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Deep Learning

Syllabus

Tue. 21.4. (1) 1. Supervised Learning (Review 1)
Tue. 28.4. (2) 2. Neural Networks (Review 2)
Tue. 5.5. (3) 3. Regularization for Deep Learning
Tue. 12.5. (4) 4. Optimization for Training Deep Models
Tue. 19.5. (5) 5. Convolutional Neural Networks
Tue. 26.5. (6) 6. Recurrent Neural Networks
Tue. 2.6. — — Pentecoste Break —
Tue. 9.6. (7) 7. Autoencoders
Tue. 16.6. (8) 8. Generative Adversarial Networks
Tue. 23.6. (9) 9. Recent Advances
Tue. 30.6. (10) 10. Engineering Deep Learning Models
Tue. 7.7. (11) tbd.
Tue. 14.7. (12) Q & A
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Deep Learning 1. Overfitting and Underfitting

Fitting of models

5 10 15 20 25

0
20

40
60

80
10

0
12

0

Linear model
 (RSS= 11353.52 )

Speed

B
re

ak
in

g 
di

st
an

ce

5 10 15 20 25

0
20

40
60

80
10

0
12

0

Quadratic model
 (RSS= 10824.72 )

Speed

B
re

ak
in

g 
di

st
an

ce

5 10 15 20 25

0
20

40
60

80
10

0
12

0

Polynomial model
 (RSS= 7028.88 )

Speed
B

re
ak

in
g 

di
st

an
ce

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 31



Deep Learning 1. Overfitting and Underfitting

Underfitting/Overfitting

I Underfitting:
I the model is not complex enough to explain the data well.
I results in poor predictive performance.

I Overfitting:
I the model is too complex, it describes the

I noise, inherent random variations of the data generating process,
instead of the

I signal, the underlying relationship between target and predictors.

I results in poor predictive performance as well.
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Deep Learning 1. Overfitting and Underfitting

Overfitting is Easy

I generally, overfitting is easy: given N points (xn, yn) without repeated
measurements (i.e. xn 6= xm, n 6= m), there exists a polynomial of
degree N − 1 with RSS equal to 0.

ŷ(x) :=
N∑

n=1

yn

N∏
m=1
m 6=n

x − xm
xn − xm

I neural networks can accomodate any number of parameters, using
I wider networks: larger layer sizes / more neurons per layer and

I deeper networks: more layers stacked on top of each other

i.e., they can scale to arbitrary high capacities.
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Deep Learning 1. Overfitting and Underfitting

Regularization

I regularization: limit the capacity of a model to avoid overfitting

I structural regularization:
use a model with limited number of parameters

I i.e., a neural network with
I limited width / layer size and

I limited depth / number of layers

I rule of thumb: one parameter for 10 data samples
I very rough rule of thumb

I if no further regularization technique is used

I when also other regularization techniques are used,
the rule is wrong by orders of magnitude!
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Deep Learning 1. Overfitting and Underfitting

Structural Regularization

I a neural network with one hidden layer is trained
with varying layer sizes:

layer size 5 10 20 50 100

training loss 0.332 0.241 0.163 0.101 0.064
validation loss 0.355 0.278 0.290 0.296 0.301

I how wide is the hidden layer of the best regularized model?
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Deep Learning 2. Parameter Shrinkage
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Deep Learning 2. Parameter Shrinkage

Parameter Shrinkage

I use only small parameter values

I add a penalty term to the objective function:

f (θ;X , y) := `(θ;X , y) + λΩ(θ)

I λ ∈ [0,∞) called regularization weight

I regularize the neuron weights, but not the bias terms

I for simplicity use the same λ for all layers
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Deep Learning 2. Parameter Shrinkage

Parameter Shrinkage / An Example

Figure 1: Regularizing polynomial regression (order 15), Source www.analyticsvidhya.com
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Deep Learning 2. Parameter Shrinkage

L2 Regularization
I L2 regularization penalizes high θ values

f (θ;X , y) = `(θ;X , y) +
λ

2
θT θ

I gradients of the objective function:

∇θf (θ;X , y) = ∇θ`(θ;X , y) +

λθ

. . .

I Q: What is the gradient of the L2 penality?
A. λθ

B. λ

C. θ2

D. 0

I ∇θ`(θ;X , y) can be computed through backpropagation

I a simple gradient descent step with a learning rate ε is:

θnew := θ − ε (∇θ`(θ;X , y) + λθ)

= (1− ελ)θ − ε∇θ`(θ;X , y)
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Deep Learning 2. Parameter Shrinkage

L1 Regularization

I L1 regularization:

f (θ;X , y) := `(θ;X , y) + λ||θ||1
= `(θ;X , y) + λ

∑
k

|θk |

I (sub)gradients of the objective function:

∇θf (θ;X , y) = ∇θ`(θ;X , y) + λ

({
1 if θk > 0

−1 if θk ≤ 0

)
k=1:K

I a simple gradient descent step with a learning rate ε is:

θnew := θ − ε (∇θ`(θ;X , y) + λ(2 I(θ > 0)− 1))
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Note: I(x) := 1, if x is true, := 0 otherwise. I(θ > 0) = (I(θk > 0))k=1:K .



Deep Learning 2. Parameter Shrinkage

L1 and L2 Regularizations — Illustration of the Principle

Figure 2: Competing objective terms. i) the blue line represents the L1 regularization, ii) the
red line represents the L1 regularization, while iii) solid lines represent the objective function.
Source: g2pi.tsc.uc3m.es
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Deep Learning 2. Parameter Shrinkage

Constraining Parameters
I instead of encouraging small parameter values via

minimizing an unconstrained, penalized objective:

min f (θ;X , y) := `(θ;X , y) + λΩ(θ), θ ∈ RK

I Hinton et al. 2012 propose to constrain parameter values:

min f (θ, λ;X , y) := `(θ;X , y)

w.r.t. |θk | ≤ θmax, ∀k
with a given upper bound θmax ∈ R+ on parameter values

I project parameters back after updates:

θproj
k := min{1, θmax

|θk |
} θk =

{
θmax
|θk | θk , if |θk | > θmax

θk , else

I less sensitive to learning rates,
i.e., can be used with large initial learning rates
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Deep Learning 3. Early Stopping
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Deep Learning 3. Early Stopping

Early Stopping / Motivation

Figure 3: There is a better generalization in the earlier epochs of the optimization, Source:
Goodfellow et al., 2016
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Deep Learning 3. Early Stopping

Learning Parameters / Fixed Number of Iterations

1 min-fixed-iterations(f ,Dtrain, θ0, I , ε) :
2 θ := θ0

3 for i ∈ (1, 2, 3, . . . , I ):

4 θ := θ − ε∇θf (θ;Dtrain)
5 return θ

where

I f : RK × (RM×O)∗ → R objective function

I Dtrain ∈ (RM×O)∗ training dataset

I θ0 ∈ RK initial parameter values (e.g., random)

I I ∈ N number of iterations

I ε ∈ R+ learning rate
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Deep Learning 3. Early Stopping

Learning Parameters / Early Stopping

1 min-earlystop(f ,Dtrain, θ0, `,Dval, Ieval, Ipatience, . . .) :
2 θ := θ0

3 θ∗ := θ, i∗ := 0, L∗ := `(θ;Dval)
4 for i ∈ (1, 2, 3, . . .) while i − i∗ ≤ Ipatience:

5 θ := min-fixed-iterations(f ,Dtrain, θ, Ieval, . . .)

6 L := `(θ;Dval)
7 if L < L∗:
8 θ∗ := θ, i∗ := i , L∗ := L
9 return θ∗, i∗, L∗

where additionally

I ` : RK × (RM×O)∗ → R loss function; usually f (θ,D) = `(θ,D) + λΩ(θ)

I Dval ∈ (RM×O)∗ validation dataset

I Ieval ∈ N number of iterations between evaluations

I Ipatience ∈ N maximal number of iterations without improvement of validation losses
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Deep Learning 3. Early Stopping

Early Stopping as a Regularizer

Figure 4: Effect of early stopping (left) on the parameter weights, compared to L2
regularization (right). Source: Goodfellow et al., 2016
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Deep Learning 3. Early Stopping

Early Stopping as Hyperparameter Optimization

I early stopping also can be seen as hyperparameter optimization:
I hyperparameter: number i of training iterations

I not relevant in optimization,
because there models are trained until convergence.

I but relevant in machine learning
for models that are not perfectly regularized.

I choosing the iteration i∗ to stop based on validation loss
is just a complete search on hyperparameter i

I overdoing it and training for way to many iterations does not matter

I patience is a mere scalability technique
I esp. useful for models that are expensive to train such as DNNs
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Deep Learning 3. Early Stopping

Early Stopping as Hyperparameter Optimization

I Q: Compared to other hyperparameter optimizations as e.g., layer
size, is the number of training iterations cheap or expensive to
optimize?
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Deep Learning 4. Dropout

Dropout / Random Subnetworks
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Deep Learning 4. Dropout

Dropout Mechanism

I drop input and hidden nodes of a network randomly
[Hinton et al., 2012; Srivastava et al., 2014]

I represent dropping by a binary node mask d`:
multiply the value of dropped nodes by zero

z`(z`−1) := a(W `z`−1 + b`)

 z`(z`−1) := a(W `(d`−1 � z`−1) + b`), d`−1 ∈ {0, 1}M`−1

I randomly draw dropout masks for every minibatch: d` ∼ ber(M`, p`)
I typically, node inclusion probability pinput := p0 := 0.8 for inputs

and phidden := p` := 0.5 for hidden nodes (` ≥ 1)

I pinput, phidden are hyperparameters

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 31

Note: � denotes elementwise multiplication of vectors: x � y := (xnyn)n=1:N , x , y ∈ RN .



Deep Learning 4. Dropout

Dropout Mechanism / Backpropagation
I explicit formula:

∂z`

∂z`−1
=

∂z`

∂z̃`−1
diag(d`−1), z`(z̃`−1) := a(W `z̃`−1 + b`)

z̃`−1(z`−1) := d`−1 � z`−1

I or just use the computational graph:

x1 x2

z1 z2

y

x1 x2d0
1 d0

2

x̃1 x̃2

z1 z2d1
1 d1

2

z̃1 z̃2

y
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Deep Learning 4. Dropout

Dropout / Inference

I when used for inference after training,
average over all possible masks:

z̃ = Ed∼ber(M,p)(d � z) = . . .

p z

I Q: what are the expected latent values under dropout with a node
inclusion probability of p?

I easily implemented in the network without masks:
I all nodes are used, none is dropped

I all weights are scaled down by the node inclusion probability of the
nodes they are multiplied with:

W `,final := p`−1W
`
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Deep Learning 4. Dropout

Dropout / Experiment MNIST

CHAPTER 1. INTRODUCTION

Figure 1.9: Example inputs from the MNIST dataset. The “NIST” stands for National
Institute of Standards and Technology, the agency that originally collected this data.
The “M” stands for “modified,” since the data has been preprocessed for easier use with
machine learning algorithms. The MNIST dataset consists of scans of handwritten digits
and associated labels describing which digit 0-9 is contained in each image. This simple
classification problem is one of the simplest and most widely used tests in deep learning
research. It remains popular despite being quite easy for modern techniques to solve.
Geoffrey Hinton has described it as “the of machine learning,” meaning that
it allows machine learning researchers to study their algorithms in controlled laboratory
conditions, much as biologists often study fruit flies.

22

[source: Goodfellow et al. 2016, p. 22]
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Deep Learning 4. Dropout

Dropout / Experiment MNIST

I data: MNIST
I N = 60k training plus 10k test instances with

I M = 784 predictors (28× 28 images of handwritte digits) and

I O = 10 targets (binary indicators for digits {0, 1, 2, . . . , 9})

I models: feedforward neural network
I ignore spatial arrangement of the predictors

I 2 layers of size 800:
(M + 1)800 + (800 + 1)800 + (800 + 1)O = 1.3M parameters

...

I 3 layers of size 2048: 10M parameters

I 2 layers of size 8192: 74M parameters
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Deep Learning 4. Dropout

Dropout / Results MNIST

Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

• Alternative Splicing data set: RNA features for predicting alternative gene splicing
(Xiong et al., 2011).

We chose a diverse set of data sets to demonstrate that dropout is a general technique
for improving neural nets and is not specific to any particular application domain. In this
section, we present some key results that show the effectiveness of dropout. A more detailed
description of all the experiments and data sets is provided in Appendix B.

Data Set Domain Dimensionality Training Set Test Set

MNIST Vision 784 (28 × 28 grayscale) 60K 10K
SVHN Vision 3072 (32 × 32 color) 600K 26K
CIFAR-10/100 Vision 3072 (32 × 32 color) 60K 10K
ImageNet (ILSVRC-2012) Vision 65536 (256 × 256 color) 1.2M 150K
TIMIT Speech 2520 (120-dim, 21 frames) 1.1M frames 58K frames
Reuters-RCV1 Text 2000 200K 200K
Alternative Splicing Genetics 1014 2932 733

Table 1: Overview of the data sets used in this paper.

6.1 Results on Image Data Sets

We used five image data sets to evaluate dropout—MNIST, SVHN, CIFAR-10, CIFAR-100
and ImageNet. These data sets include different image types and training set sizes. Models
which achieve state-of-the-art results on all of these data sets use dropout.

6.1.1 MNIST

Method
Unit
Type

Architecture
Error

%

Standard Neural Net (Simard et al., 2003) Logistic 2 layers, 800 units 1.60
SVM Gaussian kernel NA NA 1.40
Dropout NN Logistic 3 layers, 1024 units 1.35
Dropout NN ReLU 3 layers, 1024 units 1.25
Dropout NN + max-norm constraint ReLU 3 layers, 1024 units 1.06
Dropout NN + max-norm constraint ReLU 3 layers, 2048 units 1.04
Dropout NN + max-norm constraint ReLU 2 layers, 4096 units 1.01
Dropout NN + max-norm constraint ReLU 2 layers, 8192 units 0.95
Dropout NN + max-norm constraint (Goodfellow
et al., 2013)

Maxout
2 layers, (5 × 240)

units
0.94

DBN + finetuning (Hinton and Salakhutdinov, 2006) Logistic 500-500-2000 1.18
DBM + finetuning (Salakhutdinov and Hinton, 2009) Logistic 500-500-2000 0.96
DBN + dropout finetuning Logistic 500-500-2000 0.92
DBM + dropout finetuning Logistic 500-500-2000 0.79

Table 2: Comparison of different models on MNIST.

The MNIST data set consists of 28 × 28 pixel handwritten digit images. The task is
to classify the images into 10 digit classes. Table 2 compares the performance of dropout
with other techniques. The best performing neural networks for the permutation invariant

1936

[source: Srivastava et al. 2014, p. 1936]
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Note: DBN = deep belief network, DBM = deep boltzmann machine,
max-norm constraint see slide 11.



Deep Learning 4. Dropout

Dropout / Results MNIST

Dropout

Method Test Classification error %

L2 1.62
L2 + L1 applied towards the end of training 1.60
L2 + KL-sparsity 1.55
Max-norm 1.35
Dropout + L2 1.25
Dropout + Max-norm 1.05

Table 9: Comparison of different regularization methods on MNIST.

also see how the advantages obtained from dropout vary with the probability of retaining
units, size of the network and the size of the training set. These observations give some
insight into why dropout works so well.

7.1 Effect on Features

(a) Without dropout (b) Dropout with p = 0.5.

Figure 7: Features learned on MNIST with one hidden layer autoencoders having 256 rectified
linear units.

In a standard neural network, the derivative received by each parameter tells it how it
should change so the final loss function is reduced, given what all other units are doing.
Therefore, units may change in a way that they fix up the mistakes of the other units.
This may lead to complex co-adaptations. This in turn leads to overfitting because these
co-adaptations do not generalize to unseen data. We hypothesize that for each hidden unit,
dropout prevents co-adaptation by making the presence of other hidden units unreliable.
Therefore, a hidden unit cannot rely on other specific units to correct its mistakes. It must
perform well in a wide variety of different contexts provided by the other hidden units. To
observe this effect directly, we look at the first level features learned by neural networks
trained on visual tasks with and without dropout.

1943

[source: Srivastava et al. 2014, p. 1943]
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Deep Learning 4. Dropout

Why does Dropout Work?
I co-adaptation: nodes extract features that are useful only with the

help of features extracted by other neurons
I dropout reduces co-adaptation as neurons cannot rely on all other

neurons being present, but just a random subset.

I ensembles:
I ensembles = a collection of models used together, e.g., thousand

decision trees, using their average prediction as prediction of the
ensemble.

I selecting a random subset of predictors is a well-known ensembling
technique called bagging (see ML2 lecture).

I using random subnetworks introduces heterogeneity by using different
network wirings.

I but finally
I parameters of all these ensemble components are averaged,

I a single model including all nodes is used.
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Deep Learning 5. Data Augmentation
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Deep Learning 5. Data Augmentation

Data Augmentation (Noise to Input)
I Train a model with more data to improve generalization

I Create additional synthetic, ”fake” data
by perturbing existing training set instances

I e.g., for image classification:
I translation, rotation, scaling of images; or deformation strategies:

[source: compute.dtu.dk]
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 31



Deep Learning 5. Data Augmentation

Data Augmentation

I learn from two training sets:
I the original training set: Dtrain

I the set of augmented samples: Dtrain+ := augment(Dtrain)

I discount the influence of the augmented samples by a case weight:

f (θ;Dtrain,Dtrain+) := `(θ;Dtrain) + α`(θ;Dtrain+) + λΩ(θ), α ∈ R+
0

I augmented sample weight α is a hyperparameter
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Deep Learning 5. Data Augmentation

Robustness Against Parameter Noise

I noise to parameters reduces overfitting

I used primarily with recurrent neural networks

I consider a regression problem:

f (θ) = E(x ,y)∼p

(
(ŷ(x ; θ)− y)2

)
I adding a perturbation ∆θ ∼ N (0, ηI ) to the parameters

yields a perturbed prediction ŷ(x , θ + ∆θ), such that:

f (θ) = E∆θ∼N (0,ηI ) E(x ,y)∼p
(
(ŷ(x ; θ + ∆θ)− y)2

)
I the optimization of this objective for small η is equivalent to adding a

penalty η E(x ,y)∼p
(
||∇θŷ(x ; θ)||2

)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 5. Data Augmentation

Summary (1/2)

I Overfitting the training data too closely leads to bad generalization
on new data and must be avoided (regularization).

I Models can be regularized by adding a penalty term for large
parameter values to the objective function (parameter shrinkage)

I simply the sum of squares of all parameters (L2 regularization)
or the sum of their absolute values (L1 regularization)

I Also early stopping, i.e., stop training once the error on a validation
sample starts to deteriorate, is a simple regularization method.

I Creating more synthetic data, i.e., by adding transformations or noise
to predictors, is another simple regularization method (data
augmentation).
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Deep Learning 5. Data Augmentation

Summary (2/2)

I Dropout is a regularization technique specific for neural networks
using random subnetworks:

I for each minibatch, a random set of nodes is dropped (forced to zero)

I droppings are represented by binary node masks

I predicton and backprogation can easily be incorporate the node masks
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Deep Learning

Further Readings

I Goodfellow et al. 2016, ch. 7

I Zhang et al. 2020, ch. 4.4–7

I lecture Machine Learning, chapter A.3
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former postdoc Dr Josif Grabocka.
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