Machine Learning: Evaluation

Steffen Rendle

Information Systems and Machine Learning Lab (ISMLL) University of Hildesheim

Wintersemester 2007 / 2008

Steffen Rendle

Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim

《曰》 《圖》 《臣》 《臣》

DQ C

3

Steffen Rendle

Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Is algorithm "A" better than algorithm "B"?

- depends on task/ dataset
- difference might be due to limited size of dataset
- Same quality measure and dataset(s) should be used to evaluate "A" and "B".

イロト イポト イヨト イヨト 三日

Comparison Schemes

Paired Test

- ▶ Both algorithms are trained on the same *n* datasets and use the same *n* test datasets.
- ► E.g. 10-fold CV:
 - 1. train each "A" and "B" on fold $f_2 ldots f_n$, evaluate each on f_1 . We get quality measures a_1 and b_1 .
 - 2. train each "A" and "B" on fold $f_1, f_3 \dots f_n$, evaluate each on f_2 . We get quality measures a_2 and b_2 .
 - 3. ...
- ▶ We get results a₁,..., a_n and b₁,..., b_n. The results a_i and b_i are paired.
- ► Reduces variance in the quality estimations.

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

Comparison Schemes

Unpaired Test

- Given are *n* results for "A" and *m* for method "B".
- ► E.g. one researcher has implemented logistic regression and evaluated it on the iris dataset with 10-fold CV. Another researcher has implemented a decision tree and evaluates it on iris with 5-fold CV. They can compare their results with an unpaired test.

<ロト < 同ト < ヨト < ヨト -

Hypothesis testing

 $\operatorname{Hypothesis}\ \operatorname{Testing}\ is a statistical method for comparing two test series.$

- ► Hypothesis *H*₀: "There is no difference."
- This hypothesis is tested with a significance level α . E.g 5%.
- H_0 is also called the "null hypothesis".
- ► A hypothesis test tries to falsify/ reject the null hypothesis.
- ► If we can reject the null hypothesis, the results are SIGNIFICANTLY different.

イロト 不得 ト イヨト イヨト 二日

Hypothesis testing

We deal with two testing schemes:

- Wald test
 - for normal distributed data
 - ► general test
- ▶ t-Test
 - for testing means of normal distributed data
 - good for small sample sizes

Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ への◇

Paired Wald-Test

- Data:
 - n samples
 - X_1, \ldots, X_n for algorithm "A"
 - Y_1, \ldots, Y_n for algorithm "B"
 - ► X_i and Y_i are paired!
- ▶ Hypothesis: $\delta = 0$

1

SQR

Paired Wald-Test

- $Z_i := X_i Y_i$ (because X_i and Y_i are paired!)
- $\bullet \ \delta = E(Z) = E(X) E(Y)$
- δ is estimated by $\hat{\delta} = \overline{X} \overline{Y}$
- $\hat{\delta}$ is a random variable
- the estimated standard error $\hat{se}(\hat{\delta})$ of $\hat{\delta}$ is

$$\hat{se}(\hat{\delta}) = \sqrt{rac{s_Z^2}{n}}$$

with $s_Z^2 := rac{1}{n-1} \sum_{i=1}^n (Z_i - \overline{Z})^2$

Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim

イロト 不得 ト イヨト イヨト 二日

Paired Wald-Test

► The normalized random variable *W* describing the error is:

$$W := \frac{\hat{\delta}}{\hat{se}(\hat{\delta})} = \frac{\overline{Z}}{\sqrt{\frac{1}{n(n-1)}\sum_{i=1}^{n}(Z_i - \overline{Z})^2}}$$

As W → N(0,1) we can conclude that the difference is with probability of at least α in:

$$C_n = \overline{Z} \pm z_{\alpha/2} \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^n (Z_i - \overline{Z})^2}$$

- We can test our hypothesis $\delta = 0$:
 - Method 1: If 0 ∉ C_n than reject H₀. I.e. there should be a difference between the two algorithms.
 - Method 2: If $|W| > z_{\alpha/2}$ then reject H_0 .

- - E - E

Unpaired Wald-Test

- ► Data:
 - ► *n* samples of "A", *m* samples of "B"
 - X_1, \ldots, X_n for algorithm "A"
 - Y_1, \ldots, Y_m for algorithm "B"
 - X_i and Y_i are independent!
- Hypothesis: $\delta = 0$

イロト 不得 ト イヨト イヨト 二日

SQR

Unpaired Wald-Test

- ► $\delta = E(X) E(Y)$
- δ is estimated by $\hat{\delta} = \overline{X} \overline{Y}$
- $\hat{\delta}$ is a random variable
- the estimated standard error $\hat{se}(\hat{\delta})$ of $\hat{\delta}$ is

$$\hat{se}(\hat{\delta}) = \sqrt{rac{s_X^2}{n} + rac{s_Y^2}{m}}$$

with $s_U^2 := rac{1}{k-1} \sum_{i=1}^k (U_i - \overline{U})^2$

Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim

<ロト < 同ト < ヨト < ヨト -

3

DQ P

Unpaired Wald-Test

• The normalized random variable W describing the error is:

$$W := \frac{\hat{\delta}}{\hat{\mathsf{se}}(\hat{\delta})} = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}}$$

As W → N(0,1) we can conclude that the difference is with probability of at least α in:

$$C_n = \overline{X} - \overline{Y} \pm z_{\alpha/2} \sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}$$

- We can test our hypothesis $\delta = 0$:
 - Method 1: If 0 ∉ C_n than reject H₀. I.e. there should be a difference between the two algorithms.
 - Method 2: If $|W| > z_{\alpha/2}$ then reject H_0 .

ロト イポト イラト イラト

t-Tests

• The Wald-test is based on $W \rightsquigarrow N(0,1)$.

f

- For small sample sizes, the approximation with a normal is inaccurate.
- In fact for small sample sizes W is t-distributed: $W \sim t_{n-1}$

$$T(x) = \alpha_n \cdot \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}$$

with $\alpha_n = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}$

Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ への◇

t-Tests

- ► t-Tests can be performed by using t_{n,α} instead of z_α. Where n are the "degrees of freedom".
- ► Paired t-Test:
 - degrees of freedom: k = n 1
 - Method: If $|W| > t_{k,\alpha/2}$ then reject H_0 .
- Unpaired t-Test:
 - degrees of freedom: $k = \min\{n, m\} 1$
 - Method: If $|W| > t_{k,\alpha/2}$ then reject H_0 .

Example

Paired t-Test with level $\alpha = 0.05$ for the data:

	fold 1	fold 2	fold 3	fold 4	fold 5
Method A	88	89	92	90	90
Method B	92	90	91	89	91

... see blackboard ...

Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 母 ト ◆ 母 ト