1)
Association
(Part 1)
nanopoulos@ismlil.de

&
2

Association Rule Mining

Given a set of transactions, find rules that will predict the

occurrence of an item based on the occurrences of other items
in the transaction

Market-Basket transactions

Example of Association Rules
D

1 Bread, Milk EI\D/IIiEIiIEeE’:}r;d{}Bie{%ggs,Coke},

2 Bread, Diaper, Beer, Eggs {Beer, Bread} — {Milk},

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer Implication means co-occurrence,
5 Bread, Milk, Diaper, Coke not causality!

1/4/2009

Number of rules

Many possible rules!

Q’?*usai‘\‘%\

%\‘;\\u ng. % .
=
=\

&
2

Given d unique items:

Total number of sets of items = 2¢
qTotaI number of possible association rules:

x 10

R

¢ d . d-k
X
k= k j=1 J

_ 2d+1 +1

iR

3d

If d=6, R =602 rules

Definition: Frequent Itemset

Itemset
— A collection of one or more items
* Example: {Milk, Bread, Diaper}
— k-itemset
* Anitemset that contains k items
* Support count (o)
— Frequency of occurrence of an itemset
— E.g. o({Milk, Bread,Diaper}) =2
* Support

— Fraction of transactions that contain an
itemset

— E.g. s({Milk, Bread, Diaper}) = 2/5
* Frequent Itemset

— An itemset whose support is greater than

or equal to a minsup threshold

TID Items

Bread, Milk

Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

gl Bl W N -

Bread, Milk, Diaper, Coke

1/4/2009

\b&iw;m,/z%
)
« e, . . ¥ 2003
Definition: Association Rule
e Association Rule TID Items
— An implication expression of the form 1 Bread, Milk
X —>Y, where Xand Y are itemsets 2 Bread, Diaper, Beer, Eggs
— Example: 3 Milk, Diaper, Beer, Coke
{Milk, Diaper} — {Beer} 4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke
e Rule Evaluation Metrics
— Support (s) Example:
¢ Fraction of transactions that contain : H
both X and Y {Milk, Diaper} = Beer
— Confidence (c) o (Milk, Diaper, Beer) 2
¢ Measures how often items in Y = =—=04
appear in transactions that | T | S
contain X _ o(Milk,Diaper,Beer) _ 2 _, .
o (Milk, Diaper) 3

%
()
4

G)\,ﬁ\ ﬁq(,q
=\

"’”én,us;:‘(‘\“é

&
2

Association Rule Mining Task

Given a set of transactions T, the goal of
association rule mining is to find all rules
having
support = minsup threshold

confidence = minconf threshold

Mining Association Rules

. Example of Rules:
Bread, Milk {Milk,Diaper} — {Beer} (s=0.4, c=0.67)

1
5 Bread, Diaper, Beer, Eggs {Milk,Beer} — {Diaper} (s=0.4, c=1.0)
- - {Diaper,Beer} — {Milk} (s=0.4, c=0.67)
j g/'"k;le'\jﬁir’;e”’ C;ke {Beer} > {Milk,Diaper} (s=0.4, c=0.67)
read, Vi, Liaper, beer {Diaper} — {Milk,Beer} (s=0.4, ¢=0.5)
5 |Bread, Milk, Diaper, Coke | - 1jilk} — {Diaper,Beer} (s=0.4, ¢=0.5)
Observations:

* All the above rules are binary partitions of the same itemset:
{Milk, Diaper, Beer}

* Rules originating from the same itemset have identical support but
can have different confidence

» Thus, we may decouple the support and confidence requirements

%
A
s

G)\,ﬁ\ ﬁq(,q
=\

"’”én,us;:‘(‘\“é

&
2

Mining Association Rules

Two-step approach:

1. Frequent Itemset Generation
— Generate all itemsets whose support > minsup

2. Rule Generation

— Generate high confidence rules from each frequent
itemset, where each rule is a binary partitioning of a
frequent itemset

Frequent itemset generation is the most
computationally expensive

1/4/2009

Generating Frequent Iltemsets
algorithm

- Naive: %
oo ¥

d <l
N <- D]
for each subset x of | do
o(x)<-0
for each transaction T in D do
if x is a subset of T then
o(x) <- o(x) + 1
if minsup <= o(x)/N then
add s to frequent subsets

The powersetgf an itemset

Given d items, there
are 24 possible
candidate itemsets

1/4/2009

Analysis of naive algorithm

0O(29) subsets of |
Scan n transactions for each subset
O(29n) tests of s being subset of T

Growth is exponential in the number of
items!

Can we do better?

11

7o
s
%

Frequent Itemset Generation Strategies ﬁ

Reduce the number of candidates (M)
Complete search: M=2¢
Use pruning techniques to reduce M

Reduce the number of comparisons (NM)

Use efficient data structures to store the candidates
or transactions

No need to match every candidate against every
transaction

1/4/2009

Reducing Number of Candidates

Apriori principle:
If an itemset is frequent, then all of its subsets must also
be frequent

Apriori principle holds due to the following property
of the support measure:

XY (X cY) = s(X)>s(Y)

Support of an itemset never exceeds the support of its
subsets

This is known as the anti-monotone property of support

lllustrating Apriori Principle

Found to be
Infrequent

N
Pruned -
supersets ~ TT-<__ y

-
- -

1/4/2009

&
2

g g,
“’"ausa(‘\‘%\

Illustrating Apriori Principle

Item Count Items (1-itemsets)
Bread 4
\4
Milk 4 ltemset Count | Pairs (2-itemsets)
et - Bread,Milk 3
ID';@?—‘E Bread,Bee (No need to generate
Bread,Diaper 3 candidates involving Coke
Bee or Eggs)
{Milk,Diaper} 3
| | {Beer,Diaper} 3
Minimum Support = 3
PP N Triplets (3-itemsets)
If every subset is considered, ltemset : Count
6C1+6C2+6C3:41 {Bread,Milk,Diaper} 3
With support-based pruning,
6+6+1=13

iung g,
'(”aus a(‘\Q

The Apriori Algorithm

Join Step: C, is generated by joining L, ,with itself

Prune Step: Any (k-1)-itemset that is not frequent cannot be a
subset of a frequent k-itemset

Pseudo-code:
C,: Candidate itemset of size k
L, : frequent itemset of size k

L, = {frequent items};

for (k =1; L 1=J; k++) do begin
C,.1 = candidates generated from L,;
for each transaction t in database do

increment the count of all candidates in C,,;
that are contained in t

L., = candidates in C,,; with min_support
end
return U, Ly;

1/4/2009

How to Generate Candidates?

Suppose the items in L, ; are listed in an order
Step 1: self-joining L, ;
insert into C,
select p.itemy, p.item,, ..., p.item, 4, q.item, ,
fromL,,; p, Lyaq
where p.item,=q.itemg, ..., p.item,_,=q.item,,, p.item,, < g.item,_
1
Step 2: pruning
forall itemsets c in C, do
forall (k-1)-subsets s of ¢ do

if (sis notin L,_;) then delete c from C,

17

EED

Example of Generating Candidates’

=
3
o
g
Z
2

L,={abc, abd, acd, ace, bcd}
Self-joining: L3*L,
abcd from abc and abd
acde from acd and ace
Pruning:
acde is removed because ade is not in L,

C,={abcd}

1/4/2009

1/4/2009

The Apriori Algorithm — Example ™
Database D itemset|sup.| | [itemset|sup.
TID [items ¢ | {1} | 2 Ty | 2
100[1 3 4 2 | 3 |_| 3
200235 | 3P| 3} | 3 @ | o3
300(1235 4y | 1 (5) 3
4002 5 {5 | 3 .
< litemset| sup c, |itemset
L, |itemset|sup 12y | 1 Scan D {12}
{13y | 2 (13| 2 | — | {13}
{23} | 2 | — §1 5; 1 g gi
{2 5} 3 23 2
(35} | 2 {25} | 3 {2 5}
{35} | 2 {3 5}
C; litemset Scan D Ls |itemset| sup
{2 35) {235}] 2

%
6,
4

G)\,ﬁ\ ﬁq(,q
=\

(O’é?usaﬁ‘\‘?

&
2

Reducing Number of Comparisons

Candidate counting:

Scan the database of transactions to determine the
support of each candidate itemset

To reduce the number of comparisons, store the
candidates in a hash structure

Instead of matching each transaction against every candidate,
match it against candidates contained in the hashed buckets

Transactions Hash Structure

ID | lItems

Bread, Milk

Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

I I E

4 Z —P
- X —P

Buckets

10

1/4/2009

Generate Hash Tree

Suppose you have 15 candidate itemsets of length 3:

{145),{124),{457),{125},{458},{159),{136},{234},{567)},{345},{3
56),{357),{689},{367),{368)

You need:
» Hash function

* Max leaf size: max number of itemsets stored in a leaf node (if number of
candidate itemsets exceeds max leaf size, split the node)

Hash function

345 356 367

258 136 357 368
124 689
457 125 159
458
E‘?“_‘ev?ua,‘ o
Hash tree
Hash Function Candidate Hash Tree

Hash on
1,4o0r7

11

1/4/2009

%
|
g

g g
N\F
“’fausaﬁ\i\

&
2

Hash tree

Hash Function Candidate Hash Tree

%
1
E|
5

g,
""faus a(‘\Q

&
2

Hash tree

Hash Function Candidate Hash Tree

Hash on
3,6o0r9

457 | 458 b

12

Q’?*usai‘\“\

%\‘;\\u ng. % .
T
=\

&
2

Subset Operation

Given a transaction t, what
are the possible subsets of
size 3?

Transaction, t

Level 1
1

123
125 122 156 ggg 256 356
126
Level 3 Subsets of 3 items
‘j“.‘efs-"raa,%
s

&

2003

Subset Operation Using Hash Tree

transaction

Hash Function

L 260

\ 25
—

367
368

125
457]|458

1/4/2009

13

457

458

3,6,9

A
4

Subset Operation Using Hash Tree

Wiy ¢
»

&
=\
""faus :‘(‘\qﬁ

3

o
&

03

[12+]3586

\

transaction

Hash Function

3,69

|345] ||356 367
357 368
124[125||l259 689
45711458
Match transaction against 11 out of 15 candidates

14

1/4/2009

%
|
E

Q’?*usai‘\‘%\

%\‘;\\u ng. &,
-\
=\

&
2

Factors Affecting Complexity

Choice of minimum support threshold
lowering support threshold results in more frequent itemsets
this may increase number of candidates and max length of frequent
itemsets
Dimensionality (number of items) of the data set
more space is heeded to store support count of each item
if number of frequent items also increases, both computation and I/O costs
may also increase
Size of database
since Apriori makes multiple passes, run time of algorithm may increase
with number of transactions

Average transaction width
transaction width increases with denser data sets

This may increase max length of frequent itemsets and traversals of hash
tree (number of subsets in a transaction increases with its width)

Generating rules (2" sub-problem) -
Given a frequent itemset L, find all non-empty subsets
f — L such that f —» L — f satisfies the minimum
confidence requirement
If {A,B,C,D} is a frequent itemset, candidate rules:
ABC —D, ABD —C, ACD —B, BCD —A,
A—>BCD, B —ACD, C —ABD, D »ABC
AB -»CD, AC — BD, AD — BC, BC —AD,

BD —»AC, CD —AB,

If IL| = k, then there are 2 — 2 candidate association
rules (ignoring L > Jand & — L)

30

1/4/2009

15

Rule Generation with anti-monotone property

How to efficiently generate rules from frequent itemsets?

In general, confidence does not have an anti-
monotone property

c¢(ABC —D) can be larger or smaller than c(AB —D)
But confidence of rules generated from the same

itemset has an anti-monotone property
e.g.,L={AB,C,D}:

c(ABC —> D) > ¢(AB — CD) > ¢(A — BCD)

Confidence is anti-monotone w.r.t. number of items on the
RHS of the rule

—— = —

Rule ,\

/

. . . . ¥ 2003
Rule Generation: example of anti-monotonicity
Lattice of rules
Low ™~
Confiderfce =

/

CD=>AB

32

16

1/4/2009

