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Deep Learning 1. Dimensionality Reduction and Semi-Supervised Learning (Review)

Dimensionality Reduction / Via Feature Reconstruction
Given a dataset D = (x1,x,...,xy) € (RM)*,
an embedding dimension K € N, and
a pairwise loss £ : RM «x RM 5 R,
find an embedding / encoder
z:RM 5 RK
and a reconstruction map / (auto)decoder

V4
£ :RK - RM J
with minimal reconstruction error .

1 N
E(Z, r; D) ::N ZZ(Xm)?(Z(Xn)))
n=1

» K< M

» otherwise there is a trivial solution z(x) := x, X(z) = z with error 0.

» z is called lower-dimensional / latent representation.
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Deep Learning 1. Dimensionality Reduction and Semi-Supervised Learning (Review)

Linear Dimensionality Reduction / Linear Autoencoders

» restrict encoder z and decoder X to be linear:

z(x) = Wx, &(z)=Vz, W eRfFM v cRMxK
~ o X(x) = VWX

Q: Are linear autoencoders useful?
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Deep Learning 1. Dimensionality Reduction and Semi-Supervised Learning (Review)

Linear Dimensionality Reduction / Linear Autoencoders

» restrict encoder z and decoder X to be linear:
KxM Mx K
W e R**M™ v e R"*

~

z(x) == Wx, X(z)= Vz,
~ o X(x) = VWX

. t .
» view x; °° := Vi.m,k as an instance prototype.

» every instance is reconstructed as linerar combinaton of these

prototypes:
K
o proto
X = E Zpe Xy,
k=1

» for {(x,&) = ||x — &||3: principle components analysis (PCA)
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Deep Learning 1. Dimensionality Reduction and Semi-Supervised Learning (Review)

What is Dimensionality Reduction Useful For?

v

to visualize data (K =2 or K = 3)

» to compress data for transmitting or storage

\4

for feature compression instead of feature selection

v

for semi-supervised learning
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Deep Learning 1. Dimensionality Reduction and Semi-Supervised Learning (Review)

Given a labeled dataset D" = ((x1,y1),..., (xn, ynv)) € (RM x RO)*,
an unlabeled dataset D3P = (x{, x},...,x},) € (RM)*,
a pairwise loss £ : RO x RO — R,

y:RM 5RO 5

with minimal error on fresh data (from the same distribution):

(D=t = Uy, 9(x)

‘Dtest| -
(x.y)eD

Semi-supervised Learning

find a model

» the unlabeled data is usually way larger than the labeled on.

Q: what is the unlabeled data useful for?
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Deep Learning 1. Dimensionality Reduction and Semi-Supervised Learning (Review)

Semi-supervised Learning / Using the Unlabeled Data

» unlabeled data is usually used to learn a latent representation,

» and then the target regressed on the latent representation z,
not the original representation x.

o
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Deep Learning 1. Dimensionality Reduction and Semi-Supervised Learning (Review)

Semi-supervised Learning / Using the Unlabeled Data

» unlabeled data is usually used to learn a latent representation,

X
» and then the target regressed on the latent representation z, J
not the original representation x.
V4
» sequential training: / \
» first train X (and z), then fix z and train §. n ;
X

» advantage: simple.
» disadvantage: latent representation is not informed by the task j.
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Deep Learning 1. Dimensionality Reduction and Semi-Supervised Learning (Review)

Semi-supervised Learning / Using the Unlabeled Data

» unlabeled data is usually used to learn a latent representation,

X
» and then the target regressed on the latent representation z, J
not the original representation x.
V4
» sequential training: / \
» first train X (and z), then fix z and train §. n ;
X

» advantage: simple.
» disadvantage: latent representation is not informed by the task j.

» concurrent training:

» alternate between training X and .
> joint loss:

Z(f/,)“(; Dtrain’ Dunlab) _ éy(}'\/; Dtrain) + Oégx()A(; Dtrain|x U Dunlab)

» auxiliary loss weight « and latent dimensionality K are hyperparameters
(as well as the choice of the reconstruction loss £x)
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2. Autoencoders
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Deep Learning 2. Autoencoders

Autoencoders / Single Layer

» PCA / linear autoencoder:
R(x) == VWx ~ W2Whx ~ W2(W!x + bt) + b?

» autoencoder: chose encoder and decoder to be a fully connect z
neural network with L layers each. J

» most simple case: a single layer L = 1: ‘

K(x) = relu(W? relu(W'x + b') + b?)
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Deep Learning 2. Autoencoders

Autoencoders / Multiple Layers , ”
2L,
» general case: multiple layers L each:
Z1,1
» encoder block zb1: 1
1,2
_ z
2V = relu(WhfZHT 4 pLby ‘
|
21’0::)(7 My o:=M, h::zl’L, My =K, v
’ ’ Zhli-1
whecpMiexMie—1  pLecgMie T
: 1l 20
» decoder block z%1:L2; f— =z
72t = reIu(WMzM_1 + bu) 721
l
22‘0::h, MI,O::K’ >?::z2‘L, M2‘L::M, 2272

W2’Z€RM2’5XM2’[717 bzvee]RM2a2

!

!

!
~

» Q: What type of architecture does such a deep autoens Jer have?

® -
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Deep Learning 2. Autoencoders

Autoencoders / Multiple Layers
» general case: multiple layers L each:

» encoder block z1:1il1:

W= reIu(Wl’Zzl’f_1 + bu)

21’0::)(, Ml,O::M' h::zl’L, Ml,L::K'

MI,EXMl,Z—17 My e

wliler pLler

» decoder block z%tL2;

Z2,Z = relu(wZ,KZZ,f—l + b27£)
22‘0::h, MI,O::K’ >”<::z2‘L, M2’L::M,

sz,eeRl\/’Z,eXIV’2,[717 bzvée]RM2a2

» an autoencoder is a vanilla fully connected
feedforward neural network

1,L,—1

h— Ll — 520

= — —

Z2L-1
1

® -
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Deep Learning 2. Autoencoders

Autoencoders

» usually, depth and layer sizes of encoder and decoder blocks are
chosen antisymmetric:

Li =Ly, Myy= My,

» create the information bottleneck gradually, layer by layer.

Deep Autoencoder

Encoding DBN Decoding DBN

Input Output

o
o

0000
OO0
OO0
Q000
Q0000

00000

Compressed
Feature Vector

[source: licdn.com|
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Deep Learning 2. Autoencoders

Learning Autoencoders

» an autoencoder is a vanilla fully connected feedforward neural
network.

» thus an autoencoder is learnt via vanilla backpropagation.

» from unlabeled data D = (x1, %2, ..., xn) € (RM)*
to labeled training data for autoencoders:

DN = ((Xl,X1) (x2,X2), - .. (XN,XN)) e (RY x RM)*
U(x, %, D) = — Z l[xn — %(xn)]3 = N Z Z (Xn.m — Zm(xn))?
n=1 m=1
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Deep Learning 2. Autoencoders

.. N
Regularizing Autoencoders “

» one-layer autoencoders are often just structurally regularize: K < M.

» deeper autoencoders and more generally, a more fine-grainded
regularization is useful.

» use standard regularizations such as L2, drop-out

F(0) := 0(%:0) + X[|0]13

» also L1 regularization is possible:

f(0) :=£(x;0) + A|0]|1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Deep Learning 2. Autoencoders

Enforcing Properties of the Latent Representations

> sparse autoencoders:

N
; . 1
f(0; D) := 4(%; 0, D) + )\N E [|h(xn; 0)]]1
n=1

» encourages sparse latent representations h(xp).

» thus also has a regularizing effect for the encoder.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 2. Autoencoders

Denoising Autoencoders
» goal: make the autoencoder more robust to small variations in the
input.
» corrupt the input with noise.

» still require the autoencoder to decode to the clean, original instance:

E()?' Dtrain) = ]Eeanoiseg(X7 )A((Z(X + E)))

> e.g., Proise := Nu(0,02) with a small noise variance o2.

» during training, draw a fresh corruption € and add to instance x,,
before it is input into the network. So for each batch:

Dyt = (o + ey xa) | 1= 12 Ny € ~ Prois)

» basically a data augmentation technique.
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Deep Learning 2. Autoencoders

) P2
Contractive Autoencoders v

» goal: make the autoencoder more robust to small variations in the
input.

» penalize large gradients of the latent representaitons h w.r.t. the

inputs x:

N
rain ° rain 1 Oh(x ;9
(D) = 1(5;0,07) 4 a3 20O
n=1

» e.g., for a single layer autoencoder:

_ K M X K
Hah(g)’:e)H% — Z Z(M)z = Z (a’(Wk—CX + b)) Wi m)?

M=

ig.
Note: Remember the Frobenius matrix norm ||A||r := ZInV:1 ZAm/’:I(An,m)Z.
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3. Layers Parametrizing Distributions
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Deep Learning 3. Layers Parametrizing Distributions

Layers Parametrizing Distributions
» univariate normal (K = 1):
-1
Mpy_1:=2, p:= zf_l, o =¢e*2
l -1y . 4 2

p(z | 2777) = N(Z" | p,07)

» multivariate normal (K), diagonal covariance matrix:
£—1
M1 :=2K, p:= zf;(l, Y = diag(e2zK+1:2K)
p(z | 271 = Nk | 1, E)

» multivariate normal (K), full covariance matrix:

K(K+1 B 3
M1 = (2), "= zf:Kl, A= reshape(zf; 1 Kkan)s Ei= ATA
+1: K

p(z' | 271 = Nk | 1.5)

(K-1)

Note: Here, reshape reshapes the K 5

with zeros on the diagonal.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 3. Layers Parametrizing Distributions

Layers Parametrizing Distributions (2/2)

» bernoulli:
My_1:=1, p1: Ioglstlc( =1y
p(z' | 21) 1= Ber(z' | p1) = 2'p1 + (1— 2)(1 = py)
» multinoulli (K):

My—1 =K, p:= softmax(zé_l)

p(z' | 271) = Mult(2* | p) = H M

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Deep Learning 3. Layers Parametrizing Distributions

Layers Parametrizing Distributions / Value Computatloﬂ

» value computation / forwards:
» sample z¢ ~ p(z* | z71)

» to estimate output probabilities, take S samples:

S

1 . . _
plx | 2) = ¢ 3 op(x| 249, 2449~ p(z! | 27Y)
s=1

. £
» Q: but how to compute gradients %
required for backpropagation?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Deep Learning 3. Layers Parametrizing Distributions

B
Layers Parametrizing Distributions / Gradient Computat1{'n

» gradient computation / backwards

» reparameterization trick:

» reparametrize z¢ as a differentiable function in

» the previous layer and
» random noise € (independent from the previous layer):

ZZ ‘ 2271 —

0—1
g(Z ae)a € ™~ Pnoise
» e.g., univariate normal:

p(zé|ZE71):N(ze‘/~Lvo—2) ~ Ze:/J"’_UEv e~N(e|0,1)

e, .
> now % is straight-forward to compute.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Deep Learning 3. Layers Parametrizing Distributions

B
Layers Parametrizing Distributions / Gradient Computat1{'n

» reparametrization trick for multivariate normal with diagonal
covariance:
p(2' | 27Y) = Nk(2 | i, diag(03....,0%))
~ ZZ:/’L+(017"'7UK)T®€7 6’\/'/\/’K(6’071)
= u + diag(o1,...,0k)e€

» reparametrization trick for multivariate normal with full covariance:

p(zf | 2" = N2 | 11, E), withZ=ATA
v Zt=p+ A, e~ Nk(e]0,1)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Deep Learning 3. Layers Parametrizing Distributions

B
Layers Parametrizing Distributions / Gradient Computat1€'n

» neural networks with layers parametrizing distributions
can be learnt with vanilla backpropagation

» after applying the reparametrization trick

» random noise € is viewed as additional input

» for autoencoders with point reconstructions X(z):

2

min f(6; D) Z zeop(z)xn) L (Xn; X(2))

» for autoencoders with distributions p(X | z) of reconstructions:

N
. 1 N
min f(6; D) := N E E;p(z|x,) 108 P(X = xn | 2)

n=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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4. Variational Autoencoders
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Deep Learning 4. Variational Autoencoders

Variational Lower Bound

» variational autoencoders distinguish between
» the true latent posterior p(z | x) and
» the estimated latent posterior p(2 | x)
— usually denoted g(z | x) in the literature.
» maximize log likelihood:

p(z=2]x)
p(k=x,z=2) p(2]x)
=Ezp(z|x) lo >
PE TG X)) plz=21x)
=Es pzpx) log p(X = x,z = 2) — Esp(3)x) log p(2 | x)

log p(Z | x
ve, (21

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 4. Variational Autoencoders

Variational Lower Bound

=H(p(2|x))
log p(X = x) = Esp(zx) log p(X = x, 2 = 2) =E3_p(21x) log p(2 | x)
log p(2 | x)
FEepEiogp(z = 2
=KL(p(2]x),p(z|x))
= Ezp(z)x) log p(X = x,z = 2) + H(p(2 | x)) + KL(p(2 | x), p(z | X))

» Entropy H(q)
» Kullback-Leibler divergence KL(q, p) >

» cannot be computed as p(z = 2 | x) is not accessible,
only conceptual.

» drop it and use the remaining terms as a lower bound.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Deep Learning 4. Variational Autoencoders

Variational Lower Bound

» evidence lower bound (ELBO) / variational lower bound:

ELBO := log p(& = x) — KL(p(2 | x), p(z | x))
= IE:2~p(2|><) log P()? =X,z = 2) + H(p(2 | X))

» conceptually:
» maximize the likelihood of the data and
» minimize the KL divergence, i.e.,

make estimated posterior latent distribution p(2 | x) and
true posterior latent distribution p(z | x) similar.

» technically:
» maximize the joint likelihood of the data and the estimated latent
representations, and
» maximize the entropy of the estimated latent representations.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 4. Variational Autoencoders

Variational Lower Bound

» entropy for univariate normal:
H(N (p,0%)) x log o

» entropy for multivariate normal with diagonal covariance matrix:

K
HWN k(. (03, .., 0%)) x> log oy
k=1

» entropy for multivariate normal with full covariance matrix:

HN (@, X)) o< ...

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 4. Variational Autoencoders

P2
Variational Autoencoders “
» Variational Autoencoders are autoencoders with
1. a layer parametrizing a normal distribution as latent representation
layer h,
» usually with a diagonal covariance matrix
(factorized Gaussian posteriors).

0—
M1 :=2K, p:= zf;}K, Y= diag(e2z'<+11:2’<)
p(z" | 2'7Y) 1= N(z" | 1, %)

2. using the variational lower bound ELBO as loss
> i.e., for a diagonal covariance matrix and scalar normal output
~ a 2 ~ C
N (X | tout(Xn, 2), 05ut(Xn, 2)), minimize:

f(0) = — ELBO

N K
1 N ~
_N(Z Esrep(zix,) 108 P(X = Xa, 2 = 2) + > log(Tkk(xn)))

n=1 k=1
1 & Hout (Xn, 2
= 2O Eonpieinn) log(0out(xn, 2)) + ($ - 2ZZK+1 2k
N o o'out(Xm

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 4. Variational Autoencoders

Summary

» Dimensionality reduction can be accomplished via reconstructing
the features of each instance from a lower dimensional / lower
complexity latent representation (autoencoding).

» Principal Components Analysis (PCA) is a linear autoencoder.

» Adding a non-linear activation function to the latent layer yields a
single layer autoencoder.

» More generally, any feed-forward neural network can be interpreted as

deep autoencoder,

» picking any of its layers as latent representation h,
the layers up to h are interpreted as encoder,
the layers after h are interpreted as decoder.

vvVvyy

is chosen as latent representation h.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 4. Variational Autoencoders

Summary (2/2) YA

» Autoencoders are vanilla feed-forward neural networks, esp.
» they can be trained via vanilla back-propagation.
» they should be regularized.
» standard: L2, drop-out
> special: sparse autoencoders with an L1 regularization on the latent
representation h

» Layers representing distributions
» can be modeled by parametrizing distributions by values from the
previous layer.
» can be used forwards simply by sampling from the distribution.
» can compute gradients by the reparametrization trick.

» Variational Autoencoders
» represent the latent features by a distribution (not just a point
estimate)
» usually a multivariate normal with diagonal covariance matrix,
» use a variational lower bound ELBO as loss.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
26

26



Deep Learning

Further Readings

» Goodfellow et al. 2016, ch. 13 & 14.

» variational autoencoders:

» Kingma and Welling [2019]
» Goodfellow et al. 2016, ch. 20.

» autoencoders are not covered explicitely by Zhang et al. 2020.

Acknowledgement: An earlier version of the slides for this lecture have been written by my

former postdoc Dr Josif Grabocka. _ . ) .
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