Assignment 8

Deadline: Tuesday, 24.01.2011

Assignment 8.1 (5 Points)

a) [5 Points] Prove the recursive computation of $\mathrm{a}_{\mathrm{s}, \mathrm{t}}$:

$$
a_{s, t}=\frac{1}{\sqrt{2}}\left(a_{s+1,2 t}+a_{s+1,2 t+1}\right)
$$

Assignment 8.2 (15 Points)

Consider the following sequential signal of length $8: \mathrm{f}(\mathrm{x})=(4,7,2,-5,6,7,4,2)$ for $\mathrm{x}=0,1, \ldots, 7$
b) [7.5 Points] Compute the wavelet transform of the signal and give all coefficients $\mathrm{a}_{\mathrm{s}, \mathrm{t}}$ and $\mathrm{c}_{\mathrm{s}, \mathrm{t}}$.
c) [7.5 Points] Plot all wavelet basis functions $\psi_{\mathrm{s}, \mathrm{t}}(\mathrm{x})$ for all valid s and t used in the wavelet representation of above signal. Using these plots, explain the meaning of the coefficients $\mathrm{c}_{\mathrm{s}, \mathrm{t}}$.

