Assignment 3

Deadline: Tuesday, 29.11.2011

Assignment 3.1 (20 Points)

Develop a generic program for image classification. The program's task is to distinguish between digital images annotated with two classes, e.g. aeroplane image or bicycle image (there is either class 1 (a plane) or class 2 (a bicycle) on each image).

For testing your image classification program, download 8 aeroplane and 8 bicycle images from:
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2011/examples/index.html\#aer oplane

Remember the key components of a generic image classification program:

1) Feature extraction: rescale your RGB images to a size of 2×2 but retain each of the three RGB dimensions. How many predictor variables x do you have? Use all remaining intensities of your rescaled 2×2 RGB image as predictor variables for the image classification task.
2) Annotation with class labels: Annotate each of the 16 images correctly. Use 1 for coding aeroplanes and 0 for coding bicycles.
3) Training: Include SVM as standard classifier into your program. Check the documentation of SVM in R by

- loading the library(e1017)
- and invoking the documentation by typing "?svm()" into the command line

4) Testing: Include a routine that computes the accuracy of your classifier for some given images.
a) [12 Points] Create a generic image classification program which includes all 4 components.
b) [6 Points] Try different features for your classifier, i.e. (1) a 1x1 scaled RGB image and (2) the average of its R, G and B intensities.
c) [2 Points] Plot the different accuracy scores and discuss the results.
