
Deep Learning

Deep Learning
5. Convolutional Neural Networks (CNNs)

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 33

Deep Learning

Syllabus

Tue. 21.4. (1) 1. Supervised Learning (Review 1)
Tue. 28.4. (2) 2. Neural Networks (Review 2)
Tue. 5.5. (3) 3. Regularization for Deep Learning
Tue. 12.5. (4) 4. Optimization for Training Deep Models
Tue. 19.5. (5) 5. Convolutional Neural Networks
Tue. 26.5. (6) 6. Recurrent Neural Networks
Tue. 2.6. — — Pentecoste Break —
Tue. 9.6. (7) 7. Autoencoders
Tue. 16.6. (8) 8. Generative Adversarial Networks
Tue. 23.6. (9) 9. Recent Advances
Tue. 30.6. (10) 10. Engineering Deep Learning Models
Tue. 7.7. (11) tbd.
Tue. 14.7. (12) Q & A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 33

Deep Learning

Outline

1. Convolutions

2. Ordered vs Unordered Dimensions

3. Convolutional Neural Networks

4. Convolutional Layers vs Fully Connected Layers

5. Reducing Resolutions: Pooling and Striding

6. Outlook

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 33

Deep Learning 1. Convolutions

Outline

1. Convolutions

2. Ordered vs Unordered Dimensions

3. Convolutional Neural Networks

4. Convolutional Layers vs Fully Connected Layers

5. Reducing Resolutions: Pooling and Striding

6. Outlook

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 33

Deep Learning 1. Convolutions

Convolutions
I given two functions f , g : RN → R,

define a third function with the same signature:

h := (f ∗ g) : RN → R,

h(x) := (f ∗ g)(x) =

∫
RN

f (x ′)g(x − x ′)dx ′ =

∫
RN

f (x + x ′)g(−x ′)dx ′

I example 1: averaging:
I f : R→ R a signal in time

I g : R→ R: g(x) := 1
2 I(x ∈ [−1, 1])

 h(x) is f (x ′) averaged over x ′ ∈ [x − 1, x + 1]

I example 2: correlating:
I f : R→ R a signal in time

I g : R→ R a pattern of interest (encoded backwards in time)

 h(x) how similar signal f is at position x to pattern g

I Example:
I x(t): a noisy measure the position of a spaceship

I w(a): relevance of a measurement with age a (Note:
∫
w(a)da = 1)

I Given a sequence of noisy measurements x(t), x(t − 1), ..., x(t −∞),
what is the relevance-corrected position s(t)?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 33

Deep Learning 1. Convolutions

Convolutions / Basic Properties
commutative:

f ∗ g = g ∗ f
associative:

f ∗ (g ∗ h) = (f ∗ g) ∗ h
distributive:

f ∗ (g + h) = (f ∗ g) + (f ∗ h)

differentiation:
∂(f ∗ g)

∂xn
=

∂f

∂xn
∗ g = f ∗ ∂g

∂xn
integration: ∫

RN

(f ∗ g)(x)dx = (

∫
RN

f (x)dx)(

∫
RN

g(x)dx)

convolution theorem (F the Fourier transform):

F(f ∗ g) = F(f) · F(g)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 33

Deep Learning 1. Convolutions

Discrete Convolutions

I continuous:
given two functions f , g : RN → R,
define a third function with the same signature:

h := (f ∗ g) : RN → R,

h(x) := (f ∗ g)(x) =

∫
RN

f (x ′)g(x − x ′)dx ′ =

∫
RN

f (x + x ′)g(−x ′)dx ′

I discrete:
given two functions f , g : ZN → R on a grid,
define a third function with the same signature:

h := (f ∗ g) : ZN → R,

h(x) := (f ∗ g)(x) =
∑

x ′∈ZN

f (x ′)g(x − x ′) =
∑

x ′∈ZN

f (x + x ′)g(−x ′)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 33

Deep Learning 1. Convolutions

Discrete Convolutions

I discrete:
given two functions f , g : ZN → R on a grid,
define a third function with the same signature:

h := (f ∗ g) : ZN → R,

h(x) := (f ∗ g)(x) =
∑

x ′∈ZN

f (x ′)g(x − x ′) =
∑

x ′∈ZN

f (x + x ′)g(−x ′)

I in computer science, reading the second function backwards
usually is not done:

h(x) := (f ∗ g)(x) =
∑

x′∈ZN

f (x + x ′)g(x ′)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 33

Deep Learning 1. Convolutions

Finite Discrete Convolutions
I finite discrete:

given two arrays f ∈ RN×M , g ∈ RÑ×M̃ ,
define a third array with the dimensions:

h := (f ∗ g) ∈ RN×M

hn,m := (f ∗ g)n,m =
Ñ∑

n′=1

M̃∑
m′=1

f (n + δn′,m + δm′)g(n′,m′)

=

β(Ñ,N)∑
n′=α(Ñ,n)

β(M̃,M)∑
m′=α(M̃,m)

f (n + δn′,m + δm′)g(n′,m′)

I δn′ := δ(n′, Ñ) := n′ − b Ñ+1
2 c index centering

I e.g., Ñ = 5 δn′ = n′ − 3: δn′ = −2,−1, 0, 1, 2 for n′ = 1, 2, . . . , 5.
Ñ = 6 δn′ = n′ − 3: δn′ = −2,−1, 0, 1, 2, 3 for n′ = 1, 2, . . . , 6.

I f (n,m) := 0 for n < 1, n ≥ N, m < 1 or m ≥ M (zero padding)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 33

Note: Here for two-dimensional arrays. The same works for any dimensional arrays.

Deep Learning 1. Convolutions

Finite Discrete Convolutions

I finite discrete:
given two arrays f ∈ RN×M , g ∈ RÑ×M̃ ,
define a third array with the dimensions:

h := (f ∗ g) ∈ RN×M

hn,m := (f ∗ g)n,m =
Ñ∑

n′=1

M̃∑
m′=1

f (n + δn′,m + δm′)g(n′,m′)

=

β(Ñ,N)∑
n′=α(Ñ,n)

β(M̃,M)∑
m′=α(M̃,m)

f (n + δn′,m + δm′)g(n′,m′)

I δn′ := δ(n′, Ñ) := n′ − b Ñ+1
2 c index centering

I f (n,m) := 0 for n < 1, n ≥ N, m < 1 or m ≥ M (zero padding)
I α(Ñ, n) := 1−min(0, n − 1 + δ(1, Ñ)), i.e., n + δ(α(Ñ, n), Ñ) ≥ 1
β(Ñ,N) := . . ., i.e., n + δ(β(Ñ, n), Ñ) ≤ N

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 33

Note: Here for two-dimensional arrays. The same works for any dimensional arrays.

Deep Learning 1. Convolutions

Finite Discrete Convolutions / Shrinking Array Sizes

I finite discrete (alternative definition):

given two arrays f ∈ RN×M , g ∈ RÑ×M̃ ,
define a third array with the dimensions:

h := (f ∗ g) ∈ R(N−Ñ+1)×(M−M̃+1)

hn,m := (f ∗ g)n,m =
Ñ∑

n′=1

M̃∑
m′=1

f (n + n′ − 1,m + m′ − 1)g(n′,m′)

I avoids zero padding

I but leads to shrinking array sizes

I rarely used in ML nowadays

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 33

Deep Learning 1. Convolutions

1D convolution

I let X ∈ RW be a sequence of length W (called input)
(e.g., a time series),

K ∈ RW̃ a pattern / filter / kernel / window (W̃ �W):
I W̃ pattern size

Zw := (X ∗ K)w =
W̃∑

w ′=1

Xw+δw ′Kw ′

Z ∈ RW called feature map
I of same type as X

I uses zero padding convention

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 33

Deep Learning 1. Convolutions

1D convolution / Example

X := (1,−3, 4, 4, 2)

K := (−1, 1, 2)

X ∗ K =

A. (4, 15, 4)

with size shrinking

B. (4, 15, 4,−2,−2)

without centering (unusual)

C. (−5, 4, 15, 4,−2)

default

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 33

Deep Learning 1. Convolutions

1D convolution / Example

X := (1,−3, 4, 4, 2)

K := (−1, 1, 2)

X ∗ K =

A. (4, 15, 4) with size shrinking

B. (4, 15, 4,−2,−2) without centering (unusual)

C. (−5, 4, 15, 4,−2) default

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 33

Deep Learning 1. Convolutions

2D convolution

I let X ∈ RW×H be an array of dimensions W × H (e.g., an image),

K ∈ RW̃×H̃ a pattern / filter / kernel (W̃ �W , H̃ � H):

Zw ,h := (X ∗ K)w ,h =
W̃∑

w ′=1

H̃∑
h′=1

Xw+δw ′,h+δh′Kw ′,h′

Z ∈ RW×H called feature map
I of same type as X

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 33

Deep Learning 1. Convolutions

2D convolution / Example

[source: Goodfellow et al. 2016]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 33

Note: This example uses size shrinking. Usually we do not do that.

Deep Learning 1. Convolutions

3D convolution

I let X ∈ RW×H×D be an array of dimensions W × H × D
(e.g., a 3d image),

K ∈ RW̃×H̃×D̃ a pattern / filter / kernel
(W̃ �W , H̃ � H, D̃ � D):

Zw ,h,d := (X ∗ K)w ,h,d

=
W̃∑

w ′=1

H̃∑
h′=1

D̃∑
d ′=1

Xw+δw ′,h+δh′,d+δd ′Kw ′,h′,d ′

Z ∈ RW×H×D called feature map
I of same type as X

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 33

Deep Learning 1. Convolutions

convolution for arrays of any order

I let X ∈ RM1×M2×···×MD be an array of order D,
K ∈ RM̃1×M̃2×···×M̃D a pattern / filter / kernel

(M̃d � Md , d = 1, . . . ,D):

Zm1,m2,...,mD
:= (X ∗ K)m1,m2,...,mD

=

M̃1∑
m′1=1

M̃2∑
m′2=1

· · ·
M̃D∑

m′D=1

Xm1+δm′1,m2+δm′2,...,mD+δm
′
D
Km′1,m

′
2,...,m

′
D

Z ∈ RM1×M2×···×MD called feature map
I of same type as X

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 33

Deep Learning 2. Ordered vs Unordered Dimensions

Outline

1. Convolutions

2. Ordered vs Unordered Dimensions

3. Convolutional Neural Networks

4. Convolutional Layers vs Fully Connected Layers

5. Reducing Resolutions: Pooling and Striding

6. Outlook

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 33

Deep Learning 2. Ordered vs Unordered Dimensions

Multiple Patterns
I let X ∈ RW×H be a W × H image,

K1, . . . ,KC ∈ RW̃×H̃ multiple patterns (filter bank):

Zw ,h,c := (X ∗ Kc)w ,h =
W̃∑

w ′=1

H̃∑
h′=1

Xw+δw ′,h+δh′Kc,w ′,h′

Z ∈ RW×H×C called feature map array
I with dimensions dim(X)× C

[source: S. Lazebnik]
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 33

Deep Learning 2. Ordered vs Unordered Dimensions

What do you see?

a) Cat b) Tiger c) Dog

d) Permuted Cat e) Permuted Tiger f) Permuted Dog

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 33

Deep Learning 2. Ordered vs Unordered Dimensions

What do you see?

a) Cat b) Tiger c) Dog

d) Permuted Cat e) Permuted Tiger f) Permuted Dog

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 33

Deep Learning 2. Ordered vs Unordered Dimensions

Ordered vs Unordered Dimensions / Example

I let input X ∈ RW×H×C have multiple variables measured
for each position (w , h):

xw ,h,1, xw ,h,2, . . . , xw ,h,C

I e.g., red/green/blue intensities of pixels in images: C = 3

I each such variable often is called a channel

I lets assume their order does not contain any information:
I the indices of dimension C are unordered.

I I will call dimension C unordered.

I ordered dimensions: first / width (W) and second / height (H).)

I unordered dimensions: third / color (C).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 33

Deep Learning 2. Ordered vs Unordered Dimensions

Ordered vs Unordered Dimensions

I ordered dimensions:
I re-ordering the indices destroys information

I e.g., positions, times, generally bins of a continuous variable

I consider convolutions with patterns
I pattern size usually way smaller than input size (W̃ � W)

I unordered dimensions:
I re-ordering the indices does not destroy any information

I e.g., color channels, different attributes measured of an entity

I convolutions with patterns over some indices make no sense

I but patterns can stretch over all indices of an unordered dimension
and drop it in the output.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 33

Deep Learning 2. Ordered vs Unordered Dimensions

2D convolution with Channels

I let X ∈ RW×H×C be an array with
I ordered dimensions W and H and
I unordered dimension C

(e.g., an image with C channels),

K ∈ RW̃×H̃×C a pattern / filter / kernel (W̃ �W , H̃ � H):

Zw ,h := (X ∗ K)w ,h,c0 =
W̃∑

w ′=1

H̃∑
h′=1

C∑
c ′=1

Xw+δw ′,h+δh′,c ′Kw ′,h′,c ′

Z ∈ RW×H called feature map
I with all dimensions of X but the unordered one.

I by abuse of notation, this is also often written as convolution X ∗ K .
I correct: use c0 := bC+1

2 c to select just the center slice w.r.t. C

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 33

Deep Learning 3. Convolutional Neural Networks

Outline

1. Convolutions

2. Ordered vs Unordered Dimensions

3. Convolutional Neural Networks

4. Convolutional Layers vs Fully Connected Layers

5. Reducing Resolutions: Pooling and Striding

6. Outlook

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 33

Deep Learning 3. Convolutional Neural Networks

Nonlinear Activation of Feature Maps
I Q: why is stacking purely convolutional layers not useful?

Z 2 = Z 1 ∗W 2 = (X ∗W 1) ∗W 2

I use non-linear activation functions such as ReLU
to avoid weight array collapsing:

Znext
w ,h := a((Z ∗W)w ,h,c0) = a(

W̃∑
w ′=1

H̃∑
h′=1

C∑
c ′=1

Zw+δw ′,h+δh′,c ′Ww ′,h′,c ′)

[source: Rob Fergus]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 33

Deep Learning 3. Convolutional Neural Networks

Nonlinear Activation of Feature Maps
I Q: why is stacking purely convolutional layers not useful?

Z 2 = Z 1 ∗W 2 = (X ∗W 1) ∗W 2

I use non-linear activation functions such as ReLU
to avoid weight array collapsing:

Znext
w ,h := a((Z ∗W)w ,h,c0) = a(

W̃∑
w ′=1

H̃∑
h′=1

C∑
c ′=1

Zw+δw ′,h+δh′,c ′Ww ′,h′,c ′)

[source: Rob Fergus]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 33

Deep Learning 3. Convolutional Neural Networks

Fully Connected vs Convolutional Neural Networks

fully connected layers
(L hidden layers):

x ∈ RM , y ∈ RO

z` := a`(W
`z`−1 + b`),

∈ RM` , ` = 1, . . . , L + 1

z0:=x, M0:=M, zL+1=:ŷ , ML+1:=O

W ` ∈ RM`×M`−1

b` ∈ RM`

a` : R→ R

aL+1 : RM`+1

→ RM`+1

e.g., softmax

convolutional layers (2D, images):
(L hidden layers):

x ∈ RW×H×C , y ∈ RW×H×O

z` := a`(W
` ∗ z`−1)

∈ RW×H×M` , ` = 1, . . . , L + 1

z0:=x, M0:=C , zL+1=:ŷ , ML+1:=O

W ` ∈ RM`×W̃×H̃×M`−1 , W̃ �W , H̃ � H

a` : R→ R

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 33

Note: More precise: W ` ∗ z`−1 here denotes ((W `
m,.,.,. ∗ z`−1)m′0

)m=1:M` . W is used twice!

Deep Learning 3. Convolutional Neural Networks

Fully Connected vs Convolutional Neural Networks

fully connected layers
(L hidden layers):

x ∈ RM , y ∈ RO

z` := a`(W
`z`−1 + b`),

∈ RM` , ` = 1, . . . , L + 1

z0:=x, M0:=M, zL+1=:ŷ , ML+1:=O

W ` ∈ RM`×M`−1

b` ∈ RM`

a` : R→ R

aL+1 : RM`+1

→ RM`+1

e.g., softmax

convolutional layers (2D, images):
(L hidden layers):

x ∈ RW×H×C , y ∈ RW×H×O

z` := a`(W
` ∗ z`−1)

∈ RW×H×M` , ` = 1, . . . , L + 1

z0:=x, M0:=C , zL+1=:ŷ , ML+1:=O

W ` ∈ RM`×W̃×H̃×M`−1 , W̃ �W , H̃ � H

a` : R→ R

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 33

Note: More precise: W ` ∗ z`−1 here denotes ((W `
m,.,.,. ∗ z`−1)m′0

)m=1:M` . W is used twice!

Deep Learning 4. Convolutional Layers vs Fully Connected Layers

Outline

1. Convolutions

2. Ordered vs Unordered Dimensions

3. Convolutional Neural Networks

4. Convolutional Layers vs Fully Connected Layers

5. Reducing Resolutions: Pooling and Striding

6. Outlook

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 33

Deep Learning 4. Convolutional Layers vs Fully Connected Layers

A Convolutional Layer as Fully Connected Layer
I fully connected layer:

I connected every layer input neuron zw ′,h′,m′
with every layer output neuron zw ,h,m:

znextw ,h,m := a(
∑

w ′,h′,m′

Ww ,h,m,w ′,h′,m′zw ′,h′,m′)

I # parameters: W 2H2M`M`−1, # operations: O(W 2H2M`M`−1)

I convolutional layer as fully connected layer:

Ww ,h,m,w ′,h′,m′ :=

{
W conv

m,w ′−w ,h′−h,m′ , if w ′ − w < W̃& h′ − h < H̃

0, else

I # parameters:

W̃ H̃M`M`−1,

operations:

O(WHW̃ H̃M`M`−1)

I convolutions have sparse parameters: most are 0.
I local interaction

I convolutions share parameters across positions:
e.g., Ww ,h,3,w+5,h+7,11 = W conv

3,5,7,11 are the same for all w , h
I translation invariant patterns

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 33

Deep Learning 4. Convolutional Layers vs Fully Connected Layers

A Convolutional Layer as Fully Connected Layer
I fully connected layer:

I connected every layer input neuron zw ′,h′,m′
with every layer output neuron zw ,h,m:

znextw ,h,m := a(
∑

w ′,h′,m′

Ww ,h,m,w ′,h′,m′zw ′,h′,m′)

I # parameters: W 2H2M`M`−1, # operations: O(W 2H2M`M`−1)

I convolutional layer as fully connected layer:

Ww ,h,m,w ′,h′,m′ :=

{
W conv

m,w ′−w ,h′−h,m′ , if w ′ − w < W̃& h′ − h < H̃

0, else

I # parameters:

W̃ H̃M`M`−1,

operations:

O(WHW̃ H̃M`M`−1)

I convolutions have sparse parameters: most are 0.
I local interaction

I convolutions share parameters across positions:
e.g., Ww ,h,3,w+5,h+7,11 = W conv

3,5,7,11 are the same for all w , h
I translation invariant patterns

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 33

Znext
w ,h := a((Z ∗W)w ,h,c0) = a(

W̃∑
w ′=1

H̃∑
h′=1

C∑
c ′=1

Zw+δw ′,h+δh′,c ′Ww ′,h′,c ′)

Note: Here we use non-centered convolutions for ease of notation.

Deep Learning 4. Convolutional Layers vs Fully Connected Layers

A Convolutional Layer as Fully Connected Layer
I fully connected layer:

I connected every layer input neuron zw ′,h′,m′
with every layer output neuron zw ,h,m:

znextw ,h,m := a(
∑

w ′,h′,m′

Ww ,h,m,w ′,h′,m′zw ′,h′,m′)

I # parameters: W 2H2M`M`−1, # operations: O(W 2H2M`M`−1)

I convolutional layer as fully connected layer:

Ww ,h,m,w ′,h′,m′ :=

{
W conv

m,w ′−w ,h′−h,m′ , if w ′ − w < W̃& h′ − h < H̃

0, else

I # parameters: W̃ H̃M`M`−1, # operations: O(WHW̃ H̃M`M`−1)

I convolutions have sparse parameters: most are 0.
I local interaction

I convolutions share parameters across positions:
e.g., Ww ,h,3,w+5,h+7,11 = W conv

3,5,7,11 are the same for all w , h
I translation invariant patterns

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 33

Deep Learning 4. Convolutional Layers vs Fully Connected Layers

Sparse Parameters, Local Interaction / Example

[source: Goodfellow et al., 2016]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 33

Deep Learning 4. Convolutional Layers vs Fully Connected Layers

Local Interaction over Multiple Layers

I stacked convolutions increase the interaction area (receptive field)

[source: Goodfellow et al., 2016]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 33

Deep Learning 4. Convolutional Layers vs Fully Connected Layers

Shared Parameters / Example

[source: Goodfellow et al., 2016]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 33

Deep Learning 5. Reducing Resolutions: Pooling and Striding

Outline

1. Convolutions

2. Ordered vs Unordered Dimensions

3. Convolutional Neural Networks

4. Convolutional Layers vs Fully Connected Layers

5. Reducing Resolutions: Pooling and Striding

6. Outlook

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 33

Deep Learning 5. Reducing Resolutions: Pooling and Striding

Reducing Resolutions

I convolutional layers retain the resolution of their inputs.
I OK, if the output has the same resolution,

e.g., for image segmenation tasks

I but what do we do if the output does not have any/some of the
ordered input dimensions?

I add a last fully connected layer
I could lead to a large number of parameters for high resolutions

I just average latent features over the ordered dimensions (pooling)
I has no parameters

I is it too simple?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 33

Deep Learning 5. Reducing Resolutions: Pooling and Striding

Pooling

I reduce resolution by aggregating neighborhoods of a position:

znext := poolmax(z)

poolmaxv ,s : RW×H×M → Rd
W
s
e×dH

s
e×M

znextw ′,h′,m := max(zw ,h,m | w := w ′s,w ′s + 1, . . . ,w ′s + v − 1,
h := h′s, h′s + 1, . . . , h′s + v − 1)

I pool width v > 1

I pool stride s, s ≤ v (otherwise parts are skipped), often s = v

I max pooling: as above (using max)

I average pooling: use avg instead of max to aggregate neighborhoods

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 33

Deep Learning 5. Reducing Resolutions: Pooling and Striding

Pooling / Example 1D

I pool width v = 3, pool stride s = 2

[source: Goodfellow et al., 2016]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 33

Deep Learning 5. Reducing Resolutions: Pooling and Striding

Pooling / Example 2D

[source: Goodfellow et al., 2016]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 33

Deep Learning 5. Reducing Resolutions: Pooling and Striding

Pooling / Smoothing
I pooling also can be used for smoothing the latent features

e.g., for reduced sensitivity to small translations of the input:

[source: Goodfellow et al., 2016]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 33

Deep Learning 5. Reducing Resolutions: Pooling and Striding

Strided Convolutions
I instead of first computing high-resolution convolutions and

and then aggregating with pooling,
one also can use strided convolutions:

Znext
w ,h,m := (Z ∗stride s Wm)w ,h,m′0

=
W̃∑

w ′=1

H̃∑
h′=1

M′∑
m′=1

Zws+δw ′,hs+δh′,m′Wm,w ′,h′,m′

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

28 / 33

[Goodfellow et al., 2016]

Deep Learning 5. Reducing Resolutions: Pooling and Striding

Reshaping and Fully Connected Layers

I finally add fully connected layers

I reshape the D-dimensional array Z ∈ RM1×M2×···×MD to a vector:

reshape(Z) := (Zindex(i))i=1,...,M′ ∈ RM′ , M ′ := M1M2 · · ·MD

index(i)d := (i −
D∑

d ′=d+1

index(i)d ′M1M2 · · ·Md ′) div M1M2 · · ·Md

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 33

Deep Learning 5. Reducing Resolutions: Pooling and Striding

Example CNN Architectures

[source: Goodfellow et al., 2016]
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 33

Deep Learning 6. Outlook

Outline

1. Convolutions

2. Ordered vs Unordered Dimensions

3. Convolutional Neural Networks

4. Convolutional Layers vs Fully Connected Layers

5. Reducing Resolutions: Pooling and Striding

6. Outlook

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

31 / 33

Deep Learning 6. Outlook

Gradients and Backpropagation

I gradients for convolutions are easy to compute.

I backpropagation as learning algorithm works seamlessly.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

31 / 33

Deep Learning 6. Outlook

Convolutional Neural Network Architectures

I AlexNet: deep CNNs.– 2012
I Alex = First name of first author.

I VGG: networks using blocks – 2014
I VGG = Visual Geometry Group.

I NiN: Network in Network – 2013

I GoogleLeNet – 2015: parallel concatenations; Inception

I ResNet: Residual Networks – 2016

I DenseNet: densely connected networks – 2016

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

32 / 33

Deep Learning 6. Outlook

Summary

I In multidimensional data, dimensions can be ordered or unordered.
I information in ordered dimensions is destroyed if indices are shuffled.

I images

I time series

I any indices representing binned continuous variables

I Convolutions allow to learn patterns in data with ordered dimensions.

I Finite discrete convolutions for arrays need to take care of index
centering and zero padding.

I To reduce resolution, pooling and striding are used.
I max pooling and average pooling.

I For unordered targets (e.g., classification), CNNs feature final fully
connected layers (reshaping the last latent array to a vector).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

33 / 33

Deep Learning

Further Readings

I Goodfellow et al. 2016, ch. 9

I Zhang et al. 2020, ch. 6 & 7

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

34 / 33

Acknowledgement: An earlier version of the slides for this lecture have been written by my
former postdoc Dr Josif Grabocka.

Deep Learning

convolution for arrays of any order

I convolutions for arrays of any order can be written more compactly
as follows:

I let X ∈ RM ,M ∈ ND be an array of order D,
K ∈ RM̃ , M̃ ∈ ND a pattern / filter / kernel

(M̃ � M elementwise):

Zm := (X ∗ K)m =
∑

m′∈ρ(M̃)

Xm+δm′Km′ , m ∈ ρ(M)

Z ∈ RM called feature map
I of same type as X

I grid ρ(M̃) :=
|M̃|

×
d=1

{1, 2, . . . , M̃d}

I index centering δm′ := δ(m′, M̃) := m′ − (b M̃d+1
2 c)d=1,...,D

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

35 / 33

Deep Learning

References

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The Mit Press, Cambridge, Massachusetts, November
2016. ISBN 978-0-262-03561-3.

Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander Smola. Dive into Deep Learning. https://d2l.ai/, 2020.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

36 / 33

	1. Convolutions
	2. Ordered vs Unordered Dimensions
	3. Convolutional Neural Networks
	4. Convolutional Layers vs Fully Connected Layers
	5. Reducing Resolutions: Pooling and Striding
	6. Outlook
	Appendix

