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Image Analysis / 1. Haar Wavelets

Basis Functions

Fourier Analysis:

ψ(x) := cosx
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Wavelets:

ψ(x) := haar(x) :=

 1, x ∈ [0, 1
2)−1, x ∈ [12, 1)

0, else
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Image Analysis / 1. Haar Wavelets

Basis Functions

Fourier Analysis:

ψω(x) := cos 2πωx

Wavelets:

ψs,t(x) :=
√

2s · haar(2sx− t)

=
√

2s ·
 1, x ∈ (2−s t, 2−s (t + 1

2))−1, x ∈ [2−s (t + 1
2), 2

−s (t + 1))
0, else

2−s t  2−s (t+1/2) −s  2 (t+1)

0

2s/2

−2s/2
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Image Analysis / 1. Haar Wavelets

Basis Functions
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Image Analysis / 1. Haar Wavelets

Orthogonality of Basis Functions

Obviously, two distinct Haar basis functions ψs,t and ψs′,t′ with
s, t, s′, t′ ∈ Z are orthogonal:

〈ψs,t, ψs′,t′〉 :=

∫ ∞

−∞
ψs,t(x) · ψs′,t′(x) dx = 0

And
〈ψs,t, ψs,t〉 = 1

Proof.
If they have the same scale (s = s′), then their support does not
overlap.
If they have different scale, say s > s′, then ψs,t is constant on the
support of ψs′,t′, i.e., the integral averages to zero.

〈ψs,t, ψs,t〉 integrates
√

2s ·
√

22 = 2s over the support 2−s.
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Image Analysis / 1. Haar Wavelets

Wavelet Representation

Theorem (Wavelet Representation). Let ψs,t, s, t ∈ Z be a set of
Wavelet basis functions.
Every function f : R → R (satisfying some regularity conditions)
can be written as

f (x) =
∑
s∈Z

∑
t∈Z

cs,tψs,t(x)

with coefficients cs,t ∈ R.

The coefficients cs,t can be computed as follows:

cs,t =

∫ ∞

−∞
f (x)ψs,t(x)dx
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Image Analysis / 1. Haar Wavelets

Haar Wavelet Representation

For the Haar basis functions this yields

f (x) =
∑
s∈Z

∑
t∈Z

cs,t ·
√

2s haar(2s x− t)

and

cs,t =
√

2s

(∫ 2−s (t+1
2)

2−s t
f (x) dx−

∫ 2−s (t+1)

2s (t+1
2)

f (x) dx

)
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Image Analysis / 1. Haar Wavelets

Haar Wavelets / Computing Coefficients

The values of integrals with a simple rectangle impulse on
different scales can be computed recursively:

as,t :=
√

2s
∫ 2−s (t+1)

2−s t
f (x) dx

as,t =
1√
2

(as+1,2t + as+1,2t+1)

The coefficients of the Haar wavelet can be computed from these
values via

cs,t =
1√
2

(as+1,2t − as+1,2t+1)
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Image Analysis / 1. Haar Wavelets

Haar Wavelets / Discrete Wavelet Transform

For a finite discrete signal f of length 2n the function can already
be represented by a finite sum of Haar wavelets:

f (x) = a−n,0 +

−1∑
s=−n

2n+s−1∑
t=0

cs,t ·
√

2s haar(2s x− t)

i.e., a composition of Haar wavelets with supports 2, 4, 8 etc.

The initial a values are just the signal values:

as=0,t :=

∫ 2−s (t+1)

2−s t
f (x) dx

=

∫ t+1

t

f (x) dx

=

<t+1∑
x=t

f (x) = f (t)
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Image Analysis / 1. Haar Wavelets

Haar Wavelets / Computing Coefficients / Example

Let
f = (1, 3, 4, 4, 2, 0, 2, 1)

Then the discrete Haar wavelet transform of f can be computed
as follows:

t
s 0 1 2 3 4 5 6 7
a0 = f 1 3 4 4 2 0 2 1
a−1 2.83 5.66 1.41 2.12 − − − −
c−1 −1.41 0.00 1.41 0.71 − − − −
a−2 6 2.5 − − − − − −
c−2 −2 −0.5 − − − − − −
a−3 6.01 − − − − − − −
c−3 2.47 − − − − − − −

DWThaar(f ) = (6.01, 2.47,−2,−0.5,−1.41, 0.00, 1.41, 0.71)
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Image Analysis / 1. Haar Wavelets

Haar Wavelets / Computing Coefficients / Example
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Image Analysis / 1. Haar Wavelets
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Image Analysis / 1. Haar Wavelets

Haar Wavelets / Computing Coefficients

1 dwt-haar(sequence f = (f(x))x=0,...,2n−1) :
2 c := (cs,t)s=0,...,n−1; t=0,...,2s−1 := 0
3 a := (as,t)s=0,...,n; t=0,...,2s−1 := 0
4 an,t := f(t), t = 0, . . . , 2n − 1
5 for s := n− 1, . . . , 0 do
6 for t := 0, . . . , 2s − 1 do
7 as,t := (as+1,2t + as+1,2t+1)/

√
2

8 cs,t := (as+1,2t − as+1,2t+1)/
√

2
9 od

10 od
11 return (a0,0, c)
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Image Analysis / 1. Haar Wavelets

Haar Wavelets / Inverse Discrete Wavelet Transform

The DWT easily can be inverted: from

as,t =
1√
2

(as+1,2t + as+1,2t+1)

cs,t =
1√
2

(as+1,2t − as+1,2t+1)

we get

as+1,2t =
√

2 (as,t + cs,t)/2

as+1,2t+1 =
√

2 (as,t − cs,t)/2
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Image Analysis / 1. Haar Wavelets

Haar Wavelets / Inverse Discrete Wavelet Transform

1 idwt-haar(coefficientsc = (cs,t)s=0,...,n−1; t=0,...,2s−1, a
′) :

2 a := (as,t)s=0,...,n; t=0,...,2s−1 := 0
3 a0,0 := a′

4 for s := 0, . . . , n− 1 do
5 for t := 0, . . . , 2s − 1 do
6 as+1,2t := (as,t + cs,t)/

√
2

7 as+1,2t+1 := (as,t − cs,t)/
√

2
8 od
9 od

10 f := (f(x))x=0,...,2n−1 := an,x, x = 0, . . . , 2n − 1
11 return f
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Image Analysis

1. Haar Wavelets

2. Daubechies Wavelets

3. Two-dimensional Wavelets
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Image Analysis / 2. Daubechies Wavelets

Haar Wavelets / Matrix Notation

A single iteration from scale s + 1 to s of the discrete Haar
wavelet transform can be described by matrix multiplication:

as0
cs0
as1
cs1...
asn−1

csn−1


=

1√
2



1 1
1 −1

1 1
1 −1

. . .
. . .

1 1
1 −1





as+1
0

as+1
1

as+1
2...
as+1
n−1...
as+1

2n−1


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Image Analysis / 2. Daubechies Wavelets

Daubechies Wavelets / Definition

Ingrid Daubechies (*1954) generalized the Haar wavelets to a
family of wavelets now called Daubechies wavelets Dk:

as0
cs0
as1
cs1...
asn−1

csn−1


=



w0 w1 w2 . . . wk−1

wk−1 −wk−2 wk−3 . . . −w0

w0 w1 . . . wk−1

wk−1 −wk−2 . . . −w0
. . .

. . .
w2 . . . wk−1 w0 w1

wk−3 . . . −w0 wk−1 −wk−2





as+1
0

as+1
1

as+1
2...
as+1
n−1...
as+1

2n−1



The coefficients w0, w1, . . . , wk−1 are called the wavelet filter
coefficients.
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Image Analysis / 2. Daubechies Wavelets

Daubechies Wavelets / Definition

The matrix Dk should satisfy two conditions:
1. Orthogonality, i.e., DkD

T
k = 1:

k−1∑
i=0

w2
i = 1

k−1−2m∑
i=0

wiw2m+i = 0, m = 1, 2, . . . , k/2− 1

2. Approximation of order k/2, i.e., the first k/2 moments
vanish.
For D4 this means:

w3 − w2 + w1 − w0 = 0

0w3 − 1w2 + 2w1 − 3w0 = 0
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Image Analysis / 2. Daubechies Wavelets

Daubechies Wavelets / Definition

In general, this are k conditions for the k coefficients of DK

leading to a unique solution:

w(D2) = (
1√
2
,

1√
2
)

w(D4) = (
1 +

√
3

4
√

2
,
3 +

√
3

4
√

2
,
3−√3

4
√

2
,
1−√3

4
√

2
)

D2 is the Haar wavelet.

w(D6) also can be computed analytically; the coefficients of the
higher order Daubechies wavelets can only be computed
numerically.
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Image Analysis / 2. Daubechies Wavelets

Daubechies Wavelets / DWT Algorithm

1 dwt-daubechies(sequencef = (f(x))x=0,...,2n−1, k) :
2 w := (w(x))x=0,...,k−1 := getDaubechiesWaveletCoefficients(k)
3 c := (cs,t)s=0,...,n−1; t=0,...,2s−1 := 0
4 a := (as,t)s=0,...,n; t=0,...,2s−1 := 0
5 an,t := f(t), t = 0, . . . , 2n − 1
6 for s := n− 1, . . . , 0 do
7 for t := 0, . . . , 2s − 1 do
8 as,t := 0
9 cs,t := 0

10 for x := 0, . . . , k − 1 do
11 as,t := as,t + as+1,2t+x mod2s+1 w(x)
12 cs,t := cs,t + as+1,2t+x mod2s+1 (−1)x w(k − 1− x)
13 od
14 od
15 od
16 return (a0,0, c)
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Image Analysis / 2. Daubechies Wavelets

Generic DWT Algorithm (1/2)

1 dwt-generic(sequence f = (f(x))x=0,...,2n−1, wavelet transform W ) :
2 c := (cs,t)s=0,...,n−1; t=0,...,2s−1 := 0
3 a := (as,t)s=0,...,n; t=0,...,2s−1 := 0
4 an,t := f(t), t = 0, . . . , 2n − 1
5 for s := n− 1, . . . , 0 do
6 (cs,., as,.) := dwt-iteration(as+1,., W )
7 od
8 return (a0,0, c)
9

10 dwt-iteration(sequence f = (f(x))x=0,...,2n+1−1, wavelet transform W ) :
11 a := (at)t=0,...,2n−1 := 0
12 c := (ct)t=0,...,2n−1 := 0
13 for t := 0, . . . , 2n − 1 do
14 (at, ct) := W ((f2t+x mod 2n+1)x=0,...,2n+1−1)
15 od
16 return (c, a)
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Image Analysis / 2. Daubechies Wavelets

Generic DWT Algorithm (2/2)

1 W-haar(sequencea = (a(t))t=0,...,2n−1) :

2 return ((a0 + a1)/
√

2, (a0 − a1)/
√

2)
3

4 W-daubechies-k(sequencea = (a(t))t=0,...,2n−1) :
5 w := (w(x))x=0,...,k−1 := getDaubechiesWaveletCoefficients(k)
6 a′ := 0
7 c := 0
8 for x := 0, . . . , k − 1 do
9 a′ := a′ + ax w(x)

10 c′ := c′ + ax (−1)x w(k − 1− x)
11 od
12 return (a′, c′)
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Image Analysis / 2. Daubechies Wavelets

Daubechies Wavelets / Inverse DWT Algorithm

As Dk is orthogonal, one can easily compute the inverse of the
DWT via:

as+1
0

as+1
1

as+1
2...
as+1
n−1...
as+1

2n−1


=



w0 w1 w3 . . . wk−1

wk−1 −wk−2 w3 . . . −w0

w0 w1 . . . wk−1

wk−1 −wk−2 . . . −w0
. . .

. . .
w2 . . . wk−1 w0 w1

w2 . . . −wk−1 w0 −w1



T 

as0
cs0
as1
cs1...
asn−1

csn−1


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Image Analysis / 2. Daubechies Wavelets

Daubechies Wavelets / Inverse DWT Algorithm

1 idwt-daubechies(coefficientsc = (cs,t)s=0,...,n−1; t=0,...,2s−1, a
′, k) :

2 w := (w(x))x=0,...,k−1 := getDaubechiesWaveletCoefficients(k)
3 a := (as,t)s=0,...,n; t=0,...,2s−1 := 0
4 a0,0 := a′

5 for s := 0, . . . , n− 1 do
6 for t := 0, . . . , 2s − 1 do
7 for x := 0, . . . , k − 1 do
8 as+1,2t+x mod2s+1 := as+1,2t+x mod2s+1 + as,t+x mod2s w(x)
9 as+1,2t+1+x mod2s+1 := as+1,2t+1+x mod2s+1 + cs,t+x mod2s (−1)x w(k − 1− x)

10 od
11 od
12 od
13 f := (f(x))x=0,...,2n−1 := an,x, x = 0, . . . , 2n − 1
14 return f
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Image Analysis / 2. Daubechies Wavelets

Daubechies Wavelets / Daubechies Wavelet Basis Functions

Daubechies wavelets have been defined implicitely by their
wavelet coefficients in the DWT.

But how does a Daubechies wavelet look like?

We run a unit vector of length 1024 through IDWT, i.e., we set all
but one coefficient to zero.
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Image Analysis / 2. Daubechies Wavelets

Daubechies Wavelets / D4 Wavelet Basis Function (s = 8, t = 3)
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Image Analysis / 2. Daubechies Wavelets

Daubechies Wavelets / D20 Wavelet Basis Function (s = 6, t = 3)
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Image Analysis
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3. Two-dimensional Wavelets
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Image Analysis / 3. Two-dimensional Wavelets

Two-dimensional Haar Mother Wavelets

haarb : R× R → R, b ∈ {1, 2, 3}

haar1(x, y) := +1, if x ∈ [0, 1
2)−1, if x ∈ [12, 1)

0, else

haar2(x, y) := +1, if y ∈ [0, 1
2)−1, if y ∈ [12, 1)

0, else

haar3(x, y) :=
+1, if (x, y) ∈ [0, 1

2)
2

∪[12, 1)2

−1, if (x, y) ∈ [0, 1
2)× [12, 1)

∪[12, 1)× [0, 1
2)

0, else

+1 −1

+1 −1 +1+1

−1 −1

+1

+1−1

−1
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Image Analysis / 3. Two-dimensional Wavelets

Two-dimensional Haar Basis Functions

The scaled and translated mother wavelets form a family of
two-dimensional Haar basis functions:

ψbs,tx,ty(x) := 2s · haarb(2sx− tx, 2
sy − ty), b ∈ {1, 2, 3}

2s/2 −2s/2

2s/2 −2s/2

2 +1/2)−s(tx 2 +1)−s(tx2−stx

2−sty

2 +1/2)−s(ty

2 +1)−s(ty
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Image Analysis / 3. Two-dimensional Wavelets

Orthogonality of Haar Basis Functions

Obviously, two distinct Haar basis functions

ψbs,tx,ty and ψb
′
s′,t′x,t′y

with s, tx, ty, s′, t′x, t′y ∈ Z, b, b′ ∈ {1, 2, 3} are orthogonal:

〈ψbs,tx,ty, ψb
′
s′,t′x,t′y〉 :=

∫ ∞

−∞

∫ ∞

−∞
ψbs,tx,ty(x) · ψb′s′,t′x,t′y(x) dxdy = 0

And
〈ψbs,tx,ty, ψbs,tx,ty〉 = 1

Proof. Analogously to the one-dimensional case.
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Image Analysis / 3. Two-dimensional Wavelets

2D Haar Wavelets / Discrete Wavelet Transform

A finite discrete signal f of size 2n × 2n can be represented by a
finite sum of 2-dimensional Haar wavelets:

f (x) = a−n,0,0 +

3∑
b=1

−1∑
s=−n

2n+s−1∑
tx=0

2n+s−1∑
ty=0

cbs,tx,ty ·2s haarb(2s x− tx, 2s y− ty)

The initial a values are just the signal values:

as=0,tx,ty :=

∫ 2−s (tx+1)

2−s tx

∫ 2−s (ty+1)

2−s ty
f (x, y) dxdy

=

∫ tx+1

tx

∫ ty+1

ty

f (x, y) dxdy

=

<tx+1∑
x=tx

<ty+1∑
y=ty

f (x, y) = f (tx, ty)
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Image Analysis / 3. Two-dimensional Wavelets

2D Haar Wavelets / Computing Coefficients

The values of integrals with a simple rectangle impulse on
different scales can be computed recursively:

as,tx,ty :=2s
∫ 2−s (tx+1)

2−s tx

∫ 2−s (ty+1)

2−s ty
f (x, y) dxdy

as,tx,ty =
1

2
(as+1,2tx,2ty + as+1,2tx+1,2ty + as+1,2tx,2ty+1 + as+1,2tx+1,2ty+1)

The coefficients of the Haar wavelet can be computed from these
values via

c1s,tx,ty =
1

2
(as+1,2tx,2ty + as+1,2tx,2ty+1 − as+1,2tx+1,2ty − as+1,2tx+1,2ty+1)

c2s,tx,ty =
1

2
(as+1,2tx,2ty + as+1,2tx+1,2ty − as+1,2tx,2ty+1 − as+1,2tx+1,2ty+1)

c1s,tx,ty =
1

2
(as+1,2tx,2ty + as+1,2tx+1,2ty+1 − as+1,2tx,2ty+1 − as+1,2tx+1,2ty)
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Image Analysis / 3. Two-dimensional Wavelets

Haar Wavelets / Computing Coefficients

1 dwt2d-haar(image f = (f(x, y))x=0,...,2n−1,y=0,...,2n−1) :
2 c := (cb

s,tx,ty)s=0,...,n−1; tx=0,...,2s−1; ty=0,...,2s−1; b∈{1,2,3} := 0

3 a := (as,tx,ty)s=0,...,n; tx=0,...,2s−1; ty=0,...,2s−1 := 0
4 an,tx,ty := f(tx, ty), tx = 0, . . . , 2n − 1, ty = 0, . . . , 2n − 1
5 for s := n− 1, . . . , 0 do
6 for tx := 0, . . . , 2s − 1 do
7 for ty := 0, . . . , 2s − 1 do
8 as,tx,ty := (as+1,2tx,2ty + as+1,2tx+1,2ty + as+1,2tx,2ty+1 + as+1,2tx+1,2ty+1)/2
9 c1

s,tx,ty := (as+1,2tx,2ty + as+1,2tx,2ty+1 − as+1,2tx+1,2ty − as+1,2tx+1,2ty+1)/2

10 c2
s,tx,ty := (as+1,2tx,2ty + as+1,2tx+1,2ty − as+1,2tx,2ty+1 − as+1,2tx+1,2ty+1)/2

11 c3
s,tx,ty := (as+1,2tx,2ty + as+1,2tx+1,2ty+1 − as+1,2tx,2ty+1 − as+1,2tx+1,2ty)/2

12 od
13 od
14 od
15 return (a0,0,0, c)
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Image Analysis / 3. Two-dimensional Wavelets

Displaying 2D DWTs

a
0
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Image Analysis / 3. Two-dimensional Wavelets

Displaying 2D DWTs

a_0

c1
−1,.,. c3

−1,.,.

c2
−1,.,.a−1,.,.
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Image Analysis / 3. Two-dimensional Wavelets

Displaying 2D DWTs

a_0

c1
−1,.,. c3

−1,.,.

c2
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c1
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Image Analysis / 3. Two-dimensional Wavelets

Example
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Image Analysis / 3. Two-dimensional Wavelets

Another Example
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Image Analysis / 3. Two-dimensional Wavelets

Separable 2D Wavelets Bases / Scaling Function

Many 2D wavelet bases can be constructed from 1D wavelet
bases and a suitable scaling function φ (also called father
wavelet).

For the Haar wavelets the scaling function is just the rectangle
impulse:

φ(x) :=

{
1, if x ∈ [0, 1)
0, else

In the same manner as for the wavelet functions, one defines
scaled and translated variants:

φs,t(x) := 2s φ(2sx− t)
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Image Analysis / 3. Two-dimensional Wavelets

Separable 2D Wavelets Bases / 2D Haar Basis

Obviously, the Haar basis wavelets can be constructed via

ψ1(x, y) = ψ(x)φ(y)

ψ2(x, y) = φ(x)ψ(y)

ψ3(x, y) = ψ(x)ψ(y)

and

φ(x, y) = φ(x)φ(y)

is a suitable 2D scaling function.

Separable wavelet bases allow a generic DWT that
1. applies a 1D DWT to each row of the image and then
2. applies another 1D DWT to each column of the result.
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Image Analysis / 3. Two-dimensional Wavelets

Generic DWT Algorithm

1 dwt2d-generic(image f = (f(x, y))x=0,...,2n−1,y=0,...,2n−1, wavelet transform W ) :
2 c := (cb

s,tx,ty)s=0,...,n−1; tx=0,...,2s−1; ty=0,...,2s−1; b∈{1,2,3} := 0

3 a := (as,tx,ty)s=0,...,n; tx=0,...,2s−1; ty=0,...,2s−1 := 0
4 an,tx,ty := f(tx, ty), tx = 0, . . . , 2n − 1, ty = 0, . . . , 2n − 1
5 for s := n− 1, . . . , 0 do
6 a′ := (a′tx,ty)tx=0,...,2s+1−1; ty=0,...,2s−1 := 0

7 c′ := (c′tx,ty)tx=0,...,2s+1−1; ty=0,...,2s−1 := 0

8 for tx := 0, . . . , 2s+1 − 1 do
9 (a′tx,., c

′
tx,.) := dwt-iteration(as+1,tx,., W )

10 od
12 for ty := 0, . . . , 2s − 1 do
13 (as,.,ty , c

2
s,.,ty) := dwt-iteration(a′.,ty , W )

14 (c1
s,.,ty , c

3
s,.,ty) := dwt-iteration(c′.,ty , W )

15 od
16 od
17 return (a0,0,0, c)
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