
Deep Learning

Deep Learning
2. Deep Feedforward Networks

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 33



Deep Learning

Syllabus

Tue. 21.4. (1) 1. Supervised Learning (Review 1)
Tue. 28.4. (2) 2. Neural Networks (Review 2)
Tue. 5.5. (3) 3. Regularization
Tue. 12.5. (4) 4. Optimization
Tue. 19.5. (5) 5. Convolutional Neural Networks
Tue. 26.5. (6) 6. Recurrent Neural Networks
Tue. 2.6. — — Pentecoste Break —
Tue. 9.6. (7) 7. Autoencoders
Tue. 16.6. (8) 8. Generative Adversarial Networks
Tue. 23.6. (9) 9. Recent Advances
Tue. 30.6. (10) 10. Engineering Deep Learning Models
Tue. 7.7. (11) tbd.
Tue. 14.7. (12) Q & A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 33



Deep Learning

Outline

1. What is a Neural Network?

2. An example: XOR

3. Loss and Output Layer

4. Basic Feedforward Network Architecture

5. Backpropagation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 33



Deep Learning 1. What is a Neural Network?

Outline

1. What is a Neural Network?

2. An example: XOR

3. Loss and Output Layer

4. Basic Feedforward Network Architecture

5. Backpropagation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 33



Deep Learning 1. What is a Neural Network?

What is a Deep Feedforward Network (DFN)?

I Feedforward networks
(aka feedforward neural networks or multilayer perceptrons)

I Given a function y = f∗(x) that maps input x to output y

I A DFN defines a parametric mapping ŷ = f(x; θ) with parameters θ

I Aim is to learn θ such as f(x; θ) best approximates f∗(x)!

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 33



Deep Learning 1. What is a Neural Network?

Why Feedforward?
I Given a Feedforward Network ŷ = f(x; θ)

I Input x, then pass through a chain of steps before outputting y

I Example f 1(x), f 2(x) and f 3(x) can be chained as:

I f (x) = f 3(f 2(f 1(x)))

I x is the zero-th layer, or the input layer

I f 1 is the first layer, or the first hidden layer

I f 2 is the second layer, or a second hidden layer

I f 3 is the last layer, or the output layer

I No feedback exists between the steps of the chain
I Feedback connections yield the Recurrent Neural Network

I Number of hidden layers define the depth of the network

I Dimensionality of the hidden layers defines the width of the network

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 33



Deep Learning 1. What is a Neural Network?

Why Neural?

I Loosely inspired by neuroscience, hence Artificial Neural Network

I Each hidden layer node resembles a neuron

I Input to a neuron are the synaptic connections from the previous
attached neuron

I Output of a neuron is an aggregation of the input vector

I Signal propagates forward in a chain of ”Neuron”-to-”Neuron”
transmissions

I However, modern Deep Learning research is steered mainly by
mathematical and engineering principles!

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 33



Deep Learning 1. What is a Neural Network?

Why Network?
I A feed-forward network is an acyclic directed graph, but

I Graph nodes are structured in layers

I Directed links between nodes are parameters/weights

I Each node is a computational functions

I No inter-layer and intra-layer connections (but possible)

I Input to the first layer is given (the features x)

I Output is the computation of the last layer (the target ŷ)

Figure 1: FNN, Source www.analyticsvidhya.com
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 33

www.analyticsvidhya.com


Deep Learning 1. What is a Neural Network?

Nonlinear Mapping
I We can easily solve linear regression, but not every problem is linear.

I Can the function f (x) = (x + 1)2 be approximated through a linear
function?

I Yes, but only if we map the feature x into a new space:

0
20
40f(

a,
b) 60

80
100

f(
x)

x

120

100

80

60

40

f(x)=(x+1)^2

20

0

50-5-10

120

0 20 40 60

a = x^2

80 100

-1010
-5b = x

0
5

10

f(a,b)= a + 2 b + 1

Figure 2: Mapping feature x into a new dimensionality x → φ(x) = (a, b)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 33



Deep Learning 1. What is a Neural Network?

Nonlinear Mapping
I We can easily solve linear regression, but not every problem is linear.

I Can the function f (x) = (x + 1)2 be approximated through a linear
function?

I Yes, but only if we map the feature x into a new space:

0
20
40f(

a,
b) 60

80
100

f(
x)

x

120

100

80

60

40

f(x)=(x+1)^2

20

0

50-5-10

120

0 20 40 60

a = x^2

80 100

-1010
-5b = x

0
5

10

f(a,b)= a + 2 b + 1

Figure 2: Mapping feature x into a new dimensionality x → φ(x) = (a, b)Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 33



Deep Learning 1. What is a Neural Network?

Nonlinear Mapping (II)

I Which mapping φ(x) is the best?

There are various ways of designing φ(x):

1. Hand-craft (manually engineer) φ(x)

2. Use a very generic φ(x), RBF or polynomial expansion

3. Parametrize and learn the mapping f(x; θ,w) := φ(x; θ)Tw

Deep Feedforward Networks follow the third approach, where:

I the hidden layers (weights θ) learn the mapping φ(x ; θ)

I the output layer (weights w) learns the function g(z ;w) := zTw

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 33



Deep Learning 1. What is a Neural Network?

Nonlinear Mapping

I consider the function

f (x) = x2 + 2ex + 3x − 5

I from which latent features can it be linearly combined:

A. x2

B. x2, x , ex

C. x , ex

D. x2, x , ex , sin(x)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 33



Deep Learning 2. An example: XOR

Outline

1. What is a Neural Network?

2. An example: XOR

3. Loss and Output Layer

4. Basic Feedforward Network Architecture

5. Backpropagation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 33



Deep Learning 2. An example: XOR

An example - Learn XOR
I XOR is a function:

x1 x2 y = f ∗(x)

0 0 0
0 1 1
1 0 1
1 1 0

I Can we learn a DFN ŷ = f(x; θ) such that f resembles f ∗?

I Our dataset

Dtrain := {(
(

0
0

)
, 0), (

(
1
0

)
, 1), (

(
0
1

)
, 1), (

(
1
1

)
, 0)}

I Leading to the optimization:

arg min
θ

J(θ) :=
1

4

∑
(x ,y)∈Dtrain

(y − f (x ; θ))2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 33



Deep Learning 2. An example: XOR

An example - Learn XOR (2)
I We will learn a simple DFN with one hidden layer:

Figure 3: Left: Detailed, Right: Compact, Source: Goodfellow et al., 2016

I Two functions are chained h = f 1(x ;W , c) and y = f 2(h;w , b)
I For n-th instance: Hidden-layer h

(n)
i = g

(
W T

:,i x
(n) + ci

)
I For n-th instance: output layer: ŷn = wTh(n) + b

I W ∈ R2×2, c ∈ R2×1,w ∈ R2×1, b ∈ R
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 33



Deep Learning 2. An example: XOR

Rectified Linear Unit (ReLU)
non-linear activation function:

relu(z) := max{0, z}

node:

f (z) := relu(Wz) = max{0,Wz} = (max{0, (W T
k,.z)})k=1:K

Figure 4: The ReLU activation, Source: Goodfellow et al., 2016

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 33



Deep Learning 2. An example: XOR

”Deus ex machina” solution?

Suppose I magically found out that:

W =

(
1 1
1 1

)
, c =

(
0
−1

)
, w =

(
1
−2

)
, b = 0

We would later on see an optimization technique called backpropagation
to learn the network parameters.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 33



Deep Learning 2. An example: XOR

XOR Solution - Hidden Layer Computations

h
(1)
1 = g

(
W T

:,1x1 + c
)

= g

((
1 1

)(0
0

)
+ 0

)
= g (0) = 0

h
(1)
2 = g

(
W T

:,2x1 + c
)

= g

((
1 1

)(0
0

)
− 1

)
= g (−1) = 0

h
(2)
1 = g

(
W T

:,1x2 + c
)

= g

((
1 1

)(0
1

)
+ 0

)
= g (1) = 1

h
(2)
2 = g

(
W T

:,2x2 + c
)

= g

((
1 1

)(0
1

)
− 1

)
= g (0) = 0

h
(3)
1 = g

(
W T

:,1x3 + c
)

= g

((
1 1

)(1
0

)
+ 0

)
= g (1) = 1

h
(3)
2 = g

(
W T

:,2x3 + c
)

= g

((
1 1

)(1
0

)
− 1

)
= g (0) = 0

h
(4)
1 = g

(
W T

:,1x4 + c
)

= g

((
1 1

)(1
1

)
+ 0

)
= g (2) = 2

h
(4)
2 = g

(
W T

:,2x4 + c
)

= g

((
1 1

)(1
1

)
− 1

)
= g (1) = 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 33



Deep Learning 2. An example: XOR

XOR Solution - Output Layer Computations

ŷ (1) = wTh(1) + b =
(
1 −2

)(0
0

)
+ 0 = 0

ŷ (2) = wTh(2) + b =
(
1 −2

)(1
0

)
+ 0 = 1

ŷ (3) = wTh(3) + b =
(
1 −2

)(1
0

)
+ 0 = 1

ŷ (4) = wTh(4) + b =
(
1 −2

)(2
1

)
+ 0 = 0

The computations of the final layer match exactly those of the XOR function.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 33



Deep Learning 3. Loss and Output Layer

Outline

1. What is a Neural Network?

2. An example: XOR

3. Loss and Output Layer

4. Basic Feedforward Network Architecture

5. Backpropagation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 33



Deep Learning 3. Loss and Output Layer

Maximum Likelihood as Objective

I The loss can be expressed in probabilistic terms as

J(θ) = −E(x ,y)∼pdata log pmodel(y | x)

I If our model outputs normal uncertainty:

pmodel(y | x) = N (y ; f (x ; θ), σ2)

 J(θ) =
1

2
E(x ,y)∼pdata(y − f (x ; θ))2 + const

I the model just outputs the mean f (x ; θ),
σ2 is its error variance.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 33



Deep Learning 3. Loss and Output Layer

Output Layer — Gaussian Output Distribution

I Affine transformation without nonlinearity
I Given features h, produces ŷ = wTh + b

I activation function is the identify a(h) := h

I Interpreted as mean of a conditional Gaussian distribution
I p(y | x) = N (y ; ŷ , σ2), ŷ := f (x ; θ)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 33



Deep Learning 3. Loss and Output Layer

Bernoulli Output Distributions

I Binary target variables follow a Bernoulli distribution
P(y = 1) = p, P(y = 0) = 1− p

I Train a DFN such that ŷ = f (x ; θ) ∈ [0, 1]

I Naive Option: clip a linear output layer:
I P(y = 1 | x) = max

{
0,min

{
1,wTh + b

}}
I What is the problem with the clipped linear output layer?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 33



Deep Learning 3. Loss and Output Layer

Bernoulli Output Distributions (2)

I Use a smooth sigmoid output unit:

ŷ = σ (z) =
ez

ez + 1

z = wTh + b

I The loss for a DFN f (x ; θ) with a sigmoid output is:

J(θ) =
N∑

n=1

−yn log(f (xn; θ))− (1− yn) log(1− f (xn, θ))

I Also called cross entropy

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 33



Deep Learning 3. Loss and Output Layer

Multinoulli Output Distribution
I For multi-category targets ŷc = P(y = c | x), c ∈ {1, . . . ,C}

I last latent layer: unnormalized log probabilities:

zc = log P̃(y = c | x) := wT
c h + b

I yields probabilities:

P(y = c | x) := softmax(z)c :=
ezc∑
d

ezd

I Minimizing the log-likelihood loss:

J(θ) =
N∑

n=1

C∑
c=1

−I(yn = c) logP(y = c | x)

=−
N∑

n=1

C∑
c=1

I(yn = c)

(
zc − log

∑
d

ezd

)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 33



Deep Learning 4. Basic Feedforward Network Architecture

Outline

1. What is a Neural Network?

2. An example: XOR

3. Loss and Output Layer

4. Basic Feedforward Network Architecture

5. Backpropagation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 33



Deep Learning 4. Basic Feedforward Network Architecture

Types of Hidden Units

I Question: Can we use no activation function,i.e., only purely linear
layers h = W T x + b?

I Remember the most used hidden layer is ReLU:

h = relu(W T x + b) = max(0,W T x + b)

I Alternatively, the sigmoid function:

h = σ(z)

I or, the hyperbolic tangent:

h = tanh(z) = 2σ(2z)− 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 33



Deep Learning 4. Basic Feedforward Network Architecture

Types of Hidden Units

I Question: Can we use no activation function,i.e., only purely linear
layers h = W T x + b?

I Remember the most used hidden layer is ReLU:

h = relu(W T x + b) = max(0,W T x + b)

I Alternatively, the sigmoid function:

h = σ(z)

I or, the hyperbolic tangent:

h = tanh(z) = 2σ(2z)− 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 33



Deep Learning 4. Basic Feedforward Network Architecture

Architecture of Hidden Layers

A DFN with L hidden layers:

h(1) = g (1)(W (1)T x + b(1))

h(2) = g (2)(W (2)Th(1) + b(2))

. . .

h(L) = g (L)(W (L)Th(L−1) + b(L))

Different layers can have different activation functions.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 33



Deep Learning 5. Backpropagation

Outline

1. What is a Neural Network?

2. An example: XOR

3. Loss and Output Layer

4. Basic Feedforward Network Architecture

5. Backpropagation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 33



Deep Learning 5. Backpropagation

Computational Graphs

x w

z

dot

z = xTw
x w b

z1

dot

z2

+

z2 = z1 + b = xTw + b

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 33



Deep Learning 5. Backpropagation

Computational Graphs

x w b

z1

dot

z2

+

z3

relu

z3 = relu(xTw + b)

x w1 b1

z1

dot

z2

+

z3

relu

w2 b2

z4

dot

z5

+

z6

relu

z6 = relu(wT
2 relu(xTw1 + b1) + b2)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 33



Deep Learning 5. Backpropagation

Forward Computation

I computational graph (Z ,E ), a DAG.
I Z a set of node IDs.

I E ⊆ Z × Z a set of directed edges.

For every node z ∈ Z :
I Tz : domain of the node (e.g., R17)

and additionally for every non-root node z ∈ Z :
I fz :

∏
z′∈fanin(z)

Tz′ → Tz node operation

I forward computation:
Given values vz ∈ Tz of all the root nodes z ∈ Z ,
compute a value for every node z ∈ Z via

vz := fz((vz ′)z ′∈fanin(z)︸ ︷︷ ︸
=:vfanin(z)

)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 33

Note: fanin(Z ,E)(z) := {z ′ ∈ Z | (z ′, z) ∈ E} nodes with edges into z.



Deep Learning 5. Backpropagation

Forward Computation / Example

x w b

z1

dot

z2

+

z3

relu

z3 = relu(xTw + b)

I types for each node:

Tx := R2,Tw := R2,Tb := R,
Tz1 = Tz2 = Tz3 := R

I functions for each non-root node:

f1(x ,w) := xTw , f2(z1, b) = z1 + b,

f3(z2) := relu(z2)

I given values for all root nodes:

x =

(
2
1

)
,w =

(
1
−1

)
, b = 0.5

I compute values for all non-root nodes:

z1 = 1, z2 = 1.5, z3 = 1.5
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 33



Deep Learning 5. Backpropagation

Forward Computation / Algorithm

1 cg-forward((Z ,E , f ), (vz)z∈roots(Z ,E)) :
2 for z ∈ Z \ roots(Z ,E ):
3 vz := fz((vz′)z′∈fanin(z))
4 return (vz)z∈Z

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 33

Note: x_y denotes the concatenation of two lists.



Deep Learning 5. Backpropagation

Forward Computation / Algorithm

1 cg-forward((Z ,E , f ), (vz)z∈roots(Z ,E)) :
2 for z ∈ Z \ roots(Z ,E ) in topological order:
3 vz := fz((vz′)z′∈fanin(z))
4 return (vz)z∈Z

1 topological-order(Z ,E ) :
2 x := ()
3 while Z 6= ∅:
4 choose z ∈ roots(Z ,E ) arbitrarily
5 delete z in graph (Z ,E )
6 x := x_(z)
7 return x

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 33

Note: x_y denotes the concatenation of two lists.



Deep Learning 5. Backpropagation

Gradients in Computational Graphs (1/2)

I lets assume every operation is differentiable and
we have for every non-root node z its gradients functions ∇z ′z = ∂z

∂z ′ :

gz,z ′ :
∏

z̃ ′∈fanin(z)

Tz̃ ′ → Tz × Tz ′ , z ′ ∈ fanin(z)

I for any node then we can compute its gradient values w.r.t. its inputs:

wz,z ′ = gz,z ′((vz̃ ′)z̃ ′∈fanin(z))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 33



Deep Learning 5. Backpropagation

Gradient Computation / Example

x w b

z1

dot

z2

+

z3

relu

z3 = relu(xTw + b)

I functions for each non-root node:

f1(x ,w) := xTw , f2(z1, b) = z1 + b,

f3(z2) := relu(z2)

I gradient functions for each non-root node:

g1,x(x ,w) := w , g1,w (x ,w) := x ,

g2,z1(z1, b) := 1, g2,b(z1, b) := 1

g3,z2(z2) := I(z2 ≥ 0)

I given values for all root nodes:

x =

(
2
1

)
,w =

(
1
−1

)
, b = 0.5

I compute gradient values for all neighbors:

∇z2z3 = 1,∇z1z2 = 1,∇b1z2 = 1,

∇xz1 =

(
1
−1

)
,∇wz1 =

(
2
1

)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 33



Deep Learning 5. Backpropagation

Gradients in Computational Graphs (2/2)

I for any subgraph z ′′ → z ′1, z
′
2, . . . , z

′
K → z by chain rule:

∇z ′′z =
K∑

k=1

∇z ′k
z ∇z ′′z

′
k =

K∑
k=1

∂z

∂z ′k

∂z ′k
∂z ′′

wz,z ′′ =
K∑

k=1

wz,z ′k
gz ′k ,z ′′(vfanin(z

′
k )

)

=
K∑

k=1

∑
i∈dimTz′

k

(wz,z ′k
).,i gz ′k ,z ′′(vfanin(z

′
k )

)i ,. ∈ Tz × Tz ′′

I this way, gradients between any two nodes in a computational graph
can be computed automatically.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 33

z ′′

z ′1 z ′2 . . . z ′K

z



Deep Learning 5. Backpropagation

Gradient Computation / Example

x w b

z1

dot

z2

+

z3

relu

z3 = relu(xTw + b)

I gradient values for all neighbors:

∇z2z3 = 1,∇z1z2 = 1,∇b1z2 = 1,

∇xz1 =

(
1
−1

)
,∇wz1 =

(
2
1

)
I gradient values for all node pairs:

∇z1z3 = 1,∇bz3 = 1,

A.

∇xz3 =

(
2
1

)
,∇wz3 =

(
1
−1

)
B.

∇xz3 =

(
1
−1

)
,∇wz3 =

(
2
1

)
∇xz2 =

(
1
−1

)
,∇wz2 =

(
2
1

)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 33



Deep Learning 5. Backpropagation

Gradient Computation / Example

x w b

z1

dot

z2

+

z3

relu

z3 = relu(xTw + b)

I gradient values for all neighbors:

∇z2z3 = 1,∇z1z2 = 1,∇b1z2 = 1,

∇xz1 =

(
1
−1

)
,∇wz1 =

(
2
1

)
I gradient values for all node pairs:

∇z1z3 = 1,∇bz3 = 1,

∇xz3 =

(
1
−1

)
,∇wz3 =

(
2
1

)
∇xz2 =

(
1
−1

)
,∇wz2 =

(
2
1

)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 33



Deep Learning 5. Backpropagation

Gradient Computation / Algorithm / Single Leaf

1 cg-gradient((Z ,E , f , g), (vz)z∈roots(Z ,E)) :
2 v := cg-forward((Z ,E , f ), (vz)z∈roots(Z ,E))
3 z := single leaf in (Z ,E )
4 wz,z := 1
5 for z ′′ ∈ Z \ {z} in reverse topological order:
6 wz,z′′ := 0
7 for z ′ ∈ fanout(z ′′):
8 wz′,z′′ := gz′,z′′((vz̃′′)z̃′′∈fanin(z′))
9 wz,z′′ := wz,z′′ + wz,z′wz′,z′′

10 return (wz,z′)z′∈roots(Z ,E)

I compute gradients ∇z ′z for single leaf node z and all root nodes z ′

I take the subgraph on ancestors(z) ∩ descendants(Zin) to compute all
gradients ∇z ′z for nodes z ′ ∈ Zin.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 33



Deep Learning 5. Backpropagation

Gradient Computation

I automatic gradient computation in computational graphs combines
I manually specified gradients of elementary functions,

I the chain rule, and

I a useful arrangement of computations
I forward function computations

I backwards gradient computations

I compute each neighbor gradient once (for multiple leaf nodes)

I called backpropagation for feedforward neural networks
I algorithm can be formulated without graph terminology

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

31 / 33



Deep Learning 5. Backpropagation

Summary
I Feedforward neural networks are models for supervised prediction

(regression, classification).

I They consist of L stacked layers, each of the form

z`(z`−1) := a(W T
` z`−1)

consisting of
I a linear combination of the previous layer values with parameters W

I a nonlinear function (activation function).
I often just the rectifying linear unit relu(z) := max{0, z}

I The output layer contains an activation function that reflects the
target type / output distribution:

I identity: for continuous targets (with normally distributed uncertainty)

I logistic function: for a bernoulli probability (binary classification)

I softmax function: for a multinoulli probability (multi-class
classification)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

32 / 33



Deep Learning 5. Backpropagation

Summary (2/2)

I Any loss can be used, esp. the negative log-likelihood.
I for classification problems: called cross entropy

I To learn a feedforward neural network, gradient-descent type
algorithms can be used
(esp. stochastic gradient descent).

I Gradients of neural networks
— and more generally, any computational graph —
can be computed automatically.

I backpropagation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

33 / 33



Deep Learning

Further Readings

I Goodfellow et al. 2016, ch. 6

I Zhang et al. 2020, ch. 2.5, 3–5

I lecture Machine Learning, chapter B.2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

34 / 33

Acknowledgement: An earlier version of the slides for this lecture have been written by my
former postdoc Dr Josif Grabocka.



Deep Learning

References

Charu C. Aggarwal. Neural Networks and Deep Learning: A Textbook. Springer International Publishing, 2018. ISBN
978-3-319-94462-3. doi: 10.1007/978-3-319-94463-0.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The Mit Press, Cambridge, Massachusetts, November
2016. ISBN 978-0-262-03561-3.

Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander Smola. Dive into Deep Learning. https://d2l.ai/, 2020.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

35 / 33


	1. What is a Neural Network?
	2. An example: XOR
	3. Loss and Output Layer
	4. Basic Feedforward Network Architecture
	5. Backpropagation
	Appendix

