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Deep Learning
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Deep Learning 1. What is Deep Learning?

Machine Learning
I A branch of Artificial Intelligence:

I Learning to solve a task

I Learn to correctly estimate a target variable

I Use previous contextualized data to infer future variable’s values

I Context is expressed through features

Figure 1: Face Recognition, Courtesy of www.nec.com
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Deep Learning 1. What is Deep Learning?

Supervised and Unsupervised Learning
I Supervised learning:

I Data is labeled by an expert (ground-truth)

I Classification, Regression, Ranking

I Unsupervised learning:
I Data contain no explicit labels apart the context features

I Clustering, Dimensionality reduction, Anomaly/Outlier Detection

Figure 2: Clustering illustration, Courtesy of www.sthda.com
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Deep Learning 1. What is Deep Learning?

Deep Learning ...
I ... refers to a family of supervised and unsupervised methodologies

involving:
I Neural Network (NN) architectures

I Specialized architectures, e.g. CNN, ...

I Novel regularizations, e.g. Dropout, ...

I Large-scale optimization approaches, e.g. GPU-s, ...

Figure 3: Illustration of a neural network, Courtesy of www.extremetech.com
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Deep Learning 1. What is Deep Learning?

Example: Covid 19 Early Warning System
I Physicians aim to develop an early warning system for Covid 19

infections that predicts if a person is likely to have caught Covid 19.

I They measure for many patients
I their temperature over the day,

I the number of other humans they have been in contact with over the
day (measured by the number of smartphones that could be sensed via
bluetooth),

I self assessment for headaches, lowered taste and lowered smell,

I outcome of a Covid 19 viurs test based on a blood sample.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 2. Supervised Prediction Problems

Example

I For N existing bank customers and M = 23 features, i.e. given
x ∈ RN×23 and ground truth y ∈ {0, 1}N

y: Default credit card payment (Yes = 1, No = 0)

x:,1 Amount of the given credit (NT dollar)
x:,2 Gender (1 = male; 2 = female).
x:,3 Education (1=graduate; 2=univ.; 3 = high school; 4 = others).
x:,4 Marital status (1 = married; 2 = single; 3 = others).
x:,5 Age (year)

x:,6 − x:,11 Past Delays (-1=duly, . . . , 9=delay of nine months)
x:,12 − x:,17 Amount of bill statements
x:,18 − x:,23 Amount of previous payments

Table 1: Yeh, I. C., & Lien, C. H. (2009).

I Goal: Estimate the default of a new (N + 1)-th customer, i.e. given
xN+1,: ∈ R23, estimate yN+1 =?
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Deep Learning 2. Supervised Prediction Problems

Estimating the Target Variable

I Given a training data of N recorded instances, composed of
I features variables x ∈ RN×M and

I target variable y ∈ RN .

I Predict the target variable of a future instance x test ∈ RM?

I Need a function ŷ that predicts the target: ŷ(x).
I called prediction model

I When is such a function ŷ a good function?
I compare the observed ground truth yn with the predictions ŷn := ŷ(xn)

I the closer they are, the better the model

I How should we measure “close” ?
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Deep Learning 2. Supervised Prediction Problems

Difference to Ground Truth
I The quality of a prediction model ŷ(x)

I Difference between the estimated target ŷ and ground-truth target y

I Defined by a function `(y , ŷ) : R× R→ R called loss function, e.g.,

`(y , ŷ) := (y − ŷ)2

I The loss has to be minimized w.r.t. the parameters

Figure 4: Loss types, (Hastie et al., 2009, The Elements of Statistical Learning)

I Note: instead of minimizing a loss, sometimes one has to maximize a
function, e.g, accuracy, log-likelihood, then called quality function.
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Deep Learning 2. Supervised Prediction Problems

The Supervised Learning Problem

Given

I a set Dtrain := {(x1, y1), (x2, y2), . . . , (xN , yN)} ⊆ RM × RO called
training data, and

I a function ` : RO × RO → R called pairwise loss function,

we want to estimate a function

ŷ : RM → RO

called model s.t. for a set Dtest ⊆ RM ×RO called test set the test error

err(ŷ ;Dtest) :=
1

|Dtest|
∑

(x ,y)∈Dtest

`(y , ŷ(x))

is minimal.
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Deep Learning 2. Supervised Prediction Problems

The Supervised Learning Problem

I classification: yn ∈ {0, 1}O and there is exact one o with yn,o = 1,
otherwise regression.

I x := (x1x2 . . . xN)T ∈ RN×M predictors
(aka features, covariates, inputs)

I y := (y1y2 . . . yN)T ∈ RN×O targets (aka outputs)
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Deep Learning 2. Supervised Prediction Problems

Loss Functions
I Regression (target is a real scalar yn ∈ R)

I quadratic loss (aka L2 loss):

`(yn, ŷn) := (yn − ŷn)2

I absolute loss (aka L1 loss):

`(yn, ŷn) := |yn − ŷn|

I Binary Classification yn ∈ {0, 1}
I logistic loss (aka binary logloss):

`(yn, ŷn) := −yn log(ŷn)− (1− yn) log(1− ŷn)

I hinge loss:

`(yn, ŷn) := 2 max(0, yn + ŷn − 2ynŷn)

`(yn, ŷn) := max(0, 1− ynŷn), if yn, ŷn ∈ {−1,+1}
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Deep Learning 2. Supervised Prediction Problems

Multi-class logloss

I Re-express targets yn ∈ {1, . . . ,C} as binary indicators (aka
one-hot-encoding) y new

n ∈ {0, 1}C , i.e.

y new
n,c :=

{
1, if yn = c

0, else

I logloss (aka cross entropy):

`(yn,:, ŷn,:) := −
C∑

c=1

yn,c log(ŷn,c)
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Deep Learning 2. Supervised Prediction Problems

Example: Covid 19 Early Warning System
I Physicians aim to develop an early warning system for Covid 19

infections that predicts if a person is likely to have caught Covid 19.

I They measure for many patients
I their temperature over the day,

I the number of other humans they have been in contact with over the
day (measured by the number of smartphones that could be sensed via
bluetooth),

I self assessment for headaches, lowered taste and lowered smell,

I outcome of a Covid 19 virus test based on a blood sample.
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Deep Learning 3. Prediction Models

Model Parameters

I How to find a good function / model ŷ?

1. Parametrize functions through parameters θ as ŷ(x ; θ)
(model class, aka type of model)

2. Find values for the parameters θ such that the model fits the training
data well, i.e., has a low loss (learning)
 optimization problem w.r.t. the parameters.
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Deep Learning 3. Prediction Models

Prediction Models - I

I Linear Model

I ŷn = θ0 + θ1xn,1 + θ2xn,2 + · · ·+ θMxn,M = θ0 +
M∑

m=1
θmxn,m

Figure 5: Linear regression, θ = [−540, 0.001]
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Deep Learning 3. Prediction Models

Prediction Models - II
I Polynomial Regression

ŷn = θ0 +
M∑

m=1

θmxn,m +
M∑

m=1

M∑
m′=1

θm,m′xn,mxn,m′ + . . .

Figure 6: Polynomial regression, Source: www.originlab.com

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 3. Prediction Models

Decision Tree as a Prediction Model

A prediction model ŷn := f (xn, θ) can be also a tree:

Systolic pressure: (xn,1 > 91)

risk (ŷn = 1)

yes

Age: (xn,2 > 62.5)

risk (ŷn = 1)

yes

Sinus tachycardia?: (xn,3 = 1)

risk (ŷn = 1)

yes

low-risk (ŷn = 0)

no

no

no

Figure 7: San Diego Medical Center
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Deep Learning 3. Prediction Models

Decision Tree as a Step-wise Function
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Deep Learning 3. Prediction Models

Neural Network Model

I A neuron indexed i is a non-linear function gi (x , θi )

I If neuron i is connected to neuron j the model is gj(gi (x , θi ), θj)

Figure 8: One layer network, Courtesy of Shiffman 2010, The Nature of Code

ŷn := gD(θ0 + θD,1gC (gA(xn, θA), θC ) + θD,2gB(gA(xn, θA), θB))
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Deep Learning 3. Prediction Models

Neural Network Regression

Figure 9: Regression using Neural Network, Courtesy of dungba.org
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Deep Learning 4. Learning Algorithms

Gradient Descent (basic version)

1 learn-gd(f : RP → R,Dtrain, σ2 ∈ R+, µ, imax ∈ N):
2 θ ∼ N (0, σ2)
3 for i = 1, . . . , imax:

4 θ := θ − µi · ∇f (θ;Dtrain)
5 return θ

f objective function (as function in the parameters θ)

Dtrain training data

σ2 parameter initialization variance

µ step size schedule

imax maximal number of iterations
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Deep Learning 4. Learning Algorithms

Stochastic Gradient Descent (basic version)

1 learn-sgd(f : RP → R,Dtrain, σ2 ∈ R+, µ, imax ∈ N,B ∈ N):
2 θ ∼ N (0, σ2)
3 for i = 1, . . . , imax:

4 Dbatch ∼ Dtrain draw B instances uniformly at random

5 θ := θ − µi · ∇f (θ;Dbatch)
6 return θ

f objective function (as function in the parameters θ)

Dtrain training data

σ2 parameter initialization variance

µ step size schedule

imax maximal number of iterations

B minibatch size

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 36
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Deep Learning 5. Generalization to New Data

Overfitting, Underfitting

I Underfitting (High model bias): Unable to capture complexity

I Overfitting (High model variance): Capturing noise

Figure 10: Overfitting, Underfitting, Source: Goodfellow et al., 2016, Deep
Learning
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Deep Learning 5. Generalization to New Data

Capacity
I Expressiveness of a model

I Often expressed as the number of model parameters

I In Neural Networks often the number of neurons

Figure 11: Capacity, Source: Goodfellow et al., 2016, Deep Learning
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Deep Learning 5. Generalization to New Data

Regularization
I Fights overfitting

I e.g., combine loss and a penality for large parameter values into an
objective function f :

f (θ; x , y) := `(y , ŷ(x)) + λΩ(θ), Ω(θ) :=
P∑

p=1

θ2
p

I minimze objective function f (not just the loss)

Figure 12: Regularizing a polynomial regression, Source: Goodfellow et al., 2016,
Deep Learning
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Deep Learning 6. Probabilistic Interpretation
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Deep Learning 6. Probabilistic Interpretation

Bayesian Regression
I Consider a regression model that does not only yield

I the most likely target values ŷn := ŷ(xn), but also

I how the model believes this value could vary across different
observations of xn (its own uncertainty)

I Considering a linear model:

y = θ0 +
M∑

m=1

θmxm + ε

I Assume the uncertainty ε is normally distributed

ε|x ∼ N (0, σ2)

I In other words, the model estimates not just a single value (point
estimation), but a whole distribution of possible values:

ŷn ∼ N

(
θ0 +

M∑
m=1

θmxn,m, σ
2

)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 6. Probabilistic Interpretation

Maximum Likelihood Estimation

I Let p(y |x , θ) be the probability density function for the target y given
features x and parameters θ

I The likelihood of observing the target y ∈ RN is

L(θ) =
N∏

n=1

p(yn | xn, θ)

I What values of θ make our observed target more likely to occur?

I Aim: Estimate the θ which maximize the likelihood.
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Deep Learning 6. Probabilistic Interpretation

Maximum Likelihood Estimation - II

I Remember

log(a b) = log(a) + log(b)

arg max
θ

g(θ) = arg max
θ

log(g(θ))

I Taking the logarithm of the likelihood

log
N∏

n=1

p(yn | θ) =
N∑

n=1

log(p(yn | θ))

I Assuming p is normally distributed we derive the log-likelihood:

log L(θ) =
N∑

n=1

log

(
1√
2πσ

e−
(yn−ŷn)2

2σ2

)
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Deep Learning 6. Probabilistic Interpretation

Maximum Likelihood Estimation - III

I Deriving further:

log L(θ) =
N∑

n=1

log

(
1√
2πσ̂

e−
(yn−ŷn)2

2σ̂2

)

=
N∑

n=1

log

(
1√
2πσ̂

)
+ log

(
e−

(yn−ŷn)2

2σ̂2

)
I Omitting the constant term above with respect to the parameters θ:

arg max
θ

log L(θ) ≈ arg max
θ

1

2σ̂2

N∑
n=1

−

(
yn −

(
θ0 +

M∑
m=1

θmxm

))2

≈ arg min
θ

N∑
n=1

(
yn −

(
θ0 +

M∑
m=1

θmxm

))2
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Deep Learning 7. Organizational Stuff

Character of the Lecture

This is an advanced lecture:
I I will assume good knowledge of Machine Learning I.

I but I will review major concepts in the first two sessions.

I Slides will contain major keywords, not the full story.

I For the full story, you need to read the referenced chapters in one of
the books.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 36



Deep Learning 7. Organizational Stuff

Syllabus

Tue. 21.4. (1) 1. Supervised Learning (Review 1)
Tue. 28.4. (2) 2. Neural Networks (Review 2)
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Tue. 19.5. (5) 5. Convolutional Neural Networks
Tue. 26.5. (6) 6. Recurrent Neural Networks
Tue. 2.6. — — Pentecoste Break —
Tue. 9.6. (7) 7. Autoencoders
Tue. 16.6. (8) 8. Generative Adversarial Networks
Tue. 23.6. (9) 9. Recent Advances
Tue. 30.6. (10) 10. Engineering Deep Learning Models
Tue. 7.7. (11) tbd.
Tue. 14.7. (12) Q & A
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Deep Learning 7. Organizational Stuff

Exercises and Tutorials

I There will be a weekly sheet with 2 exercises
handed out each Wednessday.

I Solutions to the exercises can be
submitted until next Wednessday noon, 12pm

I Tutorials Friday 12pm-2pm,
1st tutorial next week, Fr. 24.04.

I Plagiarism is strictly prohibited and leads to expulsion from the
program.

I Register in Learnweb (Assignment submission) and LSF (Providing
grades)
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Deep Learning 7. Organizational Stuff

Deep Learning Exam

I Grade is dependent on two things:
I Tutorials - 50%

I End Exam (under video surveilance) - 50%

I To pass - min 20% through tutorials, and 20% through exam and 50%
in total
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Deep Learning 7. Organizational Stuff

Exam and Credit Points

I The course gives 6 ECTS (2+2 SWS).

I The course can be used in
I International Master in Data Analytics (mandatory)

I IMIT MSc. / Informatik / Gebiet KI & ML

I Wirtschaftsinformatik MSc / Informatik / Gebiet KI & ML
& Wirtschaftsinformatik MSc / Wirtschaftsinformatik / Gebiet BI

I as well as in all IT BSc programs.
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Deep Learning 7. Organizational Stuff

Some Books

I Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
The Mit Press, Cambridge, Massachusetts, November 2016.
ISBN 978-0-262-03561-3 www.deeplearningbook.org
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Deep Learning 7. Organizational Stuff

Summary (1/2)
I Deep Learning aims to build machine learning models for a vast set

of problems by constructing deep neural networks, i.e., neural
networks with many layers (in the dozens and hundreds).

I Supervised Prediction Problems ask for a model ŷ that predicts
targets y for any predictors x , based on data on observed
predictor/target pairs (xn, yn), s.t. for new test data (x , y) the loss
between the true target y and the predicted target ŷ(x) is minimal.

I There exist many different types of models to accomplish supervised
prediction, i.e.,

I linear models,
I polynomimal models,
I kernel models and support vector machines,
I neural networks

that can be fit to data by setting their model parameters (aka
weights).
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Deep Learning 7. Organizational Stuff

Summary (2/2)

I Learning algorithms are minimization algorithms that minimize a
loss function of a model on the training data to fit the model to the
data, e.g,

I gradient descent,

I stochastic gradient descent

I To generalize to new data, models should not fit the training data
too closely (memorization), but pick up only the regularities / the
signal of the data, not the noise, e.g., by

I structural regularization: have only a limited number of model
parameters.

I L2-regularization: force the model parameters to be small.
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Deep Learning

Further Readings

I Goodfellow et al. 2016, ch. 5

I lecture Machine Learning, chapters 0, A.1, A.2 and A.3.
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Acknowledgement: An earlier version of the slides for this lecture have been written by my
former postdoc Dr Josif Grabocka.



Deep Learning
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