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Deep Learning

Syllabus

Tue. 21.4. (1) 1. Supervised Learning (Review 1)
Tue. 28.4. (2) 2. Neural Networks (Review 2)
Tue. 5.5. (3) 3. Regularization for Deep Learning
Tue. 12.5. (4) 4. Optimization for Training Deep Models
Tue. 19.5. (5) 5. Convolutional Neural Networks
Tue. 26.5. (6) 6. Recurrent Neural Networks
Tue. 2.6. — — Pentecoste Break —
Tue. 9.6. (7) 7. Autoencoders
Tue. 16.6. (8) ctd.
Tue. 23.6. (9) 8. Attention Layers
Tue. 30.6. (10) 9. Graph Convolutions and Graph Attention
Tue. 7.7. (11) 10. Generative Adversarial Networks
Tue. 14.7. (12) Q & A
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Outline

1. Attacking Machine Learning Models

2. Adversarial Training

3. Generative Adversarial Networks
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Deep Learning 1. Attacking Machine Learning Models

What do you see?

[Szegedy et al. 2013]

[wikipedia, art. ostrich]

AlexNet sees an ostrich.
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Deep Learning 1. Attacking Machine Learning Models

One Pixel Attacks
2

Fig. 2. One-pixel attacks on ImageNet dataset where the modified pixels are
highlighted with red circles. The original class labels are in black color while
the target class labels and their corresponding confidence are given below.

• Effectiveness - On Kaggle CIFAR-10 dataset, being able
to launch non-targeted attacks by only modifying one
pixel on three common deep neural network structures
with 68.71%, 71.66% and 63.53% success rates. We
additionally find that each natural image can be perturbed
to 1.8, 2.1 and 1.5 other classes. On the original CIFAR-
10 dataset with a more limited attack scenario, we show
22.60%, 35.20% and 31.40% success rates. On ImageNet
dataset, non-targeted attacking the BVLC AlexNet model
also by changing one pixel shows that 16.04% of the test
images can be attacked.

• Semi-Black-Box Attack - Requires only black-box feed-
back (probability labels) but no inner information of
target DNNs such as gradients and network structures.
Our method is also simpler than existing approaches since
it does not abstract the problem of searching perturbation
to any explicit target functions but directly focus on in-
creasing the probability label values of the target classes.

• Flexibility - Can attack more types of DNNs (e.g.,
networks that are not differentiable or when the gradient
calculation is difficult).

Regarding the extremely limited one-pixel attack scenario,
there are several main reasons why we consider it:
• Analyze the Vicinity of Natural Images - Geometri-

cally, several previous works have analyzed the vicinity
of natural images by limiting the length of perturbation
vector. For example, the universal perturbation adds small
value to each pixel such that it searches the adversarial
images in a sphere region around the natural image [14].
On the other side, the proposed few-pixel perturbations
can be regarded as cutting the input space using very low-
dimensional slices, which is a different way of explor-
ing the features of high dimensional DNN input space.

Fig. 3. An illustration of the adversarial images generated by using Jacobian
saliency-map approach [18]. The perturbation is conducted on about 4% of
the total pixels and can be obvious to human eyes. Since the adversarial pixel
perturbation has become a common way of generating adversarial images,
such abnormal “noise” might be recognized with expertise.

Among them, one-pixel attack is an extreme case of
several-pixel attack. Theoretically, it can give geometrical
insight to the understanding of CNN input space, in
contrast to another extreme case: universal adversarial
perturbation [14] that modifies every pixel.

• A Measure of Perceptiveness - The attack can be effec-
tive for hiding adversarial modification in practice. To the
best of our knowledge, none of the previous works can
guarantee that the perturbation made can be completely
imperceptible. A direct way of mitigating this problem
is to limit the amount of modifications to as few as
possible. Specifically, instead of theoretically proposing
additional constraints or considering more complex cost
functions for conducting perturbation, we propose an
empirical solution by limiting the number of pixels that
can be modified. In other words, we use the number of
pixels as units instead of length of perturbation vector to
measure the perturbation strength and consider the worst
case which is one-pixel modification, as well as two other
scenarios (i.e. 3 and 5 pixels) for comparison.

II. RELATED WORKS

The security problem of DNN has become a critical topic
[1][2]. C. Szegedy et al. first revealed the sensitivity to
well-tuned artificial perturbation [24] which can be crafted
by several gradient-based algorithms using back-propagation
for obtaining gradient information [11][24]. Specifically,
I.J.Goodfellow et al. proposed “fast gradient sign” algorithm
for calculating effective perturbation based on a hypothesis
in which the linearity and high-dimensions of inputs are the
main reason that a broad class of networks are sensitive to
small perturbation [11]. S.M. Moosavi-Dezfooli et al. proposed

[Su et al. 2019]
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Deep Learning 1. Attacking Machine Learning Models

Learning Untargeted Attacks to Classifiers
Given a classifier ŷ : X → Y, e.g., X := RM ,Y := {0, 1}O and

a pairwise loss ` : Y ×Y → R
find an attack model

â : X → X
s.t.

1. as many samples are classified wrongly by the classifier ŷ
after having been transformed by the attack model, i.e.,

`(â;Dtest) := −`(ŷ ◦ â;Dtest})

= − 1

|Dtest|
∑

(x,y)∈Dtest

`(y , ŷ ◦ â(x))

is minimal, and

2. the attack model changes the inputs only slightly, i.e.,

1

|Dtest|y=y0 |
∑

(x,y0)∈Dtest

||x − â(x)||
is minimal.
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Deep Learning 1. Attacking Machine Learning Models

Learning Targeted Attacks to Classifiers
Given a classifier ŷ : X → Y, e.g., X := RM ,Y := {0, 1}O

a pairwise loss ` : Y ×Y → R and
a source and target label y0, y1 ∈ Y,

find an attack model â : X → Xs.t.

1. as many samples from the true source class
are classified as target class by the classifier ŷ
after having been transformed by the attack model, i.e.,

`(â;Dtest) := `(ŷ ◦ â; {(x , y1) | (x , y0) ∈ Dtest})

=
1

|Dtest|y=y0 |
∑

(x,y0)∈Dtest

`(y1, ŷ ◦ â(x))

is minimal, and

2. the attack model changes the inputs only slightly, i.e.,

1

|Dtest|y=y0 |
∑

(x,y0)∈Dtest

||x − â(x)||
is minimal.
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Deep Learning 1. Attacking Machine Learning Models

Additive Attacks
I additive attack models:

â(x) := x + ε̂(x), ε̂ : X → X
`(y1, ŷ ◦ a(x)) = `(y1, ŷ(x + ε̂(x)))

||x − â(x)|| = ||ε̂(x)||
I use maximum norm ||ε̂(x)||∞
I instead of minimizing ||ε̂(x)||∞, enforce

||ε̂(x)||∞ < εmax, ∀x ∈ X , for ε ∈ R+

I being attackable

∀(x , y0) ∈ D ∃ε̂(x) : ||ε̂(x)|| < εmax, ŷ(x + ε̂(x)) = y1

is different from being unstable

∀(x , y) ∈ D : p(ŷ(x + ε) 6= ŷ(x) | ε ∼ X , ||ε|| < εmax)
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Deep Learning 1. Attacking Machine Learning Models

Fast Gradient Sign Attack

I very simple untargeted attack [Goodfellow et al., 2014]

I idea: for a linear model

ŷ(x + ε̂) = wT (x + ε̂) = wT x + wT ε̂

grows maximally (under constaint ε̂ ≤ εmax) for ε̂ := εmax sgn(w)

= ŷ(x) + εmax||w ||1
I for a non-linear model:

ε̂(x , y) := εmax sgn(∇x(`(y , ŷ(x))))

I can be computed by backpropagation

I simple heuristics

I requires knowledge of the attacked model ŷ (whitebox)
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Deep Learning 1. Attacking Machine Learning Models

Fast Gradient Sign Attack / ExamplesPublished as a conference paper at ICLR 2015

(a) (b) (c) (d)

Figure 2: The fast gradient sign method applied to logistic regression (where it is not an approxi-
mation, but truly the most damaging adversarial example in the max norm box). a) The weights of
a logistic regression model trained on MNIST. b) The sign of the weights of a logistic regression
model trained on MNIST. This is the optimal perturbation. Even though the model has low capacity
and is fit well, this perturbation is not readily recognizable to a human observer as having anything
to do with the relationship between 3s and 7s. c) MNIST 3s and 7s. The logistic regression model
has a 1.6% error rate on the 3 versus 7 discrimination task on these examples. d) Fast gradient sign
adversarial examples for the logistic regression model with ε = .25. The logistic regression model
has an error rate of 99% on these examples.

perturbation. Note that the sign of the gradient is just −sign(w), and that w>sign(w) = ||w||1.
The adversarial version of logistic regression is therefore to minimize

Ex,y∼pdataζ(y(ε||w||1 −w>x− b)).
This is somewhat similar to L1 regularization. However, there are some important differences. Most
significantly, the L1 penalty is subtracted off the model’s activation during training, rather than
added to the training cost. This means that the penalty can eventually start to disappear if the model
learns to make confident enough predictions that ζ saturates. This is not guaranteed to happen—in
the underfitting regime, adversarial training will simply worsen underfitting. We can thus view L1

weight decay as being more “worst case” than adversarial training, because it fails to deactivate in
the case of good margin.

If we move beyond logistic regression to multiclass softmax regression, L1 weight decay becomes
even more pessimistic, because it treats each of the softmax’s outputs as independently perturbable,
when in fact it is usually not possible to find a single η that aligns with all of the class’s weight
vectors. Weight decay overestimates the damage achievable with perturbation even more in the case
of a deep network with multiple hidden units. Because L1 weight decay overestimates the amount
of damage an adversary can do, it is necessary to use a smaller L1 weight decay coefficient than
the ε associated with the precision of our features. When training maxout networks on MNIST, we
obtained good results using adversarial training with ε = .25. When applying L1 weight decay to
the first layer, we found that even a coefficient of .0025 was too large, and caused the model to get
stuck with over 5% error on the training set. Smaller weight decay coefficients permitted succesful
training but conferred no regularization benefit.

6 ADVERSARIAL TRAINING OF DEEP NETWORKS

The criticism of deep networks as vulnerable to adversarial examples is somewhat misguided, be-
cause unlike shallow linear models, deep networks are at least able to represent functions that resist
adversarial perturbation. The universal approximator theorem (Hornik et al., 1989) guarantees that
a neural network with at least one hidden layer can represent any function to an arbitary degree of
accuracy so long as its hidden layer is permitted to have enough units. Shallow linear models are
not able to become constant near training points while also assigning different outputs to different
training points.

Of course, the universal approximator theorem does not say anything about whether a training al-
gorithm will be able to discover a function with all of the desired properties. Obviously, standard
supervised training does not specify that the chosen function be resistant to adversarial examples.
This must be encoded in the training procedure somehow.

4

[Goodfellow et al. 2014]

a) weights of a logistic regression model
b) their sign (= gradient sign for any x), i.e., the best attack
c) original examples for 3s and 7s (1.6% error)

d) attacked examples (99% error)
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Deep Learning 2. Adversarial Training

Adversarial Training

I can we make a model more robust against attacks?

I idea:

1. augment training data by adversarial examples â(x)
with correct class y :

aug(Dtrain) := {(â(x), y) | (x , y) ∈ Dtrain}
I as aug depends on the attack model â, which in turn depends on ŷ ,

the augmented dataset will shift during training of ŷ .

I think about it as a generator / distribution.

2. train on both parts of the data:

`(ŷ ;Dtrain, aug) := `(ŷ ;Dtrain) + α `(ŷ ; aug(Dtrain))

I α is a hyperparameter.

I Goodfellow et al. 2014 uses α = 1.
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Deep Learning 2. Adversarial Training

Adversarial Training / Results

I MNIST dataset error [%] on
own adv. others orig.

model ŷ trained on ex. adv. ex. ex.

small maxout net Dtrain 89.4 40.9 0.94
small maxout net Dtrain, aug(Dtrain) 17.9 19.6 0.84

large maxout net Dtrain 1.14
large maxout net Dtrain, aug(Dtrain) 0.782

small maxout net Dtrain, ±ε 86.2
small maxout net Dtrain, unif(−ε,+ε) 90.4

I adversarial training dampens a models attackability considerably.
I also for adversarial examples transferred from other models.

I adversarial training can have a regularizing effect !
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Deep Learning 2. Adversarial Training

Learning to Augment Data

Given a training dataset Dtrain ∈ (X ×Y)∗,
a pairwise loss ` : Y ×Y → R,
a learning algorithm L : (X ×Y)∗ → YX

find a data augmentation model

â : (X ×Y)∗ → (X ×Y)∗

s.t. the model learned on the augmented data has a minimal loss:

`(â;Dtest) := `((L ◦ â)(Dtrain);Dtest)

=
1

|Dtest|
∑

(x,y)∈Dtest

`(y , ŷ(x)), ŷ := L(â(Dtrain))
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Deep Learning 3. Generative Adversarial Networks

Learning Distributions I: Density Estimation

I density estimation:
given a sample Dtrain ⊂ X of instances sampled from an unknown distribution p : X → R+

0 ,

learn the density function

p̂ : X → R+
0

i.e., a function that assigns each instance x ∈ X a likelihood p̂(x),
s.t. the integral of p̂ over any measurable subset X ⊂ X
yields the average number of instances in X in fresh samples Dtest ∼ p∫

X
p̂(x)dx

!≈
∫
X
p(x)dx = Ex∼p(x ∈ X ) ∀X ⊆ X measurable

I this construction does not allow to compute new samples from p̂
directly.
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Deep Learning 3. Generative Adversarial Networks

Learning Distributions II: Generative Models
I generative model:

given a sample Dtrain ⊂ X of instances sampled from an unknown distribution p : X → R+
0 ,

learn a generative model

q : Z → R+
0

x̂ : Z → X
I where q is a distribution on Z that is easy to sample from,

often just the multivariate standard normal q := NK (0, diag(1, . . . , 1)

I s.t. the average number of instances in fresh samples X test ∼ p that fall
within any measurable subset X ⊂ X , are just the integral of p over X :

Ez∼q(x̂(z) ∈ X )
!≈
∫
X

p(x)dx = Ex∼p(x ∈ X ) ∀X ⊆ X measurable

I this construction allows to generate new samples x via

z ∼ q, x := x̂(z)
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Deep Learning 3. Generative Adversarial Networks

Generative Models
Learn to generate data that looks as close as possible to a real dataset:

Figure 1: Conditional Generation, Source: Antipov 2017
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Deep Learning 3. Generative Adversarial Networks

Generation as a Maximum Likelihood Task
I Maximize the likelihood of observing the data using parameters θ:

θ∗ = arg max
θ

N∏
n=1

p̂(x (n); θ)

= arg max
θ

log
N∏

n=1

p̂(x (n); θ)

= arg max
θ

N∑
n=1

log p̂(x (n); θ)

≈ arg max
θ

Ex∼p(log p̂(x ; θ))

= arg min
θ

Ex∼p(− log p̂(x ; θ))

= arg min
θ

∫
p(x) log

p(x)

p̂(x ; θ)
dx =: DKL (p || p̂(.; θ))

I equivalent to minimize the Kullback Leibler divergence between the
true distribution p and the estimated distribution p̂.
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Deep Learning 3. Generative Adversarial Networks

Generative Adversarial Networks (GAN)

I Two agents play a minimax game:
I Generator: Generate synthetic data aiming to make them as similar as

possible to real data

I Discriminator: Distinguish if an input sample comes from the real
data distribution

Figure 2: GAN, Courtesy of Dev Nag

I Generator MINimizes the following:
I Discriminator MAXimizes the accuracy of counterfeit detection
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Deep Learning 3. Generative Adversarial Networks

GAN - Problem
I Unknown distribution p over data instances x ∈ RM

I Generator:
I generate new instances, implicitly defines distribution p̂ : RM → R+

0

I x̂(., θg ) : RK → RM is a neural network.

I z ∼ q : RK → R+
0 sometimes called noise or prior.

I Discriminator:
I d(x , θd) : RM → [0, 1] is a neural network

I d(x) is the probability that x comes from real data rather than being
generated by x̂ .

I GANs aim to learn θg and θd optimizing a joint objective:

min
θg

max
θd

Ex∼p(log d(x ; θd)) + Ez∼q(log(1− d(x̂(z ; θg ); θd)))
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Deep Learning 3. Generative Adversarial Networks

GAN - Optimization

1 learn-gan(Dtrain,B, I , I discrim) :
2 initialize θd , θg
3 for I iterations :

4 for I discrim iterations:
5 sample B noise samples: z1, . . . , zB ∼ q

6 sample B real samples: x1, . . . , xB ∼ Dtrain

7 update discriminator parameters θd using gradient ascent:

8 ∇θd
1

B

B∑
b=1

log d(xb; θd) + log(1− d(x̂(zb; θg ); θd))

9 sample B noise samples: z1, . . . , zB ∼ q
10 update generator parameters θg using gradient descent:

11 ∇θg
1

B

B∑
b=1

log(1− d(x̂(zb; θg ); θd))

12 return θd , θg
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Deep Learning 3. Generative Adversarial Networks

Deep Convolutional Generative Adversarial Networks
I Replace pooling with strided convolutions (discriminator) and

fractional-strided convolutions (generator)

I Use batchnorm in both generator and discriminator

I Remove fully connected hidden layers

I Use ReLU in generator for all layers, except output (tanh)

I Use LeakyReLU in discriminator for all layers

Figure 3: DCGAN Generator Architecture, Source: Radford et al., ICLR 2016Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Deep Learning 3. Generative Adversarial Networks

DCGAN / Example

Figure 4: DCGAN Generated Images discriminated against the LSUN dataset, Source: Radford
et al., ICLR 2016
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Deep Learning 3. Generative Adversarial Networks

Summary
I Machine Learning Models can be attacked, i.e., is possible for any

instance,
I to modify it only slightly (imperceptible),
I but s.t. the model predicts an arbitrary class.

I The Fast Gradient Sign Attack is a simple such attack that moves
instances in the direction of the elementwise sign of their gradients.

I Adversarial training, i.e., include adversarial samples and their true
class into the training set, can help to mitigate the impact of attacks
somewhat.

I Generative Adversarial Networks aim to learn to generate new
instances, by optimizing a joint loss for

I a generator model, that creates/reconstructs instances from a latent
representation (that is easy to sample), and

I a discriminator model that aims to distinguish true from generated
samples.
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Deep Learning

Further Readings

I Zhang et al. 2020, ch. 17 covers some basic principles.

I Goodfellow et al. 2016, ch. 7.13 briefly covers adversarial training.

I a survey: Akhtar and Mian [2018]

I a library: cleverhans.
https://github.com/tensorflow/cleverhans
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