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(Part 1l)
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Outline

e Improving Apriori (FP-Growth, ECLAT)
e Questioning confidence measure
* Questioning support measure
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FP-growth Algorithm

Use a compressed representation of the
database using an FP-tree

Once an FP-tree has been constructed, it uses
a recursive divide-and-conquer approach to
mine the frequent itemsets
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FP-tree construction

After reading TID=1: null

minSup =2

ltems A:JQ

{A,B}
{B,C,D} B:1
{A,C,D,E}
{A,D,E} After reading TID=2:
{AB,C} null
{A,B,C,D}
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FP-tree construction |
TID=2
TID ltems Oab
1 {A,B}
2 {B,C,D} B:1 () ) ci
3 | {AC,D,E} M bt
4 {AD.E} After reading TID=3 -
I reai II"Ig =3 —~,
5 {AB,C} il Pal
6 | {AB,C,D} i N
7 {B,C} AT
8 {A,B,C} PP 1@ N S
9 | {AB,D} - Y
10 {B,C,E} D 1( h ., \) D:1
E:l}:

FP-Tree Construction
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TID Items

[y

{A.B}
{B,.C,D}
{A.C,D,E}
{AD,E}
{AB,C}
{AB.C,D}
{B.C}
{AB,C}
{AB,D}
{B,C.E}
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Header table

Transaction
Database

Item Pointer
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Pointers are used to assist
frequent itemset generation




FP-growth
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null

E is frequent

Perhaps also frequent AE,
ABE, etc.

Conditional pattern base
and fptree for E:

FP-growth

Conditional base and tree for E:
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Conditional Pattern base
for E:
P={(A:1,C:1,D:1),
(A:1,D:1),
(B:1,C:1)}

Prune B
Build conditional FP-tree

Recursively apply FP-
growth
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FP-growth
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Conditional base and
tree for D within
conditional tree for E:

null

Conditional pattern base
for D within conditional
base for E:

P={(A:1,C:1),
(A:1)}
A2 Prune C
Build conditional FP-tree
ADE and all its subsets
are frequent
‘j“_‘ev?lra,‘/)%
FP-growth =

Conditional tree for A
within D within E:

null

A2

Count for Ais 2: {A,D,E}
is frequent itemset

Next step:

Construct conditional tree
C within conditional tree
E

Continue until exploring
conditional tree for A
(which has only node A)
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Result

Suflix Frequent Tlemsets
S {e}. {de}. {ad.e}. {c.e}.{a.c}
d 1d}, fed), {bedlr, {acd}l, {bhd}, {abud}, {ad}
¢ {ch {bet {abel, {act
b 1bt. {ab}
i {a}
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Benefits of the FP-tree Structure

¢ Performance study shows

— FP-growth is an order of
magnitude faster than

Apriori, and is also faster than 100+ ‘
tree-projection zz
* Reasoning - ™ i
— No candidate generation, no L)
candidate test g
— Use compact data structure 201
— Eliminate repeated database o

o 05 1 15 2 25 3
sCan

Support threshold(%)
— Basic operation is counting
and FP-tree building




For each item, store a list of transaction ids
(tids)  Horizontal
Data Layout Vertical Data Layout
TID | Items A B C D E
1 |[ABE 1 1] 221
2 BCD 4 | 2|3 |43
3 |CE 5| 5| 4| 5|6
4 |ACD 61 718l 9
5 |AB,C,D 7 8 9
6 |AE 8 10
7 |AB 9
8 |AB,.C
9 |ACD |
10 |B TID-list
¥ 2003
ECLAT

Determine support of any k-itemset by intersecting tid-lists of
two of its (k-1) subsets.

A

AN

o ~N o UA PR

9

3 traversal approaches:

top-down, bottom-up and hybrid
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Advantage: very fast support counting
Disadvantage: intermediate tid-lists may become too large for

memory
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Pattern Evaluation

Association rule algorithms tend to produce too many
rules
many of them are uninteresting or redundant

Redundant if {A,B,C} —> {D} and {A,B} — {D}
have same support & confidence

Interestingness measures can be used to prune/rank
the derived patterns

In the original formulation of association rules, support
& confidence are the only measures used

Interestingness Measure
Interestingness Rnowledge E—
Measures

Patterns .

Preprocesse
Data

Mining

Selected
Data

Data Preprocessing

Selection
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Computing Interestingness Measure T

Given arule X — Y, information needed to compute rule
interestingness can be obtained from a contingency table

Contingency table for X = Y

1. support of X and Y

10. Support of X and Y

x|

f
f

for: support of X and Y
fo: SUpport of X and Y

Used to define various measures

+ support, confidence, lift, Gini,
J-measure, etc.

Drawback of Confidence
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Coffee | Coffee
Tea 15 5 20
Tea | 75 5 80
90 10 100

Association Rule: Tea — Coffee

Confidence= P(Coffee|Tea) = 0.75
but P(Coffee) = 0.9

= Although confidence is high, rule is misleading
— P(Coffee|Tea) = 0.9375
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Statistical Independence

Population of 1000 students
600 students know how to swim (S)
700 students know how to bike (B)
420 students know how to swim and bike (S,B)

P(SAB) =420/1000 = 0.42
P(S) x P(B) =0.6 x 0.7 = 0.42

P(SAB) = P(S) x P(B) => Statistical independence
P(SAB) > P(S) x P(B) => Positively correlated
P(SAB) < P(S) x P(B) => Negatively correlated
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Statistical-based Measures

Measures that take into account statistical
dependence
P(Y [ X)
P(Y)
P(X,Y)
P(X)P(Y)
PS =P(X,Y)-P(X)P(Y)
P(X,Y)-P(X)P(Y)
JPOOIL=POX)IP(Y)IL-P(Y)]

Lift =

Interest =

¢ — coefficient =
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Example: Lift/Interest

Coffee | Coffee

Tea 15 5 20
Tea 75 5 80
90 10 100

Association Rule: Tea — Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9
= Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

Drawback of Lift & Interest
Y Y \'% Y
X 10 0 10 X 90 0 90
X 0 90 | 90 X 0 10 10
10 90 100 90 10 100
0.1 0.9
ft=——+—-=10 Lift=——— =1,
(0.1)(0.2) (0.9)(0.9)

Statistical independence:
If PX,Y)=P(X)P(Y) =>Lift=1
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# | Measure Formula
1 . t P(A,B)—P(A)P(B
There are lots of ¢ coefficien PAREEPUNCRES
measures proposed in | 2 | GoodmanKmskal's (8) | S o Al O e e T T
the literature 3 | Odds ratio (a} ;’;Eﬁg)im
, P(A,B)P(AE)—P(A,B)P(AB) _ o1
4 Yule's Q ‘P}A ,B) P(ﬁﬁp(;;f‘)?(:, _* a-&
3 P(A,BYP(AB) P(A,B)P(A,B) — ¥E=1
5 | YuesY VP(ABP(AB)+/PABP(AB) _ Vil
Some measures are 6 | K P(A,B)+P(AB)—P(AP(B)—P(A) P(B)
. appa. {x) 1—P(A)P(B)—P(4) p(Ez
good for certain T 5, PlAB,) log 1002
H ; 7 | Mutual Information (M) s S 5 PlAP(E,)
applications, but not min(— T, P(AJ 105 P(A; - 3 P(By7log P(B,))
for others 8 | J-Measwe (J) max ( P(A, B} log( S04 + P(AB) log(EZ2),
P(A, B) log( ZHR) + P(AB) log( 2220
9 | Giniindex {G) max (P(A)[P(B|A) + P(B|A)"] + P{A) P(B\I + P(B|A)?]
What criteria should —P(B)Y - P(B),
we use to determine P(B)[P(A|BY + P{A|BY"] + P(B)[P{A|B)" + P{4|B)"]
whether a measure is —P(AY — P(I)“)
good or bad? 10 | Support {s) P{A,B)
11 | Confidence (e) max{P{B|A), P(A|B))
12 | Laplace (L) max (MELeSI NeCeo
13 | Conviction {V) max ﬁ(}é&%}@l’ ﬂpg(%ﬁ)
14 | Toterest (1) T
15 | cosine {I5) —L;—P T
P(4)P(B)
18 | Piatetsky-Shapiro’s {PS) | P{4, B} — P{4)P(B)
17 | Certainty factor {F) (—(—‘—)—(—l" B bl PlA P )
18 | Added Value (AV) max{P{B|A} — P{B), P{A|B) — P(A))
; P(4,B)LP(AB) 1=P(4)P(B)-P(A)P(E)
19 | Collective strength (5) BRI POPE X I-EAH) _Pa5)
20 | Jaceard (() P(AYTP(B)—P(A,B)
21 | Klosgen (K) VP4, B) ma.x(P(B|A P(B), P(A|B} — P{4))
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Compact Representation of Frequent Itemsets

Some itemsets are redundant because they have identical
support as their supersets

AL] A2] A3| A4] A5| A6 | A7] A8 A9[AL0] B1] B2] B3] B4| B5] B6] B7] B8] BO[B10] 01|c2|cslc4|cs|cs|c7|cs|c9|(:1o
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[eNeNeleleleNeNeNeNolN Sl ol ol
[eNeNeleNoNeNeNeNeNeR ol ol o
CoO0O0O0OO0OOOOORRRREE
CcooocorRrRRRROOOOO
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PRPPPPOOOOODOOOOO
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. (10

Number of frequent itemsets =3x3 ‘
k=1

Need a compact representation
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Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is
frequent

Maximal
ltemsets

Infrequent

ltemsets =~ _ Border

Closed Itemset

An itemset is closed if none of its immediate supersets has the
same support as the itemset

ltemset | Support
A 4
TID ltems EB]}" 5 ltemset |Support

1 {AB} ) 3 {AB,C} 2
2 {B,C,D} 0} 4 {A.B,D} 3
3 | {AB,C,D} (AB} 4 {A.C,D} 2
4 | {ABD} (AC} 5 {B.C.D} 3
5 | {AB,C,D} {A:D} 3 {A,B,C,D} 2

{B,C} 3

{B,D} 4

{C,D} 3

1/11/2009
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Maximal vs Closed Itemsets

TID Items
ABC
ABCD
BCE
ACDE
DE

rrartsaction

g W N (e

Not supported .-~
byany 0000000
transactions

Maximal vs Closed  ciose
- but not
Minimum support = 2 < maximal
124 Z
g&tﬁ‘ Closed
N SE and
/’V“Q”% maximal
@féﬁa b0 e G o
\‘)“‘ N
<X
&
# Closed = 9

# Maximal = 4
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Maximal vs Closed Itemsets

Frequent
ltemsets

Closed
Frequent
ltemsets
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