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Deep Learning 1. Overfitting and Underfitting
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Deep Learning 1. Overfitting and Underfitting
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Deep Learning 1. Overfitting and Underfitting

NN
Underfitting /Overfitting “

» Underfitting:

» the model is not complex enough to explain the data well.
» results in poor predictive performance.

» Overfitting:
» the model is too complex, it describes the

> noise, inherent random variations of the data generating process,
instead of the
» signal, the underlying relationship between target and predictors.

» results in poor predictive performance as well.
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Deep Learning 1. Overfitting and Underfitting

NN
Overfitting is Easy 4

» generally, overfitting is easy: given N points (xp, y») without repeated
measurements (i.e. x, # Xm, n # m), there exists a polynomial of
degree N — 1 with RSS equal to 0.

X
ZYn 112 s
m;én

» neural networks can accomodate any number of parameters, using
» wider networks: larger layer sizes / more neurons per layer and

» deeper networks: more layers stacked on top of each other

i.e., they can scale to arbitrary high capacities.
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Deep Learning 1. Overfitting and Underfitting

Regularization

» regularization: limit the capacity of a model to avoid overfitting

» structural regularization:
use a model with limited number of parameters
» i.e., a neural network with
> limited width / layer size and
> limited depth / number of layers

» rule of thumb: one parameter for 10 data samples
» very rough rule of thumb
» if no further regularization technique is used

» when also other regularization techniques are used,
the rule is wrong by orders of magnitude!
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Deep Learning 1. Overfitting and Underfitting

Structural Regularization

» a neural network with one hidden layer is trained
with varying layer sizes:

layer size |5 10 20 50 100

training loss 0.332 0.241 0.163 0.101 0.064
validation loss | 0.355 0.278 0.290 0.296 0.301

» how wide is the hidden layer of the best regularized model?
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Deep Learning 2. Parameter Shrinkage
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2. Parameter Shrinkage
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Deep Learning 2. Parameter Shrinkage

Parameter Shrinkage

v

use only small parameter values

v

add a penalty term to the objective function:

f(60; X,y) =£(6; X,y) + 2Q(0)

v

A € [0,00) called regularization weight

v

regularize the neuron weights, but not the bias terms

v

for simplicity use the same A for all layers
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Deep Learning 2. Parameter Shrinkage

Parameter Shrinkage / An Example

Plot for alpha: le-15 Plot for alpha: 1e-10 Plot for alpha: 0.0001
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Figure 1: Regularizing polynomial regression (order 15), Source www.analyticsvidhya.com
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Deep Learning 2. Parameter Shrinkage

L, Regularization

» L5 regularization penalizes high 6 values
F(0; X,y) =£0; X,y) + %979
» gradients of the objective function:

Vof(8; X,y) = Vol(0; X, y) +

» Q: What is the gradient of the L2 penality?
. A0

A

B. A
C. 02
D. 0
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Deep Learning 2. Parameter Shrinkage

L, Regularization

» L, regularization penalizes high 6 values
A
F(6: X.y) = 16 X.y) + 5076
» gradients of the objective function:

Vof(6; X,y) = Vol(0; X,y) + N0

» Vgl(0; X, y) can be computed through backpropagation

» a simple gradient descent step with a learning rate € is:

0"V = 0 — € (Vol(0; X, y) + \0)
= (1= eN)0 — eVgl(0; X, y)
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Deep Learning 2. Parameter Shrinkage

L, Regularization

» L regularization:
F(0: X, y) = €(0: X, y) + All0]]1

=000 X, y) + A |04]
k

» (sub)gradients of the objective function:

1 if 0, >0
Vof (6; X, y) = Vol(6; X, y) + A "k
-1 |f0k§0 k1K

» a simple gradient descent step with a learning rate € is:

0" = 0 — ¢ (Vgl(6; X, y) + A(21(8 > 0) — 1))

Note: I(x) := 1, if x is true, := 0 otherwise. I(6 > 0) = (I(6x > 0))k=1:x-
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Deep Learning 2. Parameter Shrinkage

NN
L1 and L2 Regularizations — lllustration of the Principl@

Figure 2: Competing objective terms. i) the blue line represents the L1 regularization, ii) the
red line represents the L1 regularization, while iii) solid lines represent the objective function.
Source: g2pi.tsc.uc3m.es
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Deep Learning 2. Parameter Shrinkage

Constraining Parameters

» instead of encouraging small parameter values via
minimizing an unconstrained, penalized objective:

min £(0; X, y) == £(0; X,y) + A\Q(0), 6ecRK

» Hinton et al. 2012 propose to constrain parameter values:
min f (6, \; X, y) :=£(0; X, y)
w.rt. [0k| < Omax, Yk

with a given upper bound 6. € R* on parameter values

» project parameters back after updates:

0 .
. max maxg 3 f 0 > 9m X
op = min{1,9 =30y = 10 : 7 10u ’
|0k O, else

» less sensitive to learning rates,
i.e., can be used with large initial learning rates
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Deep Learning 3. Early Stopping
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3. Early Stopping
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Deep Learning 3. Early Stopping

NS
Early Stopping / Motivation “

0.20

T T 1 !
e—e Training set loss
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Figure 3: There is a better generalization in the earlier epochs of the optimization, Source:
Goodfellow et al., 2016
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Deep Learning 3. Early Stopping

Learning Parameters / Fixed Number of Iterations

1 min-fixed-iterations(f, D" 0y, /. ¢) :
2 0= 00

s for ie€(1,2,3,...,1):

s 0:=0—eVyf(6; D)

5 return 6

where
> f:RF x (RM*9)* — R objective function
> DN ¢ (RMX9)* training dataset
> 0o € R¥ initial parameter values (e.g., random)
» | € N number of iterations
>

€ € R* learning rate
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Deep Learning 3. Early Stopping

Learning Parameters / Early Stopping

min-earlystop(f, D", 0y, £, D", leyal, hpatience; - - -)
0= 90
0* :=0,i* :=0,L* := ((6; D"
for i€ (1,2,3,...) while i — i* < haience:
6 := min-fixed-iterations(f, D" 0, loyal, . . .)
L= ¢(6; D)
if L<L*:
0*:=0,i* =i, L* =1L
return 6%, /%, L*

where additionally
> :RF x (RM*9)* 5 R loss function; usually (8, D) = £(6, D) + A\Q()
» DY ¢ (RM*9)* validation dataset
» Jeval € N number of iterations between evaluations
>

Ipatience € N maximal number of iterations without improvement of validation losses
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Deep Learning 3. Early Stopping

Early Stopping as a Regularizer

w2

w1

Figure 4: Effect of early stopping (left) on the parameter weights, compared to L2
regularization (right). Source: Goodfellow et al., 2016
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Deep Learning 3. Early Stopping

Early Stopping as Hyperparameter Optimization

» early stopping also can be seen as hyperparameter optimization:
» hyperparameter: number i of training iterations

» not relevant in optimization,
because there models are trained until convergence.

» but relevant in machine learning
for models that are not perfectly regularized.

» choosing the iteration /* to stop based on validation loss
is just a complete search on hyperparameter i

» overdoing it and training for way to many iterations does not matter

» patience is a mere scalability technique
» esp. useful for models that are expensive to train such as DNNs
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Deep Learning 3. Early Stopping

Early Stopping as Hyperparameter Optimization

» Q: Compared to other hyperparameter optimizations as e.g., layer
size, is the number of training iterations cheap or expensive to
optimize?
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Deep Learning 4. Dropout

. NN
Outline A

4. Dropout

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
18 / 31



Deep Learning 4. Dropout

Dropout / Random Subnetworks
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[source: Goodfellow et al. 2016, p. 258]
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Deep Learning 4. Dropout

NN
Dropout Mechanism “

» drop input and hidden nodes of a network randomly
[Hinton et al., 2012; Srivastava et al., 2014]

» represent dropping by a binary node mask d*:
multiply the value of dropped nodes by zero
ZZ(ZK—I) — a(WZZE—l + bﬂ)
o () = a(WHd T o 2 ) + b)), dft e {0, 1M

» randomly draw dropout masks for every minibatch: d‘ ~ ber(M’, p;)

» typically, node inclusion probability pinput := po := 0.8 for inputs
and phidden := pe¢ := 0.5 for hidden nodes (¢ > 1)

> Pinputs Phidden are hyperparameters

Note: ® denotes elementwise multiplication of vectors: x @ y := (Xn¥n)n=1:n, X,y € RN,

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 4. Dropout

Dropout Mechanism / Backpropagation
» explicit formula:
ozt oz - l—
824_1 0z — 1d|ag(de 1) Z( 0— 1) :a(sze 1+b€)
Ef—l(zf—l) — df—l ® zf—l

» or just use the computational graph: .

B
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Deep Learning 4. Dropout

Dropout / Inference

» when used for inference after training,
average over all possible masks:

Z=Eguber(mp)(d©2z)= ...

» Q: what are the expected latent values under dropout with a node
inclusion probability of p?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 4. Dropout

Dropout / Inference

» when used for inference after training,
average over all possible masks:

2 =Egber(mp)(d©2) =pz

» easily implemented in the network without masks:
» all nodes are used, none is dropped

» all weights are scaled down by the node inclusion probability of the
nodes they are multiplied with:

W@,final = pr_1 WZ

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 4. Dropout

Dropout / Experiment MNIST
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Deep Learning 4. Dropout

NN
Dropout / Experiment MNIST q

» data: MNIST
» N = 60k training plus 10k test instances with

» M = 784 predictors (28 x 28 images of handwritte digits) and
» O =10 targets (binary indicators for digits {0,1,2,...,9})

» models: feedforward neural network
» ignore spatial arrangement of the predictors

» 2 layers of size 800:
(M +1)800 + (800 + 1)800 + (800 + 1) O = 1.3M parameters

» 3 layers of size 2048: 10M parameters
> 2 layers of size 8192: 74M parameters

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 4. Dropout

Dropout / Results MNIST

Method Unit Architecture Error
Type %

Standard Neural Net (Simard et al., 2003) Logistic 2 layers, 800 units 1.60
SVM Gaussian kernel NA NA 1.40
Dropout NN Logistic 3 layers, 1024 units 1.35
Dropout NN ReLU 3 layers, 1024 units 1.25
Dropout NN + max-norm constraint ReLU 3 layers, 1024 units 1.06
Dropout NN + max-norm constraint ReLU 3 layers, 2048 units 1.04
Dropout NN + max-norm constraint ReLU 2 layers, 4096 units 1.01
Dropout NN + max-norm constraint ReLU 2 layers, 8192 units 0.95
Dropout NN + max-norm constraint (Goodfellow Maxout 2 layers, (5 x 240) 0.94
et al., 2013) units

DBN + finetuning (Hinton and Salakhutdinov, 2006)  Logistic 500-500-2000 1.18
DBM + finetuning (Salakhutdinov and Hinton, 2009)  Logistic 500-500-2000 0.96
DBN + dropout finetuning Logistic 500-500-2000 0.92
DBM + dropout finetuning Logistic 500-500-2000 0.79

Table 2: Comparison of different models on MNIST.

Note: DBN = deep belief network, DBM = deep boltzmann machine,
[source: Srivastava et al. 2014, p. 1936]

max-norm constraint see slide 11.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24

31



Deep Learning 4. Dropout

P2
Dropout / Results MNIST o

Method Test Classification error %
L2 1.62
L2 + L1 applied towards the end of training 1.60
L2 + KL-sparsity 1.55
Max-norm 1.35
Dropout + L2 1.25
Dropout + Max-norm 1.05

Table 9: Comparison of different regularization methods on MNIST.

[source: Srivastava et al. 2014, p. 1943]
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Deep Learning 4. Dropout

B
Why does Dropout Work? “

» co-adaptation: nodes extract features that are useful only with the
help of features extracted by other neurons

» dropout reduces co-adaptation as neurons cannot rely on all other
neurons being present, but just a random subset.

» ensembles:

» ensembles = a collection of models used together, e.g., thousand
decision trees, using their average prediction as prediction of the
ensemble.

» selecting a random subset of predictors is a well-known ensembling
technique called bagging (see ML2 lecture).

» using random subnetworks introduces heterogeneity by using different
network wirings.

» but finally
» parameters of all these ensemble components are averaged,

» a single model including all nodes is used.
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Deep Learning 5. Data Augmentation
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5. Data Augmentation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
27 / 31



Deep Learning 5. Data Augmentation

B
Data Augmentation (Noise to Input) i

» Train a model with more data to improve generalization

» Create additional synthetic, "fake” data
by perturbing existing training set instances

» e.g., for image classification:
» translation, rotation, scaling of images; or deformation strategies:

Pair ofrue images Estimated dofomation  Deformaton
that makes image aike  of image A

:
§

Random deformations  Synthetc images.
rom sttt
(saaass

My oo mages

B-EENN

. ~X
~2

.

_L_> - J

spacific
statistcal modol of deformations

[source: compute.dtu.dk]
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Deep Learning 5. Data Augmentation

Data Augmentation

» learn from two training sets:
» the original training set: Dtrain

» the set of augmented samples: D"+ := augment(D2")
» discount the influence of the augmented samples by a case weight:
f(e;Dtrain’Dtrain—l-) — E(G;Dtrain) + aé(e;thrain—{—) + )\Q(G), = R(J)r

» augmented sample weight « is a hyperparameter

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 5. Data Augmentation

Robustness Against Parameter Noise

» noise to parameters reduces overfitting
» used primarily with recurrent neural networks

» consider a regression problem:

F(0) = Epyymp ((9(x:0) = v)?)

» adding a perturbation Af ~ N(0,7nl) to the parameters
yields a perturbed prediction y(x, 0 + Af), such that:

F(0) = Enomn01) E(xyyp (7(x: 0 + AO) — y)?)

» the optimization of this objective for small n is equivalent to adding a
penalty nE(x,y)Np (| ’vﬁ}/}(X; 0)| ‘2)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 5. Data Augmentation

Summary (1/2) YA

» Overfitting the training data too closely leads to bad generalization
on new data and must be avoided (regularization).

» Models can be regularized by adding a penalty term for large
parameter values to the objective function (parameter shrinkage)

» simply the sum of squares of all parameters (L, regularization)
or the sum of their absolute values (L; regularization)

» Also early stopping, i.e., stop training once the error on a validation
sample starts to deteriorate, is a simple regularization method.

» Creating more synthetic data, i.e., by adding transformations or noise
to predictors, is another simple regularization method (data
augmentation).
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Deep Learning 5. Data Augmentation

Summary (2/2) YA

» Dropout is a regularization technique specific for neural networks
using random subnetworks:

» for each minibatch, a random set of nodes is dropped (forced to zero)
» droppings are represented by binary node masks

» predicton and backprogation can easily be incorporate the node masks

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning

Further Readings

» Goodfellow et al. 2016, ch. 7
» Zhang et al. 2020, ch. 4.4-7

» lecture Machine Learning, chapter A.3

Acknowledgement: An earlier version of the slides for this lecture have been written by my

former postdoc Dr Josif Grabocka. _ . ) .
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