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Image Analysis / 1. Motion Blur

What is Motion Blur?

When camera and object move fast relative to each other,
the object can appear blurred as a rectangular area of the object
contributes to an image pixel.

The contributing area is stretched in the direction of motion.

Example: camera moves fast
(e.g., photo taken from car passing-by):
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Image Analysis / 1. Motion Blur

How motion blur originates

position

when shutter

opens

position

when shutter

closes

camera:

object:
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Image Analysis / 1. Motion Blur

How motion blur originates

position

when shutter

opens

position

when shutter

closes

camera:

object:

Each camera/image pixel corresponds to several object/scene
“pixels”.
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Image Analysis / 1. Motion Blur

How motion blur originates

position

when shutter

opens

position

when shutter

closes

camera:

object:

And vice versa:
each object/scene “pixel” contributes to several camera/image
pixels.
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Image Analysis / 1. Motion Blur

A Model for Motion Blur

Assume the camera moves in direction of the x-axis and travels
the distance w with open shutter.
Then a blurred image g originates from a scene f via:

g(x, y) :=
1

w

∫ x

x−w
f (x′, y)dx′

If we imagine the scene to be composed of pixels, too:

g(x, y) :=
1

w

x∑

x′=x−w+1

f (x′, y)

The latter equation can be used to simulate motion blur on
already taken photos.
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Image Analysis / 1. Motion Blur

Undo Motion Blur

The latter equation can also be used to undo a motion blur
(deblurring):

g(x, y) :=
1

w

x∑

x′=x−w+1

f (x′, y)

=⇒ f (x, y) = w g(x, y)−
x−1∑

x′=x−w+1

f (x′, y)

and now compute recursively:
f̂ (0, y) = g(0, y)

f̂ (1, y) = 2 g(1, y)− f̂ (0, y)

f̂ (2, y) = 3 g(2, y)− f̂ (1, y)− f̂ (0, y)
...

f̂ (x, y) = (w′ + 1) g(x, y)−
x−1∑

x′=x−w′
f̂ (x′, y), with w′ := min{w − 1, x}
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Image Analysis / 1. Motion Blur

Example

blurred image: unblurred:
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Image Analysis / 1. Motion Blur

Wrong Speed / Window Size

blurred:

window too small (10): window optimal (20): window too large (30):
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Image Analysis / 1. Motion Blur

Estimate Correct Window Size

To undo the blur, its window size has to
be estimated correctly.

To do this manually, one can use
“shadows” of sharp edges that are
perpendicular to the direction of the
motion.

Example: the “shadow” of the edge of
the garage spreads over 20 pixels.
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Image Analysis / 2. General Blur

Out-of-Focus Blur

Besides due to motion, blur also can occur in other situations,
e.g., as out-of-focus blur when the lens of the camera is not
focused correctly on the object.
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Image Analysis / 2. General Blur

Richardson-Lucy Deconvolution [Ric72], [Luc74]

Let f be the original (unblurred) image,
k a blur kernel (also called a point spread function) and
g the blurred image:

g = f ∗ k

If we interpret the intensity values as frequency counts,
then the kernel can be interpreted as conditional probability:

p(ga,b | fx,y) = kx−a,y−b

p(fx,y) =
∑

(a,b)

p(fx,y, ga,b) =
∑

(a,b)

p(fx,y | ga,b) p(ga,b)

Bayes
=
∑

(a,b)

p(ga,b | fx,y) p(fx,y)∑
(x′,y′) p(ga,b | fx′,y′) p(fx′,y′)

p(ga,b)

=p(fx,y)
∑

(a,b)

kx−a,y−b p(ga,b)∑
(x′,y′) kx′−a,y′−b p(fx′,y′)
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Image Analysis / 2. General Blur

Richardson-Lucy Deconvolution [Ric72], [Luc74]

The resulting equation

p(fx,y) =p(fx,y)
∑

(a,b)

kx−a,y−b p(ga,b)∑
(x′,y′) kx′−a,y′−b p(fx′,y′)

can be moved from probabilites to counts:

fx,y = fx,y
∑

(a,b)

kx−a,y−b ga,b∑
(x′,y′) kx′−a,y′−b fx′,y′

and then be used for fixpoint interations:

f̂ (t+1)
x,y = f̂ (t)

x,y

∑

(a,b)

kx−a,y−b ga,b∑
(x′,y′) kx′−a,y′−b f̂

(t)
x′,y′

where the initial f̂ is set constant to 1:

f̂ (0)
x,y := 1 for all x and y
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Image Analysis / 2. General Blur

Richardson-Lucy Deconvolution [Ric72], [Luc74]

In the iteration

f̂ (t+1)
x,y = f̂ (t)

x,y

∑

(a,b)

kx−a,y−b ga,b∑
(x′,y′) kx′−a,y′−b f̂

(t)
x′,y′

the two sums over (a, b) and (x′, y′) can be limited to entries with
positive kernels, e.g., if the kernel has width w, i.e.,

k(x, y) = 0 for |x| > w or |y| > w,

then

f̂ (t+1)
x,y = f̂ (t)

x,y

x+w∑

a=x−w

y+w∑

b=y−w

kx−a,y−b ga,b∑a+w
x′=a−w

∑b+w
y′=b−w kx′−a,y′−b f̂

(t)
x′,y′

and sums have to be capped at actual image width and height,
i.e.,

a = max{0, x− w}, . . . ,min{x + w,width}
b = max{0, y − w}, . . . ,min{y + w,height}
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Image Analysis / 2. General Blur

Richardson-Lucy Deblurring Algorithm

1 deblur-richardson-lucy(blurred image g, blur kernel k, number of iterations T ) :
2 N := width(f)− 1,M := height(f)− 1, w := kernel-width(k)
3 f̂ (0)(x, y) := 1 for x = 0, . . . , N, y = 0, . . . ,M
4 for t := 0, . . . , T − 1 do
5 for x := 0, . . . , N do
6 for y := 0, . . . ,M do
7 a0 := max{0, x− w}, a1 := min{N, x+ w}
8 b0 := max{0, y − w}, b1 := min{M, y + w}
9 B := 0

10 for a := a0, . . . , a1 do
11 for b := b0, . . . , b1 do
12 x′

0 := max{0, a− w}, x′
1 := min{N, a+ w}

13 y′0 := max{0, b− w}, y′1 := min{M, b+ w}
14 A := 0
15 for x′ := x′

0, . . . , x
′
1 do

16 for y′ := y′0, . . . , y
′
1 do

17 A := A+ k(x′ − a, y′ − b) · f̂ (t)(x′, y′)
18 od
19 od
20 B := B + k(x− a, y − b) · g(a, b)/A
21 od
22 od
23 f̂ (t+1)(x, y) := f (t)(x, y) · B
24 od
25 od
26 od
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Image Analysis / 2. General Blur

Example

blurred image: unblurred (1st iteration):
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Image Analysis / 2. General Blur

Example

blurred image: unblurred (2nd iteration):
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Image Analysis / 2. General Blur

Example

blurred image: unblurred (10th iteration):
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Image Analysis / 2. General Blur

Example

blurred image: unblurred (20th iteration):
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Image Analysis / 2. General Blur

Further Readings

• See [SJA08] for a very interesting actual paper on deblurring
(may be useful as topic for a Master thesis?).

• See http://www.bialith.com/Research/BARclockblur.htm
(by P. J. Tadrous) for pointers to further methods and some
nice examples.
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Image Analysis / 3. Blurring for Noise Reduction

Salt and Pepper Noise

Digital images often have some random pixels set to white, some
others set to black (salt and pepper noise).
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Image Analysis / 3. Blurring for Noise Reduction

Blurring by Box Filters

Blurring can be used deliberately to reduce noise.

E.g., deblurring by a so called box filter with window size w:

g(x, y) :=
1

w2

w/2∑

∆x=−w/2

w/2∑

∆y=−w/2
f (x + ∆x, y + ∆y)

(The window size is usually an odd natural number.)
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Image Analysis / 3. Blurring for Noise Reduction

Blurring by Box Filters / Example (window size 3)
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Image Analysis / 3. Blurring for Noise Reduction

Blurring by Box Filters / Example (window size 7)
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Image Analysis / 3. Blurring for Noise Reduction

Blurring by Gaussian Filters (1/2)

A Gaussian Filter does not give the same weight to all source
pixels, but weights pixels by their distance, measured in terms of
the 2D Gaussian distribution:

Φσ(x, y) := e
−x2+y2

2σ2

where σ controlles the width (standard deviation).

g(x, y) :=

∫ ∞

−∞

∫ ∞

−∞
Φσ(x′, y′) f (x + x′, y + y′)dx′dy′
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Image Analysis / 3. Blurring for Noise Reduction

Blurring by Gaussian Filters (2/2)

Often an interger weight matrix that approximates Φσ and has
finite support is used, e.g.:

w5 :=




0 1 2 1 0
1 3 5 3 1
2 5 9 5 2
1 3 5 3 1
0 1 2 1 0




(conveniently indexed by -2. . . +2, -2. . . +2.)

Thus:

g(x, y) :=
1

∑d/2
∆x=−d/2

∑d/2
∆y=−d/2w(∆x,∆y)

w/2∑

∆x=−w/2

w/2∑

∆y=−w/2
w(∆x,∆y) f (x+∆x, y+∆y)
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Image Analysis / 3. Blurring for Noise Reduction

Blurring by Box Filters / Example (window size 5)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2011/12 20/40



Image Analysis / 3. Blurring for Noise Reduction

Blurring by Gaussian Filters / Example (window size 5)
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Image Analysis / 3. Blurring for Noise Reduction

Blurring by Mininum Filters

Random white pixels can be successfully removed by the
minimum filter:

g(x, y) := min{f (x + ∆x, y + ∆y) |∆x = −w/2, . . . ,+w/2,

∆y = −w/2, . . . ,+w/2}
(where w is again the window size, an odd natural number.)

For color images, the pixel with the minimum brightness (sum of
color intensities) is taken.

Unfortunately, black pixels get enlarged!
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Image Analysis / 3. Blurring for Noise Reduction

Blurring by Minimun Filters / Example (window size 3)
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Image Analysis / 3. Blurring for Noise Reduction

Blurring by Maximum Filters

And vice versa:
Random black pixels can be successfully removed by the
maximum filter:

g(x, y) := max{f (x + ∆x, y + ∆y) |∆x = −w/2, . . . ,+w/2,

∆y = −w/2, . . . ,+w/2}
(where w is again the window size, an odd natural number.)

For color images, the pixel with the maximum brightness (sum of
color intensities) is taken.

Unfortunately, white pixels get enlarged!
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Image Analysis / 3. Blurring for Noise Reduction

Blurring by Maximum Filters / Example (window size 3)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Image Analysis, winter term 2011/12 22/40

Image Analysis / 3. Blurring for Noise Reduction

Blurring by Median Filters

Median filter:

g(x, y) := median{f (x + ∆x, y + ∆y) |∆x = −w/2, . . . ,+w/2,

∆y = −w/2, . . . ,+w/2}
(where w is again the window size, an odd natural number.)

To compute the median of some values x0, . . . , xN−1, one has to
sort the values in ascending order

x(0), x(1), . . . , x(N−1)

and then return the value x(N/2).

For color images, pixel order is determined by their brightness
(sum of color intensities).

Median filtering successfully removes salt and pepper noise.
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Image Analysis / 3. Blurring for Noise Reduction

Blurring by Median Filters / Example (window size 3)
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Image Analysis / 4. Convolutions

Averaging

Several techniques we have seen so far can be uniformly
described as averaging a source image with respect to some
weight function, e.g.:

– rescaling an image,
– deblurring of motion blur,
– blurring for noise reduction.

Technically, such a one- or two-dimensional averaging is
captured by the concept of a convolution.
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Image Analysis / 4. Convolutions

Convolutions (1/5): Discrete, Unweighted, 1D

Given a time series xt (t = 1, . . . , n), one can define a smoothed
time series x′, where each observation xt is replaced by the
mean of its 2k + 1 neighbors:

x′t :=
xt−k + xt−k+1 + · · · + xt + xt+1 + · · · xt+k

2k + 1
=

1

2k + 1

t+k∑

t′=t−k
xt′

t

x

t

t

x

t
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Image Analysis / 4. Convolutions

Convolutions (2/5): Continuous, Unweighted, 1D

If f : R→ R is a function, one can define a smoothed function f ′,
where each value f (x) is replaced by the mean of the values in
[x− k, x + k]:

f ′(x) :=
1

2k

∫ x+k

x−k
f (x′)dx′

x

f(x)

x

x

f(x)

xx−k x+k
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Image Analysis / 4. Convolutions

Convolutions (3/5): Discrete, Weighted, 1D

By taking the mean, the influence of the neighbors is the same
regardless of their distance. Often it is more plausible to take
neighbors less into account the more far awar they are. In this
case one defines weights:

w : Z→ R+
0

where w(d) specifies the influence of an observation at time
distance d.

The weighted mean then is defined as:

x′t :=
1∑

t′∈Zw(t′ − t)
∑

t′∈Z
w(t′ − t)xt′
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Image Analysis / 4. Convolutions

Convolutions (3b/5): Discrete, Weighted, 1D

Simplifications:

– If w is symmetric, one often defines it just on N0 and writes

x′t :=
1∑

t′∈Zw(t′ − t)
∑

t′∈Z
w(|t′ − t|)xt′

– If w sums to 1:
x′t :=

∑

t′∈Z
w(|t′ − t|)xt′

– If w(d) = 0 for d > k:

x′t :=

t+k∑

t′=t−k
w(|t′ − t|)xt′

The unweighted mean with window size k can be specified as
special case via the weights

w(d) :=

{
1/(k + 1), if − k ≤ d ≤ k
0, else
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Image Analysis / 4. Convolutions

Convolutions (4/5): Continuous, Weighted, 1D

Weights also can be introduced for averaging continuous
functions:

w : R→ R+
0 with

∫ +∞

−∞
w(x)dx = 1 and w(x) = w(−x) ∀x

The average then is defined accordingly as:

f ′(x) :=

∫ +∞

−∞
w(x′ − x) f (x′)dx′ = (w ∗ f )(x)

where the averaged function w ∗ f is called the convolution of w
and f and defined as

(w ∗ f )(x) :=

∫ +∞

−∞
w(x− x′) f (x′)dx′
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Image Analysis / 4. Convolutions

Convolutions (5/5): Continuous, Weighted, 2D

And finally, convolutions also can be defined for
higher-dimensional functions, e.g., for two continuous image
functions

f, g : R× R→ R
the convolution is defined as

(f ∗ g)(x, y) :=

∫ +∞

−∞

∫ +∞

−∞
f (x− x′, y − y′) g(x′, y′)dx′dy′
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Image Analysis / 4. Convolutions

Interpolation as Convolution / Nearest Neighbor

Interpolations can be understood as convolutions, e.g., the
nearest neighbor interpolation is the convolution with the weight
function (usually called kernel)

w(x, y) :=

{
1, if − 1

2 ≤ x ≤ 1
2 and − 1

2 ≤ y ≤ 1
2

0, else
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Image Analysis / 4. Convolutions

Interpolation as Convolution / Bi-Linear

The bi-linear interpolation is the convolution with the weight
function

w(x, y) :=

{
|1− x| · |1− y|, if − 1 ≤ x ≤ 1 and − 1 ≤ y ≤ 1
0, else
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Image Analysis / 4. Convolutions

Blurring as Convolution

The so-called linear filters obviously can be understood as
convolutions, i.e.,

– box filter

kw(x, y) :=

{
1, if |x| < w and |y| < w
0, else

– Gaussian filter

kσ(x, y) := Φσ(x, y) := e
−x2+y2

2σ2

and its finite-support approximations.

Other filters such as the minimum, maximum and median filters
cannot be described as convolutions and often are called
non-linear filters.
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Image Analysis / 4. Convolutions

Deconvolutions

If a process (such as blurring) deteriorates an image f via a
convolution with a kernel k

g = k ∗ f
one can simulate the process by computing the convolution, e.g.,

given f and k  compute g.

Usually one is interested in the inverse problem:

given g and k  compute f .

This is often called deconvolution.

If the kernel k also is unknown, the problem is called blind
deconvolution (otherwise non-blind).
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Richardson-Lucy Deconvolution [Ric72], [Luc74]

Let f be the original (unblurred) image,
k a blur kernel (also called a point spread function) and
g the blurred image:

g = k ∗ f

The “bayesian derivation” of the fixpoint iteration can be done in a
more compact way using convolutions:

f = f · 1
= f · (k ∗ 1)

= f · (k ∗ (g/g))

= f · (k ∗ g)/g

= f · (k ∗ g)/(k ∗ f )
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Formal Definition of Convolutions

Definition. Let f, g : R→ R one-dimensional functions (that
satisfy appropriate integrability conditions). Then the
convolution f ∗ g : R→ R is defined as

(f ∗ g)(x) :=

∫ +∞

−∞
f (x′)g(x− x′)dx′

Let f, g : R× R→ R two-dimensional functions (that satisfy
appropriate integrability conditions). Then the convolution
f ∗ g : R× R→ R is defined as

(f ∗ g)(x, y) :=

∫ +∞

−∞

∫ +∞

−∞
f (x′, y′)g(x− x′, y − y′)dy′dx′

Note: in the literature often also f ⊗ g is used instead of f ∗ g.
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Basic Properties of Convolutions

The convolution operator is symmetric:

(f ∗ g)(x) =

∫ +∞

−∞
f (y)g(x− y)dy =

∫ +∞

−∞
f (x− y)g(y)dy = (g ∗ f )(x)

(substitute y 7→ x− y)

The convolution operator is associative:

(f ∗ (g ∗ h))(x) =

∫ +∞

−∞
f (z)

(∫ +∞

−∞
g(y)h(x− z − y)dy

)
dz

=

∫ +∞

−∞

(∫ +∞

−∞
f (z)g(y − z)dz

)
h(x− y)dy = ((f ∗ g) ∗ h)(x)

(substitute y 7→ y − z)

The convolution operator is linear:

(f ∗ (g + h))(x) = (f ∗ g)(x) + (f ∗ h)(x)

α(f ∗ g)(x) = ((αf ) ∗ g)(x)

with f, g, h functions and α ∈ R.
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Dirac Distribution / Impulse

The distribution δ with
(i) δ(x) = 0 for all x 6= x0 and

(ii)
∫ +∞

−∞
δ(x)dx = 1

is called (one-dimensional) Dirac distribution at x0 (or impulse
at x0).

The symbol δ with
(i) δ(x, y) = 0 for all (x, y) 6= (x0, y0) and

(ii)
∫ +∞

−∞

∫ +∞

−∞
δ(x, y)dxdy = 1

is called (two-dimensional) Dirac distribution at (x0, y0) (or
impulse at (x0, y0)).

Note: distributions (aka generalized functions) are a
generalization of functions; see, e.g., [Vla01].
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Dirac Distribution / Impulse

For a Dirac distribution δ at x0 and a function f it is

(f ∗ δ)(x) =

∫ +∞

−∞
f (x− y)δ(y)dy = f (x− x0)
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Summary

• Different forms of blur can occur such as motion blur and
out-of-focus blur.

• Simple forms of motion blur (such as originating from a
camera moving with constant speed) can be undone rather
easily, if the parameters (direction, window length) are known.

• If the blur kernel is known, Richardson-Lucy deconvolution
can be used for deblurring.

• Blurring often is used to remove noise, e.g., salt-and-pepper
noise. Median blurring usually gives best results for this type
of noise.

• Several methods such as rescaling, blurring, etc. can be
understood as averaging. Averaging can formally be described
by convolutions.
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