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Outline

1. Attacking Machine Learning Models

2. Adversarial Training

3. Generative Adversarial Networks
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Deep Learning 1. Attacking Machine Learning Models
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1. Attacking Machine Learning Models
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Deep Learning 1. Attacking Machine Learning Models

B
What do you see? A

[Szegedy et al. 2013]
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Deep Learning 1. Attacking Machine Learning Models

What do you see?

[Szegedy et al. 2013]

AlexNet sees an ostrich.
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Deep Learning 1. Attacking Machine Learning Models

e
What do you see? d
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Deep Learning 1. Attacking Machine Learning Models

One Pixel Attacks

5 “@s
Cup(16.48%) Bassinet(16.59%)

Soup Bowl(16.74%) Paper Towel(16.21%)

Teapot(24.99%) Hamster(35.79%)
Joystick(37.39%) Nipple(42.36%)

[Su et al. 2019]
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Deep Learning 1. Attacking Machine Learning Models

Learning Untargeted Attacks to Classifiers
Given a classifier y : X = ),
a pairwise loss £ : Y x )Y — R

Zn:d an attack model 5.1 x

1. as many samples are classified wrongly by the classifier y
after having been transformed by the attack model, i.e.,

0(35; DteSt) =—4(yo3 DteSt})
1 n A
= |Dtest‘ Z E(y,y °© a(x))
(

X,y)EDtESt

is minimal, and

2. the attack model changes the inputs only slightly, i.e.,

1 A
Drest| Z l[x —a(x)]|
| |y7y°‘ (

. L. X,yo)E’Dte“
is minimal.
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Deep Learning 1. Attacking Machine Learning Models

B
Learning Targeted Attacks to Classifiers “

Given a classifier y : X — ), eg, X =RM Yy :={0,11°
a pairwise loss £: Y x Y — R and
a source and target label y°,y! € Y,
gilgd an attack model 3 X 5 X
1. as many samples from the true source class
are classified as target class by the classifier y
after having been transformed by the attack model, i.e.,

(D) = (7 0 5 {(x.y") | (x.5°) € D)

1 A
:m Z E(yl’yoa(x))
y=y (X7y0)€’Dtest

is minimal, and

2. the attack model changes the inputs only slightly, i.e.,

1 ~
I > lx—ax)l]
is minimal. Y=Y (x,y0)eDrest
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Deep Learning 1. Attacking Machine Learning Models

Additive Attacks
» additive attack models:
ax)=x+éx), X=X
Uyt 3 oalx)) = Lyt 9 (x + &(x)))
Ix = 30l = G|
» use maximum norm ||€(x)||cc
» instead of minimizing ||€(x)||~, enforce
180 ||oo < €max, Vx € X, foree R
» being attackable
V(x,y%) € DIe(x) ¢ [[e(X)]] < emans F(x +2(x)) = y*
is different from being unstable

V(x,y) €D p(§(x+e€) #9(x) [ €~ X, €] < emax)
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Deep Learning 1. Attacking Machine Learning Models

Fast Gradient Sign Attack

» very simple untargeted attack [Goodfellow et al., 2014]

» idea: for a linear model
Jx+)=wl(x+&)=w'x+w'é
grows maximally (under constaint € < €max) for € := €max sgn(w)
= J(x) + €max||[w||1
» for a non-linear model:

€(x,y) = emaxsgn(Vx(£(y, §(x))))

» can be computed by backpropagation

v

simple heuristics

» requires knowledge of the attacked model § (whitebox)
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Deep Learning 1. Attacking Machine Learning Models

B
Fast Gradient Sign Attack / Examples d
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(b)

(2)
[Goodfellow et al. 2014]

(d)

a) weights of a logistic regression model
b) their sign (= gradient sign for any x), i.e., the best attack
c) original examples for 3s and 7s (1.6% error)

d) attacked examples (99% error)
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Deep Learning 2. Adversarial Training
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2. Adversarial Training
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Deep Learning 2. Adversarial Training

Adversarial Training

» can we make a model more robust against attacks?

» idea:
1. augment training data by adversarial examples 3(x)
with correct class y:

aug(D"™") := {(a(x). y) | (x,y) € D"}
> as aug depends on the attack model 3, which in turn depends on y,
the augmented dataset will shift during training of y.

» think about it as a generator / distribution.

2. train on both parts of the data:

E(j}, thrain7 aug) = g(y’ Dtrain) 4 aﬁ(f/; aug(Dtrain))
> « is a hyperparameter.
» Goodfellow et al. 2014 uses @ = 1.
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Deep Learning 2. Adversarial Training

Adversarial Training / Results i

» MNIST dataset error [%] on

own adv. others orig.
model y trained on ex. adv. ex. | ex.
small maxout net D" 89.4 40.9 0.94
small maxout net D" aug(Dtain) | 17.9 19.6 0.84
large maxout net ~ Dtan 1.14
large maxout net D" aug(Drain) 0.782
small maxout net D" 4¢ 86.2
small maxout net DY unif(—¢, +¢) | 90.4

» adversarial training dampens a models attackability considerably.
» also for adversarial examples transferred from other models.
» adversarial training can have a regularizing effect !
Note: adv.=adversarial, ex.= examples.
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Deep Learning 2. Adversarial Training

Learning to Augment Data

Given a training dataset D' ¢ (X x ))*,

a pairwise loss £ : Y x Y — R,

a learning algorithm L: (X x Y)* — yx
find a data augmentation model

(XA XY = (A xY)
s.t. the model learned on the augmented data has a minimal loss:
0(3; D) := ¢((L o 3)(DFr); Dtst)
e X H30). 5= L)

(X7y)e'Dtest
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Deep Learning 3. Generative Adversarial Networks
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3. Generative Adversarial Networks
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Deep Learning 3. Generative Adversarial Networks

Learning Distributions |: Density Estimation

» density estimation:
giVen a Samp|e Dtram - X of instances sampled from an unknown distribution p : X — Rar,
learn the density function

p: X =Ry

i.e., a function that assigns each instance x € X" a likelihood p(x),
s.t. the integral of p over any measurable subset X C X
yields the average number of instances in X in fresh samples D't ~ p

/ p(x)dx ~ / p(x)dx = Ex_p(x € X) VX C X measurable
X X

» this construction does not allow to compute new samples from p
directly.
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Deep Learning 3. Generative Adversarial Networks

Learning Distributions Il: Generative Models

» generative model:
giVen a Samp|e Dtram C X of instances sampled from an unknown distribution p : X — ]Rar,
learn a generative model

q:Z%Rg
X:Z—=>X

» where g is a distribution on Z that is easy to sample from,
often just the multivariate standard normal q := N (0, diag(1,...,1)

» s.t. the average number of instances in fresh samples X™* ~ p that fall
within any measurable subset X C X, are just the integral of p over X:

!
E, q(x(z) e X) = / p(x)dx = E,p(x € X) VX C X measurable
X
» this construction allows to generate new samples x via
z~gq, x:=X(2)
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Deep Learning 3. Generative Adversarial Networks

Generative Models

Learn to generate data that looks as close as possible to a real dataset:

Face Aging
A
0-18 19-29 30-39 40-49 50-59 60+

Figure 1: Conditional Generation, Source: Antipov 2017
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Deep Learning 3. Generative Adversarial Networks

Generation as a Maximum Likelihood Task

» Maximize the likelihood of observing the data using parameters 6:

9*

N
arg max H p(x(": 6)
n=1

arg max lo B(x(M: g
g max log IT (" 06)

n=1

arg max log b X(");9
gr > log p(x\";0)

n=1

arg maxEp(log p(x;8))
[4

argminE,,(—log p(x;0))
0

argrmin [ p(xlog ,;;gg)dx — Dy (p || B 6))

» equivalent to minimize the Kullback Leibler divergence between the
true distribution p and the estimated distribution p.
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Deep Learning 3. Generative Adversarial Networks

Generative Adversarial Networks (GAN)

» Two agents play a minimax game:
» Generator: Generate synthetic data aiming to make them as similar as
possible to real data
» Discriminator: Distinguish if an input sample comes from the real
data distribution

D: Detective

R: Real Data G: Generator (Forger) I: Input for Generator

Figure 2: GAN, Courtesy of Dev Nag

» Generator MINimizes the following:
» Discriminator MAXimizes the accuracy of counterfeit detection
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Deep Learning 3. Generative Adversarial Networks

GAN - Problem A

» Unknown distribution p over data instances x € RM
» Generator:
» generate new instances, implicitly defines distribution p : RM — ]Rar
» %(.,05) : RK — RM is a neural network.
» z~qg: R o Rg sometimes called noise or prior.
» Discriminator:
» d(x,04) : RM — [0,1] is a neural network
» d(x) is the probability that x comes from real data rather than being
generated by X.
» GANSs aim to learn 6, and 64 optimizing a joint objective:

min max Ex~p(log d(x;04)) + E.q(log(1l — d(X(z;05); 04)))

0g o
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Deep Learning 3. Generative Adversarial Networks

GAN - Optimization

1 Iearn-gan(thai", B, I, Idiscrim) .

2
3

4

10

11

12

initialize 04,0,
for I iterations:
for [discim terations:
sample B noise samples: z;,...,z5 ~ q
sample B real samples: xi, ..., xg ~ D"

update discriminator parameters 64 using gradient ascent:
B

1 o
Vo, B Z log d(xp; 04) + log(1 — d(X(zb; bg); 0a))
b=1
sample B noise samples: z;,...,z5 ~ q
update generator parameters 6, using gradient descent:

B
Vo, ;Z log(1 — d(X(z6: 65): 02))

return 04,0,
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Deep Learning 3. Generative Adversarial Networks

Deep Convolutional Generative Adversarial Networks

» Replace pooling with strided convolutions (discriminator) and
fractional-strided convolutions (generator)

v

Use batchnorm in both generator and discriminator

v

Remove fully connected hidden layers

v

Use ReLU in generator for all layers, except output (tanh)

v

Use LeakyRelLU in discriminator for all layers

1024

1002 H = -
L O,

Project and reshape
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Deep Learning 3. Generative Adversarial Networks

NS
DCGAN / Example o

AN

Figure 4: DCGAN Generated Images discriminated against the LSUN dataset, Source: Radford
et al., ICLR 2016
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Deep Learning 3. Generative Adversarial Networks

Summary

» Machine Learning Models can be attacked, i.e., is possible for any
instance,
» to modify it only slightly (imperceptible),
» but s.t. the model predicts an arbitrary class.

» The Fast Gradient Sign Attack is a simple such attack that moves
instances in the direction of the elementwise sign of their gradients.

» Adversarial training, i.e., include adversarial samples and their true
class into the training set, can help to mitigate the impact of attacks
somewhat.

» Generative Adversarial Networks aim to learn to generate new
instances, by optimizing a joint loss for
» a generator model, that creates/reconstructs instances from a latent
representation (that is easy to sample), and
» a discriminator model that aims to distinguish true from generated

samples.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
21



Deep Learning

Further Readings

» Zhang et al. 2020, ch. 17 covers some basic principles.
» Goodfellow et al. 2016, ch. 7.13 briefly covers adversarial training.
» a survey: Akhtar and Mian [2018]

» a library: cleverhans.
https://github.com/tensorflow/cleverhans

Acknowledgement: An earlier version of the slides for this lecture have been written by my

former postdoc Dr Josif Grabocka. _ . ) .
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