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Deep Learning 1. Sequence Data and Problems
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1. Sequence Data and Problems
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Deep Learning 1. Sequence Data and Problems

Sequences

» let X be any set, often called alphabet

» sequences in X:

X* ::Uxf

teN

» aka time series

> e-g-, (nhll’Hen7n|n7nln711011) c X* fOI’ alphabet
X ={"a","b",...,"2z"}: strings.

» |x| :=tif x € X! length of sequence x € X*
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Deep Learning 1. Sequence Data and Problems

Sequences / Example

» new corona infections in Germany

» alphabet: — Q: what is the alphabet?

» example: (490, 692,273,342) € X*
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Deep Learning 1. Sequence Data and Problems

Sequences / Example

» new corona infections in Germany
» alphabet: X :=N

» example: (490, 692,273,342) € X*

Daily New Cases
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Deep Learning 1. Sequence Data and Problems

Sequences / Example
» German stock index DAX

» alphabet: X := Rsr

» example: (11223.71,11065.93,11073.87,11259.11) € X*

INDEXDB: DAX e d

11.259,26 +185,39 (1,67 %)+

25. Mai, 12:28 MESZ - Haftungsausschluss

1Tag 5 Tage 1 Monat 6 Monate YTD 1 Jahr 5 Jahre Max.

14.000 .

12.000 |

10.000 |

13.246,45 25. Nov. 2019

8.000— . .
Jan. 2020 Marz 2020 Mai 2020
https://www.google.com /search?
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Deep Learning 1. Sequence Data and Problems

Sequences of Vectors
» X :=RM, M called channels

» e.g., EEG data: measurement at M := 16 electrodes.
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Deep Learning 1. Sequence Data and Problems

NN
Sequences of Vectors / More Examples “

» weather data: temperature, precipitation, wind speed, pressure,
humidity etc.

» infections: new infections, new recoveries, new deaths

» infections: in Lower Saxony, Hamburg, Bremen, Berlin, Hessen etc.

» texts: 60.000 binary word indicators
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Deep Learning 1. Sequence Data and Problems

Sequence Problems / 1. Sequence Prediction

» supervised problems with pairs
Dran = {(Xlayl)a (X27y2)a ey (XN7yN)} - & x y

1. sequence / time series classification / regression / prediction:
» input: X := (RM)* sequences / time series
» usually with multiple channels
» output: ) := RO (regression) or IV := {0,1} (classification)
> example:
» predict thunderstorm from weather data
» predict insolvency from stock quotes

> predict health conditions from ECG (or other medical time-variant data)

» special case: time series forecasting: ) := RV
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Deep Learning 1. Sequence Data and Problems

NN
Sequence Problems / 2. Sequence-to-Sequence Learninﬁ

2. sequence-to-sequence learning:
» input: X := (RM)* sequences / time series
» usually with multiple channels
» output: YV := (R9)* or ¥ := ({0,1}9)* sequence / time series
» the output sequence is not aligned to the input sequence,
esp. the output sequence can have a different length as the input
sequence.

» loss: average elementwise loss:

1 ] 1 lyl o

g(yay) = 7Z€(yta),}t)ﬂ e.g., = Zzyt,o lOg(),}t,o)

vl= S e
» example: translation:

input x: Machen wir es kurz.
output y: Let's make it short

input x: Auf Wiedersehen!
output y:  Goodbye!
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Deep Learning 1. Sequence Data and Problems

Sequence Problems / 3. Sequence Labeling

3. sequence labeling:
» input: X := (RM)* sequences / time series
» usually with multiple channels

» output: )V := (R9)* or ¥ := ({0,1}9)*

» each output representing further measurements for each input index

(aligned sequences),
esp. each output having the same length as the input,
ie. ptrain c ((RM x RO)*)* _ ((RM+O)*)*

> loss: average elementwise loss.
» example: part of speech tagging:

input x: The quick brown jumps over the lazy dog.
output y: DET ADJ NOUN VERB ADP DET ADJ NOUN

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 2. Recurrent Neural Networks

Outline

2. Recurrent Neural Networks
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Deep Learning 2. Recurrent Neural Networks

From Convolutional Layers to Recurrent Layers
» inputs x € (RM)*
» convolutions with kernel size 1 (kernels 1 x M):

Zt :=g(Xt)=a(WXt+b), t.= 1,...,|X|
WEeRK*XM — pecRK — aR—R
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Deep Learning 2. Recurrent Neural Networks

From Convolutional Layers to Recurrent Layers
» inputs x € (RM)*

» convolutions with kernel size 1 (kernels 1 x M):
zt = g(xt) = a(Wxt + b), t:=1,...,|x]|
WEeRKXM — peRK  aR—-R
» convolutions with kernel size 2 (kernels 2 x M):
ze = g(Xe, X 1) = a(W,Z,.Xt"i‘W,l,.Xf*l +b), t:=1,...[x
WeRK*2xM — pbeRK 2 R—-R
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Deep Learning 2. Recurrent Neural Networks

From Convolutional Layers to Recurrent Layers
» inputs x € (RM)*

» convolutions with kernel size 1 (kernels 1 x M):
zt = g(xt) = a(Wxt + b), t:=1,...,|x]|
WEeRKXM — peRK  aR—-R
» convolutions with kernel size 2 (kernels 2 x M):
Zp = g(Xt;thl) = a(W,2,‘Xt+W,1,.Xt71 =+ b), t:=1,..., ’X‘
WeRK*2xM — pbeRK 2 R—-R
:g(Xtathl):a(WXf+VXI’71+b)7 t= 15"'7‘X|

WEeRKXM = VecRKXM  pbeRK,  aR—R
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Deep Learning 2. Recurrent Neural Networks
From Convolutional Layers to Recurrent Layers .
» inputs x € (RM)*
» convolutions with kernel size 1 (kernels 1 x M):
z = g(x¢) = a(Wx¢ + b), t:=1,...,[x]
WEeRK*XM — pcRK — aR—R
» convolutions with kernel size 2 (kernels 2 x M):
z: = g(xt, xe—1) = a(Wxe+Vxe—1 + b), t:=1,...,[x]|
WERKXM =~ VeRKXM — peRK a2 R—R
» recurrent layer:
zi = g(xe,ze-1) = a(Wxe+Vz—1 + b), t:=1,...,]x|

WEeRKXM = ycRKXK  peRK  aR—R, zeRK
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Deep Learning 2. Recurrent Neural Networks

From Convolutional Layers to Recurrent Layers

» convolutional layer with kernel size 2:

» recurrent layer:

-—-

‘i
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Deep Learning 2. Recurrent Neural Networks

RNN with one Hidden Layer

Zy = g(Xt,Zt—l) = a(Wlxt + Vlzt_]_ + bl), t:=1,..., |X|
WLeRK*XM = ylcRKXK — pleRK — aR—-R, zeRK
yt = h(z) := 32(W2Zt+b2), t:=1,...,|x|

W2eROXK — R2cRO. 2:R—R (or RO—RO, e.g., softmax)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 2. Recurrent Neural Networks

RNN with one Hidden Layer

l rec.

-3
........ N 7
conv-

Zy = g(Xt,Zt—l) = a(W]'Xt + Vth—l —+ bl), t:= ]., ey |X‘
WLeRK*XM = yIcRKXK — pleRK 2 R—-R, z€RK
vi = h(z) == ap(W3z + b?), t:=1,...,|x|

W2eROXK — R2cRO. 2:R—R (or RO—RO, eg., softmax)

@
—@
@ e e

Q: Is a RNN still a computational acyclic graph?

Note: dashed line: temporal connection.
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Deep Learning 2. Recurrent Neural Networks

RNN with L Hidden Layers

» RNN with L hidden layers:

zbi=a(Wi2Et + vzl +bY, =1,..

WEeRMeMe—1  \EcRMexMy — pteRrMe,

2%:=x, Mp:=M, zitl=y, M; 1:=0,

SL+1t=1,. x|

aR—R, z§eRMe

VL+1 =0
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Deep Learning 2. Recurrent Neural Networks

NN
Variants of Deep RNN Architectures “

O 0:9{)*0

[source: Goodfellow et al. 2016, p. 400]
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Deep Learning 3. Back Propagation Through Time
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3. Back Propagation Through Time
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Deep Learning 3. Back Propagation Through Time

Gradients w.r.t. Latent Features
» recurrent layer:
uf = Wezf_1 + szf_l +bY, =1, L1,

0. b
z, := a(uy)
WEeRMeMe—1 - yLeRMexMe pleRMe,  aR—R, zleRM:

2%:=x, My=M, zH'=y My ;1:=0, V1:=0

» objective:

f(Xuy; 0) = E(yt),}(xl 0)) + £2(0)7 0= (W£7 VZ: b£7 zg)f:l:L—i—l

» gradients:

of(x,y;0)  0ly,y(x;0)) 09(x;0) N 00(0)

00 oy 00 00
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Deep Learning 3. Back Propagation Through Time

Gradients w.r.t. Latent Features

» recurrent layer:

uf = Wéz,‘f_1 + Vézf_l + be, =1, +1;t:=1,.. ||
0 .__ y4
z; := a(uy)

WEeRMeXMe—1 yEeRMexMe pleRMe,  aR—R, zleRMe
20:=x, My=M, zH'=yy = M;;1:=0, Vi, 1:=0
» gradients w.r.t. latent features:
~ ~ +1 ~ Y4 ~ A
ay _ oy Ou; oy Ougyq _ oy Wit ay Ve
ozf  Quttt ozf  oul,, 0zf Quttt out

t+1 t+1
oy 9y oz 0y .

= ——— = d
ouf 0zt out 0z ag(a(ur))

t t
. oy .
= W + =L v diag(a'(ul
(5 up V)Gl (1)
N—— ——
bp layers bp time
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Deep Learning 3. Back Propagation Through Time

Gradients w.r.t. Parameters

» recurrent layer:
uf = Wezf_1 + Vezf_l + bz, =1, L+1;t:=1,...,|x]|
0. 0
z, = a(uy)
» gradients w.r.t. parameters:
8}7 B ozL+1
bt obt

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 3. Back Propagation Through Time

. NN
Gradients w.r.t. Parameters v

» recurrent layer:

uf = Wezf_1 + Vezf_l + bz, =1, +1;t:=1,.. ||

0 . y4
z; := a(uy)

» gradients w.r.t. parameters:

A &l oy out
: ;1 duf db’
9y 9241 4 | g % p
ot — ot ) &= 8“5
0y Ou;
c oul Ob
D. 0
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Deep Learning 3. Back Propagation Through Time

Gradients w.r.t. Parameters

» recurrent layer:

ub = W vEZE b =t e,

0 . y4
z; := a(uy)

» gradients w.r.t. parameters:

oy _ 9251 N 0y out
obt obt poe out bt
N Xl 4a ) [x|
ay oy Ouy
¢ Z a7l ¢ Z
an’" t=1 8ut anm t=1
Ix|

Ix]

»m t=1

ozt

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Ix]

t=

N
_Zﬁuf

1

9y -1
¢t,m
Ou;

= already computed above



Deep Learning 3. Back Propagation Through Time

RNN: Prediction / Forward Computation

1 predict-ran((W*, V¢ b, 25) 1.1 11, a, x, mode) :
0

2 zV:=x
3 for £:=1:L+1:

4 for t:=1:x|:

5 ut = Wezt=t + Vizt |+ bt
6 zf = a(uf)

7 if mode="prediction":

8 return (zF'1)_q.x

o else:

10 return (uf7zf)2:0:,_+1;t:1:‘x|

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 3. Back Propagation Through Time

Backpropagation Through Time (BPTT)

1 gradients-ran((W*, V b% z{)—1.041,a, %, , f)
2 (Uf,Zf)gZQ:L+1;t:1:|X| := predict-ran((W*, V¥, b®, z{)i=1.141, 3, x,"all")
3 for E =L+ 1 1 backwards:

4 BWz =0, 5 avlZ =0, 5 abf =0 0u?:|+1 =0

5 for t:= |x|: 1 backwards:

6 if £=L+1:

7 S0 = 2y, 2) diag(a (u)

8 else:

; B (LW 2 diag (o (u))
o = 2 (YT

1 % += fft '(thﬂ)T

12 8b1’ —+=

13 38—2% = gj VZ

of  _of of of
14 return (5777, 2u7s o gg)ezliﬂ

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 3. Back Propagation Through Time

Backpropagation Through Time (BPTT)

1. compute parameter gradients:

of of of oOf

(=, =5, =, — )e=1:.1+1 = gradients-rnn(...)
oWt ove’ opt azg

2. update parameters:

WZ:WE—Maamf/g
VE::VZ—/L;‘;
bZ::bZ—ugge
zg::zgugz);;, (=1:L+1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 3. Back Propagation Through Time

Backpropagation Through Time (BPTT)

» mind the details:
» compute gradients for minibatches

» use weight decay / L2 regularization .
» possibly use momentum

» use step length controller for u, e.g., Adam.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 4. Gated Units and Long Short-Term Memory (LSTM)
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4. Gated Units and Long Short-Term Memory (LSTM)
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Deep Learning 4. Gated Units and Long Short-Term Memory (LSTM)

Long-term Dependencies

» assume no activation functions (a(u) := u)
» Zz; as a function of xi:

z¢(x) x Vzi_q V22 g oc - o VElz o VE T Wi

v

for V= QAQT with
orthogonal matrix @ and
diagonal matrix A := diag(A1, A2, ..., Ak) the eigenvalues:

z(x1) < QAQTQAQT -+ QAQT Wiy = QAT1QT Wy
» dimensions with eigenvalue A\ < 1: )\f(_l — 0 will vanish

» dimensions with eigenvalue Ay > 1: )\i_l — oo will explode

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 4. Gated Units and Long Short-Term Memory (LSTM)

lllustrating Vanishing Gradients

Outputs

Hidden
Layer

Inputs

Time

®@ 0O

O O

Figure 1: Sensitivity to the input at time one, Source: Graves 2008
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Deep Learning 4. Gated Units and Long Short-Term Memory (LSTM)

Gating against Vanishing Gradients

TTTITTY

v @ @@ 00 O

bbbl

Figure 2: Gating helps to remember, Source: Graves 2008
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Deep Learning 4. Gated Units and Long Short-Term Memory (LSTM)

B
Gated Recurrent Units (GRUs) A

» GRU layer:
Z=vtozZ T 4 (1 - vh) e a(Waixt + VA(rt o zt1))
with vi:=a(W'x! + VVz'=1 + b“) update gate
rti=a(W'x'+ V' zi71 4 ") reset gate
Wz WY WreRKxM vz yv yreRKXK - pz pv preRK
» v; = 1: gate x; ~» z; closed

» Q: What happens in the following edge cases?
Assign edge cases to possible effects.

edge cases possible effects

a. Vt:vt=1 1. usual conv-1 layer

b. Vt:vi=0,rt=1 L 2. usual recurrent layer
c. Vt:vt=0,rt=0 3. z' = zy constant in t,

not dependend on x

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 4. Gated Units and Long Short-Term Memory (LSTM)

Gated Recurrent Units (GRUs)

» GRU layer:
Z=viozZ 4 (1 —vh) @ a(Waxt + VA(rt o zt71))
with vi:=a(W'x" + VVz'~1 4 b¥) update gate
rti=a(W'xt 4+ V2871 £ b") reset gate
WZ,WV,WrERKXM, \/27\/v’\/r€RK><K7 bz,bv,brERK

» v; = 1. gate x; ~ z; closed

» edge cases:
» Vtivi=1 ~ z! = z) constant in t, not dependend on x
» Vt: vt =0,r" =1 ~ usual recurrent layer
» Vt:vt=0,r" =0 ~ usual conv-1 layer

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 4. Gated Units and Long Short-Term Memory (LSTM)

The GRU Cell i

Note: dashed: temporal connections. cvx: convex combination u® v+ (1 — u) ® w.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 4. Gated Units and Long Short-Term Memory (LSTM)

NS
Long Short-Term Memory (LSTM) v

ft .= a(fot + Vit 4 bf) forget gate

gt = a(W8&xt + vz~ 4 b&) input gate

q" = a(Wx" + vazt-1l 4 b9) output gate
sti=flost + gt @a(Wixt + Vozi1 + b°) state
z':=a(s') © ¢' output

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 4. Gated Units and Long Short-Term Memory (LSTM)

The LSTM Cell i

Note: dashed: temporal connections.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 4. Gated Units and Long Short-Term Memory (LSTM)

Clipping gradients

RNN produces strongly nonlinear loss functions which create cliffs:

Without clipping With clipping
= =
= =
= S
w u
b b

Figure 3: Clipping can avoid exploding gradients, Source: Goodfellow et al., 2016

A simple solution is the gradient clipping heuristic:

if ||g|| > v then g := S—

lell

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 5. Time Series Classification and Forecasting
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5. Time Series Classification and Forecasting
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Deep Learning 5. Time Series Classification and Forecasting

M
RNNs for Time Series Classification v

» like convolutional layers, recurrent layers retain the size of the time
dimension.

» like for CNNs, also in RNNs pooling layers could be used to reduce
time resolution

» esp. global pooling for a fixed size of the latent feature vector

» once the time dimension is eliminated,
fully-connected layers can be added.

» CNNs are a well-known architecture for time series classification
sometimes called fully convolutional neural networks [Wang et al.,
2017]

» RNNs are used less frequently this way [Ismail Fawaz et al., 2019].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 5. Time Series Classification and Forecasting

M
CNNs for Time Series Classification v

x
E] 0.1 s| 0.2 ol 0.2 o| 0.3 |:
aMLP 3 8l= 8z 8lz 13
(@MLP - & a;I 22 H £
wv
o
Qo)
5 £
» 3 3 HE
o« o« [
(bFCN 2 = = — |3|€
S & 3|
[C]
1287
+ + l
] A L7 7 A L7
A, oL L ]
<
= o) o) = = o) =
5 3 |3 3 EENE g
(C)ResNet 2 _ < & _ & o« < & 4
= + + + + + + =
z z z z z z <
o @ @ @ ) @ 8
64 12871128

Note: Here dashed lines for MLP denotes dropout. CNN kernel sizes are 8, 5 and 3.
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Deep Learning 5. Time Series Classification and Forecasting

RNNs for Time Series Forecasting
» use the time shifted input as output:

Xi=x1.1-1, T :=|xly = XT, L€ Yt = Xet1

» with forecasting horizion h € N:
X =xu.7-ph, T :=|x|y = X14imT, 1€, Yt = Xtih

» possible, because RNNs use only information from earlier time slices.

» works the same for CNNs with kernels having their reference point at
the largest index / on the right, not in the center.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 5. Time Series Classification and Forecasting

Summary (1/2)
» There are several supervised learning problems for sequence data:
» sequence prediction: scalar/vector targets.

» sequence-to-sequence prediction: an unaligned sequence targets.
» sequence labeling: aligned sequence targets.

» A recurrent layer consists of
» a neuron for each time slice,

» fully connected to the input at the same time and
its sibling neuron a timeslice earlier (same layer).

v

A recurrent neural network with a single hidden layer consists of
» a hidden recurrent layer and
» a convolutional output layer with kernel size 1.

v

Recurrent layers can be stacked to deep recurrent neural networks.

\{

In RNNs gradients can be computed and thus parameters learned by
backpropagation through time (bptt).
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Deep Learning 5. Time Series Classification and Forecasting

Summary (2/2)

» In RNNs long-term dependencies suffer from vanishing or
exploding gradients.

» Gating is used to learn relevant dependencies between inputs and
outputs across time.
» Gated Recurrent Units (GRUs) with update and reset gates.
» Long Short-Term Memory (LSTM) with

» forget, input and output gates and
> separate states and outputs

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Further Readings

» Goodfellow et al. 2016, ch. 10
» Zhang et al. 2020, ch. 8 & 9

» the part of speech example is taken in modified form from [Sarkar,
2016, p. 138].

Acknowledgement: An earlier version of the slides for this lecture have been written by my

former postdoc Dr Josif Grabocka. _ . ) .
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