(k —1 —x)
od
od
od
f=(f(x))s0.  2n-1:=0Qny, x=0,...,2"—1
return f

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Image Analysis / 2. Daubechies Wavelets

Daubechies Wavelets / Daubechies Wavelet Basis Functions

Daubechies wavelets have been defined implicitely by their
wavelet coefficients in the DWT.

But how does a Daubechies wavelet look like?

We run a unit vector of length 1024 through IDWT, i.e., we set all
but one coefficient to zero.
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Image Analysis / 2. Daubechies Wavelets

Daubechies Wavelets / D, Wavelet Basis Function (s = 8,t = 3)

0.10
|

0.05
|

D4
0.00
|

-0.05

o

200 400 600 800 1000
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Image Analysis / 2. Daubechies Wavelets S i:‘l&%
Daubechies Wavelets / D, Wavelet Basis Function (s = 6, =3) %z

D20
0.00
|

-0.05

-0.10

200 400 600 800 1000

o
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Image Analysis / 3. Two-dimensional Wavelets g“\iy‘::’%
Two-dimensional Haar Mother Wavelets ey
haar’: R xR — R, be{l1,2,3}
haar’(x,y) :=
haar'(z,y) :== haar’(z, y) := ( +1< ify(>:c y) €1[0,3)?
+1, ifx e 0,) +1, ify €[0,1) ’ ’ UL ’f>2
—1, ifx €[4, 1) —1, ify €[5 1) =1, if (z,y) € f D x [,
0, else 0, else ¥ 12> " [02 I
29 19,
0, else

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Image Analysis / 3. Two-dimensional Wavelets g% 3
Two-dimensional Haar Basis Functions %o S

The scaled and translated mother wavelets form a family of
two-dimensional Haar basis functions:

b (x):=2°-haar’(2°z —t,,2°y — t,), b€ {1,23}

Sat.YJ?ty

A
2‘5(ty+1) —
2s/2
2-5(ty+1/2) —]
25/2
2'%y —]

2-%, 27t +1/2) 2-t +1)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Image Analysis / 3. Two-dimensional Wavelets gi,d’s’%
Orthogonality of Haar Basis Functions ey

Obviously, two distinct Haar basis functions

b %
situty and @bs’,tg,t;

with s,t,,t,, s, t,,t, € Z, b,b" € {1,2,3} are orthogonal:

W’s tx7fy’w ’,t’L,t’y : / / "9/)5 tl«jy ) 't;,t@( z) drdy =0

And
<"¢)S,tl«7ty> ws,t%tﬁ =1

Proof. Analogously to the one-dimensional case.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Image Analysis / 3. Two-dimensional Wavelets 3%
2D Haar Wavelets / Discrete Wavelet Transform %

A finite discrete signal f of size 2" x 2™ can be represented by a

finite sum of 2-dimensional Haar wavelets:
-1 2n+5 127’L+5 1

flz)=a_ ”00+Z Z Z Z c -25haarb(23x—tx,25y—ty)

b=1 s=—n t;=0 ;=0

The initial a values are just the signal values:

275 (ty41) 275 ( ty+1
As—0,t,,t, = / / f(z,y)dxedy
2 th sty

tetl  pty+l
= / / f(x,y)dxdy
ty ty

<tz+1 <ty+1

= Z Z f(x,y) :f(tl"ty)

=ty Y=ty

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Image Analysis / 3. Two-dimensional Wavelets gi%’s’%
2D Haar Wavelets / Computing Coefficients ey

The values of integrals with a simple rectangle impulse on
different scales can be computed recursively:

270 (ta+1) 277 ty+1
a'Sat:mty = / / .I' y) dﬂjdy
275ty 275y,

Qs ity t, = (as+1,2t.,/,2t/, + Q190,412 F Qs1.26,. 20,41 + Gs 126,412, +1)
Yy 2 Yy Yy Yy Yy

The coefficients of the Haar wavelet can be computed from these
values via

1

Cotuty — (@511 25,2ty T Qs 1,2, 2041 — Gst1,2t,4+1,2t, — Qs41,26,4+1, 2ty+1)

1
2
1

2
Cs%ty 5 ( As+1,2t,.,2t, + As+12t,+1,2t) — As+1.2t,2ty+1 — as+1,2tz+1,2ty+1)
1
2

1

Cotuty — <a9+1 24,2ty + Asy1,2t,+1, 2y+1 T As41.2t, 2ty+1 — As+12t,+1, 2@)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Image Analysis / 3. Two-dimensional Wavelets

BT SIS,
o\qe i

9

Haar Wavelets / Computing Coefficients

1 dwt2d-haar(image f = (f(z,¥))e=o0,..27~1,y=0,..20-1) :

. (b o
C .= <Cs’tm7ty)s:0,...,n—1; tz=0,...,25 —1; t,=0,...,25—1; b€{1,2,3} +— 0

a = (st 1, )s=0,...m5 t=0,....25—1; t,=0,....25—1 := 0
P _ n _ n
o .—f(tx,ty), t,=0,...,2"-1,t,=0,...,2" =1

fort, :=0,...,2° —1do

...,2° —1do

= (@sq1,2t0,2t, F Qst1,20,41,2t, F Q1,260 26,41 T Qs1,260+1,26,41) /2

As41,2t,,2t, + Qs 41,2ty 2ty +1 — As+1,2t,+1,2t, — as+1,2tm+1,2ty+1)/2

1= (sg1,2t,2t, F si1,26041,2t, — 51,2026y +1 — Qs1,2t0+1,2,41) /2

As41,2t,,2t, + As41,2t, 41,2ty +1 — Bs 41,2t 2ty 4+1 — As4-1,2,4+1,2t, /2

2
3

4

s fors:=n—1,...,0do
6

7 for t, :=0,

8 sty by

9 C;,tz,ty 3

10 Cs taty

11 Cotorty -

12 od

13 od

14 od

15 return (ap 0, ¢)

NG
(_;_\,\ o
Q’-"en;sa("\\

2003
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Image Analysis / 3. Two-dimensional Wavelets gi,d’s’%
Displaying 2D DWTs B
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Image Analysis / 3. Two-dimensional Wavelets
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Displaying 2D DWTs
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Many 2D wavelet bases can be constructed from 1D wavelet
bases and a suitable scaling function ¢ (also called father

wavelet).

For the Haar wavelets the scaling function is just the rectangle

impulse:
1, ifzel0,1)

dz) = { 0, else

In the same manner as for the wavelet functions, one defines
scaled and translated variants:

bor(x) = 2 92T — 1)
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Obviously, the Haar basis wavelets can be constructed via
D (a,y) = ¥(x) dly)

W (z,y) = ¢(z) Y(y)
Vi, y) = v(x) Y(y)

and

o(x,y) = d(x) p(y)

is a suitable 2D scaling function.

Separable wavelet bases allow a generic DWT that
1. applies a 1D DWT to each row of the image and then
2. applies another 1D DWT to each column of the result.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Image Analysis, winter term 2008 36/36
Image Analysis / 3. Two-dimensional Wavelets giﬁ’s’%
Generic DWT Algorithm e

1 dwt2d-generic(image f = (f(x,y))z=0,...2n—1y=0,...2n—1, Wavelet transform V) :
2 cC (Cs,tx,ty)szo ..... n—1; t;=0,...,25—1; t,=0,...,.25—1; be{1,2,3} ‘= 0

3 a= (as,tz,ty)s:() ..... n; t2=0,...,25—1; t,=0,...,25—1 ‘= 0

4 ppyp, = f(te,ty), tx=0,...,2"—=1,t,=0,...,2" =1
5 fors:=n—1,...,0do

6 a = (aéw,ty)tho,...gsﬂ—htyzo,...,28—1 =0

7 c = (Ctm ty)tzzo ..... 25+1_1; ¢,=0,...,25—1 ‘= 0

8 fort,:=0,...,2°"' —1do

9 (ay, ., ct,.) = dwt-iteration(as1,,., W)

10 od

12 fort,:=0,...,2°-1do

13 (s, 1,55 4,) = Owt-iteration(a’, , 1)

14 (cs.1,Co 4,) = Owt-iteration(c’, , W)

15 od

16 od

17 return (@p,0,0,¢)
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