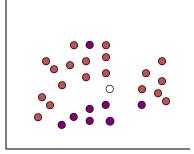


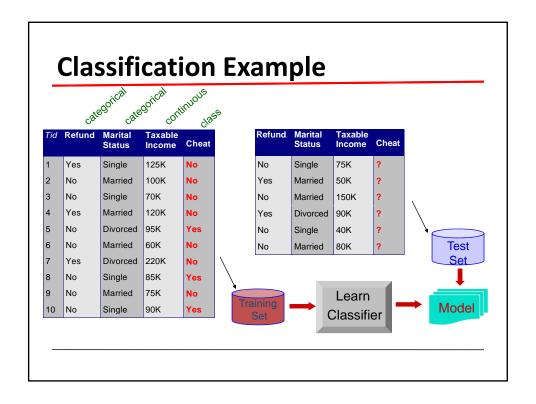
# Linear Classification (Part I: Intro and Fisher's LDA)

nanopoulos@ismll.de

### The task of classification

Learn a method for predicting the instance class from prelabeled (classified) instances





### Outline



- Applications of classification
- Linear classification
- Fisher's linear discriminant



### Classification: Application 1

#### **Direct Marketing**

Goal: Reduce cost of mailing by *targeting* a set of consumers likely to buy a new cell-phone product.

#### Approach:

Use the data for a similar product introduced before.

We know which customers decided to buy and which decided otherwise. This {buy, don't buy} decision forms the class attribute.

Collect various demographic, lifestyle, and company-interaction related information about all such customers.

Type of business, where they stay, how much they earn, etc.

Use this information as input attributes to learn a classifier model.

From [Berry & Linoff] Data Mining Techniques, 1997



#### Classification: Application 2

#### Fraud Detection

Goal: Predict fraudulent cases in credit card transactions.

#### Approach:

Use credit card transactions and the information on its account-holder as attributes.

When does a customer buy, what does he buy, how often he pays on time, etc

Label past transactions as fraud or fair transactions. This forms the class attribute.

Learn a model for the class of the transactions.

Use this model to detect fraud by observing credit card transactions on an account.



### Classification: Application 3

#### Customer Attrition/Churn:

Goal: To predict whether a customer is likely to be lost to a competitor.

#### Approach:

Use detailed record of transactions with each of the past and present customers, to find attributes.

How often the customer calls, where he calls, what time-ofthe day he calls most, his financial status, marital status, etc.

Label the customers as loyal or disloyal.

Find a model for loyalty.

From [Berry & Linoff] Data Mining Techniques, 1997



#### Classification: Application 4

#### Sky Survey Cataloging

Goal: To predict class (star or galaxy) of sky objects, especially visually faint ones, based on the telescopic survey images (from Palomar Observatory).

3000 images with 23,040 x 23,040 pixels per image.

#### Approach:

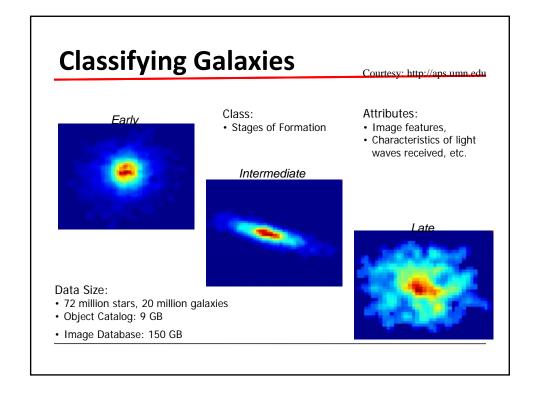
Segment the image.

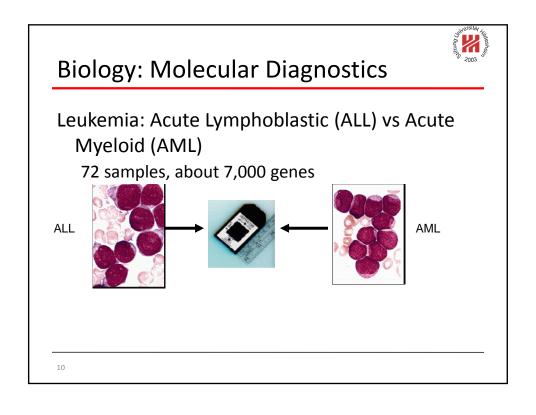
Measure image attributes (features) - 40 of them per object.

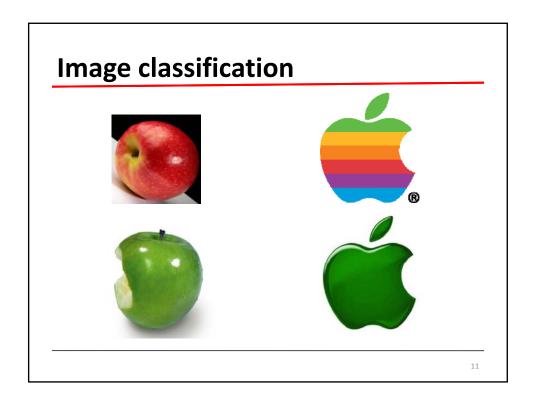
Model the class based on these features.

Success Story: Could find 16 new high red-shift quasars, some of the farthest objects that are difficult to find!

From [Fayyad, et.al.] Advances in Knowledge Discovery and Data Mining, 1996











#### Outline

- Applications of classification
- Linear classification
- Fisher's linear discriminant

13



#### Linear classification

Two classes: C<sub>1</sub>, C<sub>2</sub>

 ${\bf x}$  is the input vector,  ${\bf w}$  the model's parameters

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \mathbf{x} + w_0$$

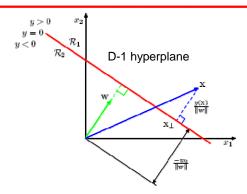
Assign to  $C_1$  if y(x) >= 0

Else, assign to C<sub>2</sub>

y(x) = 0 defines the decision boundary, which is a line



# Illustration of decision boundary

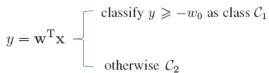


 $\mathbf{x}_{a}$ ,  $\mathbf{x}_{b}$  on the boundary:  $\mathbf{y}(\mathbf{x}_{a})$ - $\mathbf{y}(\mathbf{x}_{b}) = \mathbf{w}^{T}(\mathbf{x}_{a}$ - $\mathbf{x}_{b})$ =0 w is orthogonal to the decision boundary and determines its direction

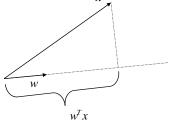
15

### Linear classification as dim reduction





y(x) is the projection of x on w



Find **w** so as to maximize the separation of the two classes



# Separating the class means

Class  $C_1$  has  $N_1$  points and  $C_2$   $N_2$  points

Their means are:  $\mathbf{m}_1 = \frac{1}{N_1} \sum_{n \in \mathcal{C}_1} \mathbf{x}_n, \qquad \mathbf{m}_2 = \frac{1}{N_2} \sum_{n \in \mathcal{C}_2} \mathbf{x}_n$ 

Project means:  $m_k = \mathbf{w}^T \mathbf{m}_k$ 

Choose **w** to maximize:  $m_2 - m_1 = \mathbf{w}^T(\mathbf{m}_2 - \mathbf{m}_1)$ 

From training set we want to find out a direction **w** where the separation between the projections of class means is high

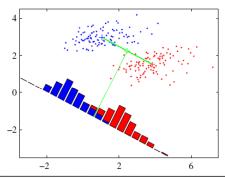
17



#### Maximizing the separation of means

The line joining the means defines the direction of greatest means spread (why?)

but gives high class overlap





#### Outline

- Applications of classification
- Linear classification
- Fisher's linear discriminant

19



#### Fisher's Linear Discriminant

#### Maximize a function that:

- Gives large separation between projected means and
- Giving small variance within each class (minimize class overlap)



#### Fisher's criterion

Within class variance:  $s_k^2 = \sum_{n \in \mathcal{C}_k} (y_n - m_k)^2$  (where  $y_n = \mathbf{w}^T \mathbf{x}_n$ )

Total within-class variance:  $s_1^2 + s_2^2$ 

Find **w** that maximizes:  $J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$ 

21



# J(w) as a function of w

$$J(\mathbf{w}) = \frac{\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{B}} \mathbf{w}}{\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{W}} \mathbf{w}}$$

 $\begin{array}{l} \textit{between-class} \ \textit{covariance matrix} \\ \mathbf{S}_{B} = (\mathbf{m}_{2} - \mathbf{m}_{1}) (\mathbf{m}_{2} - \mathbf{m}_{1})^{T} \end{array}$ 

total within-class covariance matrix.

$$\mathbf{S}_W = \sum_{n \in \mathcal{C}_1} (\mathbf{x}_n - \mathbf{m}_1) (\mathbf{x}_n - \mathbf{m}_1)^T + \sum_{n \in \mathcal{C}_2} (\mathbf{x}_n - \mathbf{m}_2) (\mathbf{x}_n - \mathbf{m}_2)^T$$



# Maximizing J(w)

Derivative of dJ/dw = 0 gives (how?):

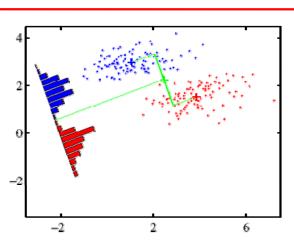
$$(\mathbf{w}^T\mathbf{S}_B\mathbf{w})\mathbf{S}_W\mathbf{w} = (\mathbf{w}^T\mathbf{S}_W\mathbf{w})\mathbf{S}_B\mathbf{w}$$

We just need the direction, omit the scalars:

$$w \propto \mathbf{S}_W^{-1}(\mathbf{m}_2 - \mathbf{m}_1)$$



### What does this look like?



Rotate (by  $S_w^{-1}$ ) the line joining the means



# But, how to classify?

So far we got the direction of the decision boundary

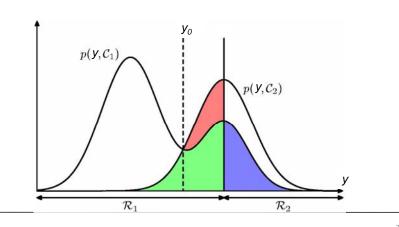
We need to decide the threshold  $\mathbf{w}_0$ 

**Remember** 
$$y = \mathbf{w}^{\mathrm{T}} \mathbf{x}$$
 classify  $y \ge -w_0$  as class  $C_1$  otherwise  $C_2$ 

#### How? **Decision theory**

# Deciding the threshold Find all the projections y and the value $y_0$ that

minimizes the misclassification rate





#### Relation between Fisher's LD and min SSE

Linear regression: minimize SSE for target Linear classification (Fisher LD): max class separation

Are those two related?

27



#### "Magic" targets

For C<sub>1</sub> let target be N/N<sub>1</sub>  $\sum_{n=1}^{N}t_n=N_1\frac{N}{N_1}-N_2\frac{N}{N_2}=0$  For C<sub>2</sub> let target be -N/N<sub>2</sub>

SSE: 
$$E = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{\mathrm{T}} \mathbf{x}_n + w_0 - t_n)^2$$

$$\sum_{n=1}^{N} (\mathbf{w}^{\mathrm{T}} \mathbf{x}_n + w_0 - t_n) \mathbf{x}_n = 0$$

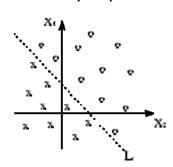
$$(\mathbf{s}_{\mathrm{W}} + \frac{N_1 N_2}{N} \mathbf{s}_{\mathrm{B}}) \mathbf{w} = N(\mathbf{m}_1 - \mathbf{m}_2)$$

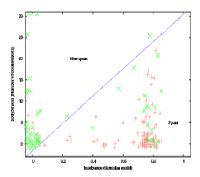
$$\mathbf{w} \propto \mathbf{S}_{\mathrm{W}}^{-1}(\mathbf{m}_2 - \mathbf{m}_1)$$



#### Conclusion

Linear classification works well when data are linearly separable





29



### But don't forget...

The result does not only depend on the classification method

It also depends on the features

#### Example:

- C<sub>1</sub> "sexy", C<sub>2</sub> "not so sexy"
- $x_1$  is the hair color,  $x_2$  is the bust size
- If blonde and rich bust, then C<sub>1</sub>

