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Deep Learning 1. Supervised Learning for Graphs

Graphs

» directed graph G := (V, E):
any set V (called vertices) together with
E C V x V (called edges)

» undirected graph G := (V, E):
any set V (called vertices) together with
E C subsets(V/, card = 2) (called edges)
» equivalent to a directed graph with symmetric edges,
ie., with £ = {(w,v) | (v,w) € E}.

» vertex attributes x''t ¢ RVXM™

» edge attributes x®d&¢ ¢ REX Medee
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Deep Learning 1. Supervised Learning for Graphs

Some Notation for Graphs

» neighborhood of a vertex v € V in an undirected graph:

N()={we V|{v,w} e E}

» fanin and fanout neighborhood of a vertex v € V in a directed graph:

Nin(v) :={w e V| (w,v) € E}
Nowt(v) :={w e V| (v,w) € E}

» Denote the set of graphs with M"™ vertex features and Me9&¢ edge
features (both possibly none) by

gra phS( Mvrt, Medge)
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Deep Learning 1. Supervised Learning for Graphs

Graph Classification

» Given a set D" C graphs(M', Medee) x RO of pairs of
graphs x, = (V,, E,) and targets y, € R and
a pairwise loss £ : RO x RO — R on targets
find a prediction model

- graphs( M, pedee) RO

with minimal loss for test data Dt C graphs(M''t, Medee) x RO
(from the same distribution):

. 1 .
U(y; D) = DSt > Uy, (V. E))
(V7Eyy)€'Dtest
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Deep Learning 1. Supervised Learning for Graphs

e N
Vertex Classification (aka Node Classification) d

» vertex features xV™ are partitoned into two groups,
vertex predictors and vertex targets:

Vi

X" = concaty(%,y), xeRVM yeRVXO

» given the graph (V, E),
all vertex predictors X,
a random subset of vertex targets y|\ train, ytrain — v/ and
a pairwise loss £ : R x R — R on targets,
find a prediction § € RV >0 of the remaining vertex targets
viest .— Vv \ VN st their loss w.r.t. the true targets is minimal:

Uy y) = Vtest| Z yv, )
ve Vtest
» called a transductive problem, because
» no model function ¥ is sought, that predicts targets individually for
every instance/node,
» but just the target values for a fixed set of predictors predicted collectively
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Deep Learning 1. Supervised Learning for Graphs

A New Problem?

» Q: Can we solve vertex classification like any other classification
problem?
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Deep Learning 1. Supervised Learning for Graphs

NN
A New Problem? v

» Q: Can we solve vertex classification like any other classification
problem?

» Is there also an edge classification problem?
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Deep Learning 1. Supervised Learning for Graphs
Line Graphs
» line graph of a graph G :=(V,E):
line(V,E) :=(E,{{e,f} CE||enf|=1})

» each original edge becomes a vertex.
» two edges are connected by an edge, if originally they are connected by
a vertex.

(1) @\ L
/e ® QX@ (\“\
o & s (28
& G “® -
Graph G Vertices in L(G) Added edges in L(G) The line graph L(G)
constructed from edges in
G

[source: wikipedia/line_graph]
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Deep Learning 1. Supervised Learning for Graphs

Line Graphs / Features

» G:=(V,E),G :=line(V,E)
» edges become vertices ~~  edge features become vertex features:

cvrt . edge
Xo i=xg 0, e€kE

» vertices become edges ~»  vertex features become edge features:

~edge . _vrt
Xe,f =Xenf 6 fekE

» beware, a vertex can become many edges, thus all the edges
represented by the same original vertex have the same features.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 1. Supervised Learning for Graphs

Edge Classification?

» Is there also an edge classification problem?

» practically: sure.

» methododically: no, it is not a new problem.

» edge classification is the same as vertex classification for the line graph.
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Deep Learning 2. Recurrent Graph Networks

Outline

2. Recurrent Graph Networks
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Deep Learning 2. Recurrent Graph Networks

Graph Neural Networks

» recurrent latent vertex features z, € RX:

|

ZV = Z h(zv,ZW7X\\//rt7X|)/Vrt?X\idVglle) (1)
weN (v)

Yv = g(ZV’X\\/Irt)

» g, h fully connected neural networks

» Q: How can we compute the latent features?

» Scarselli et al. [2008]
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Deep Learning 2. Recurrent Graph Networks

Graph Neural Networks

» recurrent latent vertex features z, € RX:

I
o vrt vrt edge
zy = E h(zv, 2w, X" X5 X 05°)
weN(v)
— vrt
Yv = g(ZV)Xv )

» g, h fully connected neural networks

» z, have to be computed as fixpoints of eq. 1

» thus h needs to be chosen with care: to be contractive.

» Scarselli et al. [2008]
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Deep Learning 2. Recurrent Graph Networks

Gated Graph Sequence Neural Networks

> two types of latent vertex features z,, h, € R¥
» stacking several layers: zl hE, t=1,..., T
hY := x¥"t, padded with zeros.

» latent vertex features zt € RV*K:

t+1 (ht) ( edge out + Xedgewm) Wout Win c RMedge
)
edge
> representlng the edge features as array xei8e ¢ RV VXM
(being zero for non-edges)

» based on all previous latent vertex features ht € RY*K

> latent vertex features hf € RV*K computed via a GRU RNN:
- -1
e = GRU(2%, hY)
» using z' instead of the sequence inputs x! as done usually.
» being applied to each vertex in isolation!

» Li et al. [2015]
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Deep Learning 2. Recurrent Graph Networks

Gated Graph Sequence Neural Networks

» latent vertex features z, € RX:
H H edge
Z\t/‘-i—l — (ht)T(XSt:IEeWout + Xfe;g.ewln% Wout7 wih € RM

» make it simple: no edge features,
i.e., Medee .= 1 and x.efi%e = A is just the adjacency matrix.

Z‘l/’-i-l — Wout Z hf] + Win Z hfj

UeNout(V) UEMn(V)

» i.e, this is DeepSet for the fanin and fanout neighborhoods.
(before DeepSet was invented, that is.)
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Deep Learning 3. Graph Convolutions
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3. Graph Convolutions
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Deep Learning 3. Graph Convolutions

Papers on Graph Convolutions

% :

(source: Zhang et al. [2020])

Method Type Convolution Readout M.G Other Characteristics
Bruna et al. [40] Spectral ion kernel Hi clustering + FC No -
Henaff et al. [41] Spectral kernel Hi clustering + FC No Constructing the graph
ChebNet [42] Spectral/Spatial Polynomial Hierarchical clustering Yes B
Kipf&Welling [43] | Spectral/Spatial First-order B B B
CayletNet [44] Spectral Polynomial Hierarchical clustering + FC No B
GWNN [45] Spectral Wavelet transform - No -
Neural FPs [46] Spatial First-order Sum Yes -
PATCHY-SAN [47] Spatial Polynomial + an order An order + pooling Yes A neighbor order
LGCN [48] Spatial First-order + an order - Yes ‘A neighbor order
SortPooling [49] Spatial First-order An order + pooling Yes A node order
DCNN [50] Spatial Polynomial diffusion Mean Yes Edge features
DGCN [51] Spatial First-order + diffusion B B N
MPNNs [52] Spatial First-order Set2set Yes A general framework
GraphSAGE [53] Spatial First-order + sampling B Yes A general framework
MoNet [54] Spatial First-order Hierarchical clustering Yes A general framework
GNs [9] Spatial First-order A graph i Yes A general framework
Keamnes et al. [55] Spatial Weave module Fuzzy histogram Yes Edge features
DiffPool [56] Spatial Various Hierarchical clustering Yes Di i pooling
GAT [57] Spatial First-order - Yes Attention
GaAN [58] Spatial First-order - Yes Attention
HAN [59] Spatial Meta-path - Yes Attention
CLN [60] Spatial First-order - - -
PPNP [61] Spatial First-order - - Teleportation connections
TK-Nets [62] Spatial Various B Yes TJumping
ECC [63] Spatial First-order Hierarchical clustering Yes Edge features
R-GCNs [64] Spatial First-order - - Edge features
LGNN [65] Spatial First-order + LINE graph B B Edge features
PinSage [66] Spatial Random walk - - Neighborhood sampling
icGCN [67] Spatial First-order + sampling - - Neighl sampling
FastGCN [68] Spatial First-order + sampling B Yes Layer-wise sampling
Adapt [69] Spatial First-order + sampling B Yes Layer-wise sampling
Li et al. [70] Spatial First-order - - Theoretical analysi
SGC [71] Spatial Polynomial - Yes T ical analysi
GFNN [72] Spatial Polynomial - Yes Theoretical anal;
GIN [73] Spatial First-order Sum + MLP Yes ical analysis
DGI [74] Spatial First-order B Yes Unsupervised training

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 3. Graph Convolutions

» the vertices of the graph are partitioned into S clusters Cq,..., Cs

Deep Locally Connected Networks

» vertex cluster latent features z, € RX:
f 1. f 1 E : 0+1 KxK
I th Pzp)) s=1,...,5, j=1,.. K W e R
veCs j=1
» h:RX — RK is a suitable function (unspecified)

» What actually does h(ZJK W/fj v,J)

» Bruna et al. [2013]
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Deep Learning 3. Graph Convolutions

B
Deep Locally Connected Networks “

» the vertices of the graph are partitioned into S clusters Cq, ..., Cs

» vertex cluster latent features zs € RX:

K
2= h) Witz ) s=1,...,8, j=1,...,K, W e RFXK
veC j=1

» h:RK — RK is a suitable function (unspecified)
» instead of summing over Cs, the paper talks just about “pooling”.

» vertex clusters are assembled to a new graph with weighted edges,

by summing and normalizing the weights between vertices of each two
clusters.

» Bruna et al. [2013]
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Deep Learning 3. Graph Convolutions

Spectral Networks

» vertex latent features z € RV*K:

€+1 — Z leag W€+1)QT l )’ Wf;l c RV
j=1
» xodee ¢ RVXY symmetric, x*%€¢ > 0 edge weights

» Lap := diag(x®?1) — xd&¢ Weighted Graph Laplacian

» Q € RV the eigenvector matrix of the Laplacian:
Lap = Qdiag(\)Q", AeRV

» Bruna et al. [2013]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 3. Graph Convolutions

Spectral Networks / Filter Parametrization
» how are the filters W,f;l € RY parametrized (k,j =1,...,K) ?
» let's use just W € RY to denote Wf;l on this slide

» non-parametric filter (not used):
W=6ecRY
» interpolation from fixed size filter § € RL, L <« V with a cubic spline:
W(8) = gsk(V)0, qsk(V) € RV*L cubic spline kernel

» polynom in the eigenvalues A\ € RY of the Laplacian:
D—-1
W(X0) = 0437, 6€cRP D eN degree
d=0

» Defferrard et al. [2016]

Note: Here \¢ denotes elementwise powers: A := (\9),—_.\/.
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Deep Learning 3. Graph Convolutions

Experiments / Subsampled MNIST

[source: Bruna et al. [2013]]

Q: What you see?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 3. Graph Convolutions

Experiments / Subsampled MNIST

Table 1: Classification results on MNIST subsampled on 400 random locations, for different ar-
chitectures. FCN stands for a fully connected layer with N outputs, LRFN denotes the locally
connected construction from Section 2.3 with N outputs, MPN is a max-pooling layer with N
outputs, and SPV stands for the spectral layer from Section 3.2.

method Parameters | Error

Nearest Neighbors N/A 4.11
400-FC800-FC50-10 3.6-10° 1.8
400-LRF1600-MP800-10 7.2-10% 1.8
400-LRF3200-MP800-LRF800-MP400-10 1.6-10° 1.3
400-SP1600-10 (d; = 300, g = n) 3.2-10% 2.6
400-SP1600-10 (d; = 300, g = 32) 1.6 -10° 2.3
400-SP4800-10 (d; = 300, g = 20) 5-103 1.8

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 4. Graph Attention
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4. Graph Attention
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Deep Learning 4. Graph Attention

B
Graph Attention Networks (GAT) v

» restricted multi-head attention over the vertex neighborhood:

attnres(X; Ny, = I(u € N(v)) attn(X)y,y, u,veV
» using the vanilla attention mechanism:
attn(X; w,v) := a(XWTvxT)
sha(X; w,v,u) := attnres(X; w,v) (XUT)
mha(X) = Concat2((5ha(X1:V,slice(h); Whvvthh))hzle)QTa
Q € RK*xHK

» with X := xed8e ¢ RVXM® the vertex features.

» Velitkovi¢ et al. [2017]
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Deep Learning 4. Graph Attention

Model Configuration

» 2 GAT layers

1. 8 heads a 8 features, exponential linear unit
2. 1 head a O features, softmax

» L2 regularization A = 0.0005,

Dropout p = 0.6 for both layers’ inputs and
both layers’ attention weights.
(= random sub-neighborhood)

» has been optimized for first dataset (Cora),
used unchanged for the other two.

» +# parameters: Cora: 276k
Citeseer: 712k

Pubmed: 97k
- . X if x > 0
Note: Exponential linear unit (ELU): elu(z) :=
Lars Schmidt-Thieme, Information Systems and Machine Learnin Lg L) Um\/ersltv of Hildesheim, Germany



Deep Learning 4. Graph Attention

Experiments / Datasets

Cora Citeseer Pubmed PPI
Task Transductive Transductive Transductive Inductive
# Nodes 2708 (1 graph) 3327 (1 graph) 19717 (1 graph) 56944 (24 graphs)
# Edges 5429 4732 44338 818716
# Features/Node 1433 3703 500 50
# Classes 7 6 3 121 (multilabel)
# Training Nodes 140 120 60 44906 (20 graphs)
# Validation Nodes 500 500 500 6514 (2 graphs)
# Test Nodes 1000 1000 1000 5524 (2 graphs)

[source: Veligkovié et al. [2017]]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 4. Graph Attention

Experiments / Results

Transductive

Method Cora Citeseer Pubmed
MLP 55.1% 46.5% 71.4%
ManiReg (Belkin et al., 2006) 59.5% 60.1% 70.7%
SemiEmb (Weston et al., 2012) 59.0% 59.6% 71.7%

LP (Zhu et al., 2003) 68.0% 45.3% 63.0%
DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%

ICA (Lu & Getoor, 2003) 75.1% 69.1% 73.9%
Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%
Chebyshev (Defferrard et al., 2016) 81.2% 69.8% 74.4%

GCN (Kipf & Welling, 2017) 81.5% 70.3% 79.0%
MoNet (Monti et al., 2016) 81.7+05% — 78.8 £ 0.3%
GCN-64* 814+05% 709+05% 79.0+0.3%
GAT (ours) 83.0+0.7% 725+07% 79.0+0.3%

Note: shown is microaveraged F1.

[source: Velitkovi¢ et al. [2017]]
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Deep Learning 4. Graph Attention

: NS
Experiments / Results A

90
85 LGCN ACNet
G 80
<
[~
8 Planetoid*
Q
< 75
70
DeepWalk
s P
65
2015 2016 2017 2018 2019

Other methods - Methods with highest Accuracy

[source: paperswithcode.com]
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
22 /28


https://paperswithcode.com/sota/document-classification-on-cora

Deep Learning 4. Graph Attention
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Deep Learning 5. Set-valued Inputs (DeepSet)
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5. Set-valued Inputs (DeepSet)
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Deep Learning 5. Set-valued Inputs (DeepSet)

Set Function Representation Theorem

» let X', be any sets, i.e., X :=RM Y :=RO.
» any function on (finite/countable) sets of elements from X" to Y,
fsets(X) = Y
can be written as

F(X)=g(_ h(x))

xeX

for two suitable functions h: X — RX, g : RK =
and a suitable K € N.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 5. Set-valued Inputs (DeepSet)

Set Function Representation Theorem / Proof
~=:
fa(X) =g( Y hx)=g(>_ h(x)) =
XGﬂ'(X) xeX

= here only for the case that X is countable,
i.e., there exists a injective map ¢ : X — N:
h(x) =40 K.=1

= Z h(x) is injective (4-ary code of X)
xeX

g(2) = f(z71(2))

and then:

(Y h(x)=glz(X)) = f(zH(z(X))) = £(X)

xem(X)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 5. Set-valued Inputs (DeepSet)

DeepSet da

» invariant layer:

> input: X € R*XM (E{x1,x2, ..., xT}, xt € RM, number T of elements variable)

» output: z € R°

2(x) = g(d_ hix.))

h:RM — RX element encoder
g : R¥ — R9 decoder

» aggregation of encoded elements by sum, mean, or max.

» Zaheer et al. [2017]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 5. Set-valued Inputs (DeepSet)

Equivariant Layer

» equivariant layer:

> input: x € R* (={x1,x2, ..., xT},xt € R, number T of elements variable)

» output: z € R* with same length

z(x) := a(cx + d(maxx)1), c¢,d R

» formulated for x € RM, i.e., for M scalar elements

» also a(ex + d117x) (sum) or a(cx + d-1 117 x) (mean
x|

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 5. Set-valued Inputs (DeepSet)

Summary

» (Transductive) vertex classification in a graph:
given some labeled vertices, predict the targets/labels of the others.

» Early attempts to build neural networks for graphs used recurrent approaches

» Graph Convolutions aggregate vertex features
> in the spectral domain:
over vertex neighborhoods in the Eigenspace of the graph Laplacian.

> in the spatial domain: over vertex neighborhoods in the graph directly.

» Graph Attention applies vanilla multi-head attention to the vertices,
restricting it to their neighborhoods.

» Both, graph convolution networks and graph attention networks can be
learned with vanilla backpropagation.

» Graph Attention Networks provide some of the best models currently for
vertex classification.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning

Further Readings

» graph convolutions are not yet covered by the textbooks.
» see the referenced papers for details.

» surveys: Zhang et al. [2020]; Wu et al. [2020]; Kinderkhedia [2019]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning
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