

Machine Learning

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
University of Hildesheim, Germany
http://www.ismll.uni-hildesheim.de

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

Machine Learning

- 1. What is Machine Learning?
- 2. Overview
- 3. Organizational stuff

What is Machine Learning?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

Machine Learning / 1. What is Machine Learning?

What is Machine Learning?

1/36

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

What is Machine Learning?

2. Robotics: Build a map of the environment based on sensor signals.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

Machine Learning / 1. What is Machine Learning?

What is Machine Learning?

3/36

3. Bioinformatics: predict the 3d structure of a molecule based on its sequence.

What is Machine Learning?

Information Systems

Robotics

Bioinformatics

Many Further Applications!

MACHINE LEARNING

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

Machine Learning / 1. What is Machine Learning?

What is Machine Learning?

5/36

Information Systems

Robotics

Bioinformatics

Many Further Applications!

MACHINE LEARNING

OPTIMIZATION

NUMERICS

ALGORITHMICS

Process models

Cross Industry Standard Process for Data Mining (CRISP-DM)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

Machine Learning / 1. What is Machine Learning?

One area of research, many names (and aspects)

machine learning

historically, stresses learning logical or rule-based models (vs. probabilistic models).

data mining

stresses the aspect of large datasets and complicated tasks.

knowledge discovery in databases (KDD)

stresses the embedding of machine learning tasks in applications, i.e., preprocessing & deployment; data mining is considered the core process step.

data analysis

historically, stresses multivariate regression methods and many unsupervised tasks.

pattern recognition

name prefered by engineers, stresses cognitive applications such as image and speech analysis.

applied statistics

stresses underlying statistical models, testing and methodical rigor.

7/36

- 1. What is Machine Learning?
- 2. Overview
- 3. Organizational stuff

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

versität Alliaes

Machine Learning / 2. Overview

Machine Learning Problems

- 1. Density Estimation
- 2. Regression / Supervised Learning
- 3. Classification / Supervised Learning
- 4. Optimal Control / Reinforcement Learning
- 5. Clustering / Unsupervised Learning
- 6. Dimensionality reduction
- 7. Association Analysis

1. Density Estimation

Example 1: duration and waiting times for erruptions of the "Old Faithful" geyser in Yellowstone National Park, Wyoming (Azzalini and Bowman 1990).

continuous measurement from August 1 to August 15, 1985:

- duration (in min.),
- waiting time (in min.)

duration:

4.016667, 2.15, 4.0, 4.0, 4.0, 2.0, 4.383333, 4.283333, 2.033333, 4.833333, . . .

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

Machine Learning / 2. Overview

1. Density Estimation

durations: 4.016667, 2.15, 4.0, 4.0, 4.0, 2.0, 4.383333, 4.283333, ...

strip chart

histogram

10/36

1. Density Estimation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

Machine Learning / 2. Overview

orsität (Hildeshell)

12/36

1. Density Estimation

2. Regression

Example 2: how does gas consumption depend on external temperature? (Whiteside, 1960s).

weekly measurements of

- average external temperature
- total gas consumption (in 1000 cubic feets)

A third variable encodes two heating seasons, before and after wall insulation.

How does gas consumption depend on external temperature?

How much gas is needed for a given termperature?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

14/36

Machine Learning / 2. Overview

2. Regression

linear model

2. Regression

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

Machine Learning / 2. Overview

3. Classification / Supervised Learning

16/36

Example 3: classifying iris plants (Anderson 1935).

150 iris plants (50 of each species):

- species: setosa, versicolor, virginica
- length and width of sepals (in cm)
- length and width of petals (in cm)

iris setosa

iris versicolor

iris virginica

See iris species database (http://www.badbear.com/signa).

// Bunt)!**

3. Classification / Supervised Learning

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.10	3.50	1.40	0.20	setosa
2	4.90	3.00	1.40	0.20	setosa
3	4.70	3.20	1.30	0.20	setosa
4	4.60	3.10	1.50	0.20	setosa
5	5.00	3.60	1.40	0.20	setosa
:	:	:	:		
51	7.00	3.20	4.70	1.40	versicolor
52	6.40	3.20	4.50	1.50	versicolor
53	6.90	3.10	4.90	1.50	versicolor
54	5.50	2.30	4.00	1.30	versicolor
:	:	:	:		
101	6.30	3.30	6.00	2.50	virginica
102	5.80	2.70	5.10	1.90	virginica
103	7.10	3.00	5.90	2.10	virginica
104	6.30	2.90	5.60	1.80	virginica
105	6.50	3.00	5.80	2.20	virginica
:	:	:	:	:	-
150	5.90	3.00	5.10	1.80	virginica

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

Machine Learning / 2. Overview

3. Classification / Supervised Learning

18/36

3. Classification / Supervised Learning

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

Machine Learning / 2. Overview

3. Classification / Supervised Learning

Example 4: classifying email (lingspam corpus)

Subject: query: melcuk (melchuk)

does anybody know a working email (or other) address for igor melcuk (melchuk)?

legitimate email ("ham")

Subject: '

hello! come see our naughty little city made especially for adults http://208.26.207.98/freeweek/enter.html once you get here, you won't want to leave!

spam

How to classify email messages as spam or ham?

3. Classification / Supervised Learning

Subject: query: melcuk (melchuk)

does anybody know a working email (or other) address for igor melcuk (melchuk)?

′ a	$1 \setminus$
address	1
anybody	1
does	1
email	1
for	1
igor	1
know	1
melcuk	2
melchuk	2
or	1
other	1
query	1
working	1/

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

Machine Learning / 2. Overview

3. Classification / Supervised Learning

lingspam corpus:

- email messages from a linguistics mailing list.
- 2414 ham messages.
- 481 spam messages.
- 54742 different words.
- an example for an early, but very small spam corpus.

3. Classification / Supervised Learning

All words that occur at least in each second spam or ham message on average (counting multiplicities):

		,								email
spam	14.18	7.45	4.36	3.42	2.88	2.77	2.69	2.66	2.46	2.24
ham	0.38	0.46	1.93	0.94	0.83	0.79	1.60	0.57	0.30	0.39

	out	report	order	as	free	language	university
spam	2.19	2.14	2.09	2.07	2.04	0.04	0.05
ham	0.34	0.05	0.27	2.38	0.97	2.67	2.61

example rule:

if freq("!")≥ 7 and freq("language")=0 and freq("university")=0 then spam, else ham

Should we better normalize for message length?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

Machine Learning / 2. Overview

John Printersitär Alldesheur

4. Reinforcement Learning

A class of learning problems where the correct / optimal action never is shown, but only positive or negative feedback for an action actually taken is given.

Example 5: steering the mountain car.

Observed are

- x-position of the car,
- velocity of the car

Possible actions are

- accelerate left,
- accelerate right,
- do nothing

The goal is to steer the car on top of the right hill.

4. Reinforcement Learning / TD-Gammon

Figure 2. An illustration of the normal opening position in backgammon. TD-Gammon has sparked a near-universal conversion in the way experts play certain opening rolls. For example, with an opening roll of 4-1, most players have now switched from the traditional move of 13-9, 6-5, to TD-Gammon's preference, 13-9, 24-23. TD-Gammon's analysis is given in Table 2.

Program	Hidden Units	Training Games	Opponents	Results
TD-Gam 0.0	40	300,000	Other Programs	Tied for Best
TD-Gam 1.0	80	300,000	Robertie, Magriel,	-13 pts $/$ 51 games
TD-Gam 2.0	40	800,000	Var. Grandmasters	-7 pts / 38 games
TD-Gam 2.1	80	1,500,000	Robertie	$-1 ext{ pts} / 40 ext{ games}$
TD-Gam 3.0	80	1,500,000	Kazaros	+6 pts / 20 games

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

Machine Learning / 2. Overview

5. Cluster Analysis

26/36

Finding groups of similar objects.

Example 6: sociographic data of the 50 US states in 1977.

state dataset:

- income (per capita, 1974),
- illiteracy (percent of population, 1970),
- life expectancy (in years, 1969-71),
- percent high-school graduates (1970).

and some others not used here.

5. Cluster Analysis

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

Machine Learning / 2. Overview

28/36

5. Cluster Analysis

black: Arizona et al., red: Alaska & Nevada, green: Californa et al., blue: Hawaii.

HS Grad

7. Association Analysis

Association rules in large transaction datasets:

- look for products frequently bought together (frequent itemsets).
- look for rules in buying behavior (association rules)

Examples:

{beer, pampers, pizza} (support=0.5){bread, milk} (support=0.5)

If beer and pampers, then pizza
 If bread, then milk

(confidence= 0.75) (confidence=0.75)

cid	beer	bread	icecream	milk	pampers	pizza
1	+	_	_	+	+	+
2	+	+	_	_	+	+
3	+	_	+	_	+	+
4	_	+	_	+	_	+
5	_	+	+	+	_	_
6	+	+	_	+	+	_

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

30/36

Machine Learning

- 2. Overview
- 3. Organizational stuff

Exercises and tutorials

- There will be a weekly sheet with two exercises handed out each Tuesday in the lecture.
 1st sheet will be handed out this Wed. 1.11.
- Solutions to the exercises can be submitted until next Monday noon 1st sheet is due Mon. 6.11. 1pm
- Mode of corrections is still to be decided on until tomorrow.
- Tutorials each Wednesday 10–12 instead of the lecture, 1st tutorial at Wed. 8.11.
- Successfull participation in the tutorial gives up to 10% bonus points for the exam.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

31/36

Machine Learning / 3. Organizational stuff

Exam and credit points

- There will be a written exam at end of term (2h, 4 problems).
- The course gives 7 ECTS (3+1 SWS).
- The course can be used in the modules
 - IMIT BSc. / IT3-E Machine Learning,
 - IMIT BSc. / BW2-BI Business Intelligence,
 - IMIT MSc. / IT Machine Learning, or
 - IMIT MSc. / BW Business Intelligence.

Some books

- Richard O. Duda, Peter E. Hart, David G. Stork (2001): Pattern Classification, Springer.
- Trevor Hastie, Robert Tibshirani, Jerome Friedman (2001): The Elements of Statistical Learning, Springer.
- W. N. Venables, B. D. Ripley (2002):
 Modern Applied Statistics with R, Springer.
- Tom Mitchell (1997):
 Machine Learning, McGraw-Hill.
- Christopher M. Bishop (1996):
 Neural Networks for Pattern Recognition, Oxford University Press.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

33/36

Machine Learning / 3. Organizational stuff

Some First Machine Learning / Data Mining Software

- R (v2.4.0, 3.10.2006; http://www.r-project.org).
- Weka (v3.4.8a, 6.9.2006; http://www.cs.waikato.ac.nz/ ml/).
- SAS Enterprise Miner (commercially).

Public data sets:

- UCI Machine Learning Repository (http://www.ics.uci.edu/ mlearn/)
- UCI Knowledge Discovery in Databases Archive (http://kdd.ics.uci.edu/)

About the Information Systems and Machine Learning Lab New research group at University of Hildesheim, since October 1, 2006.

Machine Learning / Data Mining:

- Predictive modelling
- Web Mining
- Association rule algorithms

Internet Technologies:

- XML and XML-databases
- web services and semantic web technologies
- Java and several Java-based server technologies

E-commerce- and e-business applications:

- recommender systems
- business intelligence (e.g., web usage mining)
- methods for marketing research (e.g., adaptive conjoint analysis)

E-learning:

- analysis of the usage of e-learning products and services
- automatic structuring of information

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Machine Learning, winter term 2006

Machine Learning / 3. Organizational stuff

Seminar on Recommender Systems

Tuesday, 16-18, J204

- Systems that provide personalized product recommendations based on interests of users.
- Introduction of Seminar on Tue. 31.10., 16-18, J204.
- More information can be found at http://www.ismll.uni-hildesheim.de/lehre/rs-06w/index.html