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Deep Learning

Syllabus

Tue. 21.4. (1) 1. Supervised Learning (Review 1)
Tue. 28.4. (2) 2. Neural Networks (Review 2)
Tue. 5.5. (3) 3. Regularization for Deep Learning
Tue. 12.5. (4) 4. Optimization for Training Deep Models
Tue. 19.5. (5) 5. Convolutional Neural Networks
Tue. 26.5. (6) 6. Recurrent Neural Networks
Tue. 2.6. — — Pentecoste Break —
Tue. 9.6. (7) 7. Autoencoders
Tue. 16.6. (8) 8. Generative Adversarial Networks
Tue. 23.6. (9) 9. Recent Advances
Tue. 30.6. (10) 10. Engineering Deep Learning Models
Tue. 7.7. (11) tbd.
Tue. 14.7. (12) Q & A
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Deep Learning 1. Learning as Optimization

Learning as Optimization
I Optimization:

find the parameters x∗ with minimum value of the objective function f :

x∗ := arg min
x

f (x)

I Learning:
find the model parameters θ∗ with minimum value of the objective
function f for the training data set:

θ∗ := arg min
θ

f (θ;Dtrain)

f (θ;Dtrain) :=
1

N

(
N∑

n=1

`(yn, ŷ(xn; θ))

)
+ λΩ(θ),

=
1

N

N∑
n=1

f (θ; {(xn, yn)})

Dtrain = {(x1, y1), (x2, y2), . . . , (xN , yN)}
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Deep Learning 1. Learning as Optimization

Gradient Descent (basic version)

1 learn-gd(f : RP → R,Dtrain, σ2 ∈ R+, µ, imax ∈ N):
2 θ ∼ N (0, σ2)
3 for i = 1, . . . , imax:

4 g := ∇f (θ;Dtrain)
5 θ := θ − µig
6 return θ

f objective function (as function in the parameters θ)

Dtrain training data

σ2 parameter initialization variance

µ step size schedule

imax maximal number of iterations
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Deep Learning 1. Learning as Optimization

Issues: Non-Convexity / Local Minima

I The objective functions of neural networks are highly non-convex

Figure 1: A non-convex function has multiple local minima, source: imgur.com
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Deep Learning 1. Learning as Optimization

Issues: Saddle Points

I In addition to local minima, objective functions include saddle points

Figure 2: Saddle points, Source: Goodfellow et al., 2016

I Gradients are very small around a saddle point
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Deep Learning 1. Learning as Optimization

Convex vs. Non-Convex Objective Functions
A. f (θ) := θ2

θ

f

B. f (θ) := 1
3θ

3 − 7
3θ

θ

f

C.
f (θ) := 37

360θ
4 + 17

60θ
3− 133

360θ
2− 51

20θ−2

θ

f
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Deep Learning 2. Parameter Initializations
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Deep Learning 2. Parameter Initializations

Parameter Initializations May Matter

I convex optimization:
I there exists a global minimum

I it does not matter where we start,
minimization always converges to the global minimum

I e.g., initialize θ = 0

I non-convex optimization:
I there exist many local minima

I depending on where we start,
minimization might converge to a different local minimum

 parameter initialization may matter
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Deep Learning 2. Parameter Initializations

Issue: Symmetric Networks Stay Symmetric

I neural network:

z`(z`−1) := a(W `z`−1 + b`)

I assume we initialized all neurons of each layer
with the same weights and biases:

W `
m,k = W `

m′,k , b`m = b`m′ ∀`,m,m′, k

I then their gradients are identical:

∂f (θ)

∂W `
m,k

=
∂f (zL+1)

∂z`
∂z`(z`−1)

∂W `
m,k

 we need to break the symmetry
I e.g., initialize randomly W `

m,k ∼ N (0, σ2)
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Deep Learning 2. Parameter Initializations

Normalized Initialization [Glorot and Bengio, 2010]
I keep variances of all layers and all gradients constant:

I view all variables X ,Z `,W ` as random variables

I assume no activation function, independent weight matrices W `

var(Z `) = var(W `)M`−1 var(Z `−1)  var(W `)
!

=
1

M`−1

var(∇Z `−1f ) = var(W `)M` var(∇Z `f )  var(W `)
!

=
1

M`

I Q: How should we set the variance of W such that both,
I the variance of the latent values z and
I the variance of the gradients

stays constant across layers?

I weights:

W `
m,k ∼ unif(−

√
6

M`−1 + M`
,

√
6

M`−1 + M`
), with layer sizes M`

I uniform distribution has variance

var(unif(a, b)) =
(b − a)2

12
=

here

2

M`−1 + M`
=

1
M`−1+M`

2

a compromise

I biases: b`m := 0
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Deep Learning 2. Parameter Initializations

Initializing Biases

I biases often just set to zero

I biases on hidden layers:
I set to a small positive constant:

b` := c > 0

I e.g., c := 0.1

I esp. for ReLU to avoid the ”Dead ReLU” phenomenon

I biases on output layer:
I optimal biases to predict average output for zero weights:

bL+1 := arg min
b

`(ȳ , 0 + b), ȳ :=
1

N

N∑
n=1

yn
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Deep Learning 3. Gradient Estimation and Momentum

Gradient Estimation
I global shape of the objective function is unknown

I only have local gradients as information:
I batch of full training set Dtrain := {(x1, y1), . . . , (xN , yN )}:

g := ∇θf (θ;Dtrain) =
1

N

N∑
n=1

∇θf (θ; xn, yn)

I mini batch Dbatch = {(xn1 , yn1 ), . . . , (xnB
, ynB

)} ⊆ Dtrain for B � N:

ĝ := ∇θf (θ;Dbatch) =
1

|Dbatch|
∑

(x,y)∈Dbatch

∇θf (θ; x , y)

=
1

B

B∑
b=1

∇θf (θ; xnb
, ynb

)

I online w.r.t. a single instance (xn, yn) (= mini batch with B = 1):

ĝ = ∇θf (θ; xn, yn)
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Deep Learning 3. Gradient Estimation and Momentum

Stochastic Gradient Descent (basic version)

1 learn-sgd(f : RP → R,Dtrain, σ2 ∈ R+, µ, imax ∈ N,B ∈ N):
2 θ ∼ N (0, σ2)
3 for i = 1, . . . , imax:

4 Dbatch ∼ Dtrain draw B instances uniformly at random

5 g := ∇f (θ;Dbatch)
6 θ := θ − µig
7 return θ

f objective function (as function in the parameters θ)

Dtrain training data

σ2 parameter initialization variance

µ step size schedule

imax maximal number of iterations

B minibatch size
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Deep Learning 3. Gradient Estimation and Momentum

Momentum

Figure 3: A quadratic loss with a poor conditioned Hessian; Black arrows: Gradient descent
steps; Red line: Momentum correction, Source: Goodfellow et al., 2016
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Deep Learning 3. Gradient Estimation and Momentum

Momentum
I instead of only using the current gradient in each step

g1 := ∇θf (θ1;Dbatch
1 ), g2 := ∇θf (θ2;Dbatch

2 ), . . . , gi := ∇θf (θi ;Dbatch
i )

use an exponentially smoothed update step:

v := −
i∑

j=1

αi−j µjgj

= −αi−1µ1g1 − αi−2µ2g2 − · · · − α1µi−1gi−1 −��α
0µigi , α ∈ [0, 1)

I Q: How can we compute v efficiently?

I v can be computed efficiently recursively:

v := αv − µigi

I finally θ := θ + v

I αv is often called momentum, v sometimes a velocity.
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Deep Learning 3. Gradient Estimation and Momentum

SGD with Momentum

1 learn-sgd-moment(f : RP → R,Dtrain, σ2 ∈ R+, µ, imax ∈ N,B ∈ N, α):
2 θ ∼ N (0, σ2)
3 v := 0
4 for i = 1, . . . , imax:

5 Dbatch ∼ Dtrain draw B instances uniformly at random

6 g := ∇f (θ;Dbatch)
7 v := αv − µig
8 θ := θ + v
9 return θ

α update step decay factor, e.g., α ∈ {0.5, 0.9, 0.99}
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Deep Learning 3. Gradient Estimation and Momentum

Nesterov Momentum

I Nesterov momentum adds a correction (look-ahead) factor to the
standard velocity update

Figure 4: Nesterov momentum with a correction factor

I Computes gradient at the updated weights:

v := αv − µ∇θf (θ+αv ;Dbatch)

I currently the most widely used momentum in Deep Learning libraries
(Tensorflow, PyTorch)
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Deep Learning 3. Gradient Estimation and Momentum

SGD with Nesterov Momentum

1 learn-sgd-nesterov(f : RP → R,Dtrain, σ2 ∈ R+, µ, imax ∈ N,B ∈ N, α):
2 θ ∼ N (0, σ2)
3 v := 0
4 for i = 1, . . . , imax:

5 Dbatch ∼ Dtrain draw B instances uniformly at random

6 g := ∇f (θ+αv ;Dbatch)
7 v := αv − µig
8 θ := θ + v
9 return θ

α update step decay factor, e.g., α ∈ {0.5, 0.9, 0.99}
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Deep Learning 4. Adaptive Learning Rates
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Deep Learning 4. Adaptive Learning Rates

Stochastic Gradient Descent and Learning Rates

I What is a good learning rate / step size µ ?

Figure 5: Cliffs and Exploding Gradients, Source: Goodfellow et al., 2016
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Deep Learning 4. Adaptive Learning Rates

Decaying Learning Rates

I Converges if
∞∑

i=1
µi =∞ and

∞∑
i=1

µ2
i <∞

I In practice, it is common to decay the learning rate:

µi =

{(
1− i

τ

)
µ0 + i

τ µτ if i < τ

µτ if i ≥ τ
, where µ0 � µτ
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Deep Learning 4. Adaptive Learning Rates

Adagrad

I individual learning rate µ̃i ,p for every iteration i and parameter θp

I strongly decrease learning rate for large gradients:

rp := rp + g2
p

µ̃i ,p :=
µi

δ +
√
rp
, p = 1, . . . ,P

I δ > 0 a small constant

I rapid progress in gently sloped directions

I Q: What might happen if Adagrad is run for many iterations?
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Note: In vector notation: r := r + g � g and µ̃i := µi
δ+
√

r
where � is elementwise product

and
√

r also taken elementwise.



Deep Learning 4. Adaptive Learning Rates

SGD with Adagrad

1 learn-sgd-adagrad(f : RP → R,Dtrain, σ2 ∈ R+, µ, imax ∈ N,B ∈ N, δ):
2 θ ∼ N (0, σ2)
3 r := 0
4 for i = 1, . . . , imax:

5 Dbatch ∼ Dtrain draw B instances uniformly at random

6 g := ∇f (θ;Dbatch)
7 r := r + g � g
8 µ̃ := µi

δ+
√

r

9 θ := θ − µ̃� g
10 return θ

δ > 0 small constant
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Deep Learning 4. Adaptive Learning Rates

Root Mean Square Propagation (RMSProp)

I As
√
r monotonically increases in Adagrad, µ√

r
becomes too small

I RMSProp introduces an exponentially decaying average of the
squared gradient history

1 learn-sgd-rmsprop(f : RP → R,Dtrain, σ2 ∈ R+, µ, imax ∈ N,B ∈ N, δ, ρ):
2 θ ∼ N (0, σ2)
3 r := 0
4 for i = 1, . . . , imax:

5 Dbatch ∼ Dtrain draw B instances uniformly at random

6 g := ∇f (θ;Dbatch)
7 r := ρr + (1− ρ)g � g
8 µ̃ := µi

δ+
√

r

9 θ := θ − µ̃� g
10 return θ
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Deep Learning 4. Adaptive Learning Rates

SGD with Nesterov Momentum and RMSProp

1 learn-sgd-nesterov-rmsprop(f : RP → R,Dtrain, σ2 ∈ R+, µ, imax ∈ N,B ∈ N, α, ρ):
2 θ ∼ N (0, σ2)
3 v := 0
4 r := 0
5 for i = 1, . . . , imax:

6 Dbatch ∼ Dtrain draw B instances uniformly at random

7 g := ∇f (θ+αv ;Dbatch)
8 r := ρr + (1− ρ)g � g
9 µ̃ := µi

δ+
√

r

10 v := αv − µ̃� g
11 θ := θ + v
12 return θ

α update step decay factor, e.g., α ∈ {0.5, 0.9, 0.99}
ρ gradient square decay factor
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Deep Learning 4. Adaptive Learning Rates

SGD with Adaptive Moment (ADAM)

1 learn-sgd-adam(f : RP → R,Dtrain, σ2 ∈ R+, µ, imax ∈ N,B ∈ N, α, ρ):
2 θ ∼ N (0, σ2)
3 v := 0
4 r := 0
5 for i = 1, . . . , imax:

6 Dbatch ∼ Dtrain draw B instances uniformly at random

7 g := ∇f (θ;Dbatch)

8 v := 1
1−αi (αv + (1− α)g)

9 r := 1
1−ρi (ρr + (1− ρ)g � g)

10 µ̃ := µi

δ+
√

r

11 θ := θ − µ̃v
12 return θ

α gradient decay factor, e.g., α ∈ {0.5, 0.9, 0.99}
ρ gradient square decay factor

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 27



Deep Learning 4. Adaptive Learning Rates

Comparing Various Optimization Approaches

Figure 6: Optimizing a logistic regression model, Source: gmo.jp
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Deep Learning 4. Adaptive Learning Rates

Illustrations of Performance

Two illustrations (Source: cs.stanford.edu)

I http://cs231n.github.io/assets/nn3/opt1.gif

I http://cs231n.github.io/assets/nn3/opt2.gif
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Deep Learning 4. Adaptive Learning Rates

Summary (1/2)
I Learning the parameters of a model means minimizing the

objective function.
I the objective function is a big sum over instance wise losses and a

regularization term

I a stochastic function estimated based on mini batches (subsets of the
training data)

I gradients then also are averages over mini batches

I Learning a neural network is a highly non-convex optimization
problem

I many local minima

I saddle points

I Parameter initialization matters.
I it must be randomized (to break the symmetry)

I normalized initialization to enforce similar variances of latent values
and gradients across layers
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Deep Learning 4. Adaptive Learning Rates

Summary (2/2)

I a momentum can be added to SGD to stabilize the search direction
I sum of exponetially decayed update steps

(instead of just last update step)

I Nesterovs momentum: look ahead

I learning rates can be computed adaptively
I individual for each parameter (AdaGrad, RMSProp)

I momentum and adaptive learning rates can be combined (ADAM)
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Deep Learning

Further Readings

I Goodfellow et al. 2016, ch. 8

I for initialization: Zhang et al. 2020, ch. 4.8

I lecture Modern Optimization Techniques, chapters 2.1 and 2.2.
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Deep Learning
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