Linear Classification
(Part Il: Perceptron)
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The Perceptron model
Two class targets: +1 for C,, -1 for C,

Training data:

(X Yy ) (X Y )

Activation function: f(a) _{ +1. a=20

= sign function
—1. a<0.

Perceptron

Model —p |/ € {_1’ _|_1}

y(x) = f(wTx)
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Visually, wTx is the
distance you get if
you “project x onto
W"

In 3d: line>plane

In 4d: plane—>hyperplane
,é'\'

The line perpendicular to
w divides the vectors
W classified as positive from
the vectors classified as
negative.

Yy =sign(wy X, + W,X, +...+W.X_) = sign(w - X)

N 2
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Notice that the separating hyperplane goes
through the origin...if we don’t want this we
can preprocess our examples:

y_—%gn('W_XA'LW_)(_";"_W_X%—SJ‘Qn(W—X)*11 VEAVERRE nnl :

Y =sign(w,1+ W, X, + W, X, +...+ W, X ) =sign(w-X)

X2 WX, + WoX, + W, >=

decision N1 .

boundary -. \:;'- C,
SN
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WX, + WXy + Wy =0
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Training the Perceptron

* Find w that minimizes an error function on
all training points

* A possible error function is the number of
misclassified points
* Piecewise constant _
* Unsuitable for optimization :
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The Perceptron criterion
* We seek a vector w such that:
s Wix,>0Vx,eC, (t,=+1)
s Wix,<0Vx,eC, (t,=-1)
* Equivalently:
* wix, t,>0V x,
* For each x associate error equal to:
* 0, if x,, is classified correctly
* -w'x, t, if x is classified incorrectly
Minimization function
Ep '::W_] = — Z W_T X tn M denotes the set of all misclassified patterns

ne M

How to minimize this function?

* We now a way: set derivative equal to 0
e Can we apply it here?

No!

Do we have other ways?
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Outline
* The perceptron model

* Minimization with gradient descent

* Solution for the perceptron model

* Convergence theorem

* Properties and limitations of perceptron

Gradient descent (single variable)

Minimum of a function is found by following the slope of the function
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Gradient descent (single variable)
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Gradient descent (single variable)
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Gradient descent: algorithm

Start with a point (guess)
Repeat

Determine a descent direction
Choose a step

Update
Until stopping criterion is satisfied
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Gradient descent: algorithm

Start with a point (guess)
Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied

" Direction: downhill
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Gradient descent: algorithm
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Start with a point (guess)
Repeat

Determine a descent direction
Choose a step
Update
Until stopping criterion is satisfied
f
. —— step

Gradient descent: algorithm
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Start with a point (guess)
Repeat

Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied

—— N OW YOU are here
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Gradient descent: algorithm

Start with a point (guess)
Repeat

Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied

o & fix)

Stop when “close”
from minimum
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Gradient descent: algorithm

Start with a point (guess) guess = X
Repeat

Determine a descent direction

direction = -f'(x)
Choose a step

step=h=0
Update X:=x=hf'(x)
Until stopping criterion is satisfied f'(x)~0

20
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When updating the current computation:
- small steps: inefficient
A - large steps: potentially bad results
f 10 4+
o L 1(x)
a8 4
=
6
5 L
4 4
T Too many steps:
2 takes too long to converge
f(m) . | g g
L 2 3 4 sMg 7 g8 9 10 11 12 X
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Learning rate

When updating the current computation:
- small steps: inefficient
& - large steps: potentially bad results
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(x)

Next point (went too far

R W s othh 3 o~ o O

f(m)
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Gradient operator for high dimensions’

&

f:R? >R vixy) = o
()= = &

This is just a genaralization of the derivative in two dimensions.
This can be generalized to any dimension.

U508

of of
R VE(X ey X)) = — ey, —
fR - R (1 ) (8X1 5XJ

The Gradient Properties

The gradient defines (hyper) plane
approximating the function infinitesimally

Az=ﬂ-Ax+ﬂ-Ay
OX

(intuitive: the
gradient points to the
greatest change
direction)
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Gradient descent: algorithm for high dim
Start with a point (guess) guess =X
Repeat
Determine a descent direction direction = -f(x)
Choose a step step=h=>0
Update x:=x—h Vf(x)
Until stopping criterion is satisfied Vex)~0
10-,
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Stochastic gradient descent

On-line gradient descent, also known as sequential gradient descent or stochastic
gradient descent, makes an update to the weight vector based on one data point at a

time, so that

wl™ ) = Wl _ W E, (w(™)

And now, back to Perceptron

26
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Outline

The perceptron model

Minimization with gradient descent

Solution for the perceptron model

Convergence theorem

Properties and limitations of perceptron
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Minimize error with stochastic gradient
descent

Ep(w)=— Z WTXHEH
e M

AT+l

W w' gV Ep(w) = w') + nX,.tn

For simplicity, set n = 1 (learning rate)
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Intuitive explanation

We cycle through the training patterns in turn,
and for each pattern x:

 ifitis correctly classified, then w remains
unchanged

 ifitis incorrectly classified, then
e for class C1 we add x, onto w while
e for class C2 we subtract x,, from w.

29

Example (+1, -1)

0.5

30
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Example (+1, -1) |
0.5 * X 0.5 ¢
1] a
0.5 . -0.5
-1 ¢ -1
Arithmetic example

Consider the 2-dimensional training set C, u C,,
Cqi={(1,1), (1,-1), (0, -1)} with class label 1
C,={(-1,-1), (-1,1), (0,1)} with class label -1

32
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Arithmetic example

Consider the augmented training set C'; w C’,, with first
entry fixed to 1 (to deal with the bias as extra weight):
(1,1,1),(1,1,-1),(1,0,-1),(1-1,-1), (1,-1, 1), (1,0, 1)

Replace x with -x for all X € C,’ and use the following update
rule:
|'1t'(h?) +nx(n) if w! (m)x(n) 0

1 w(n) otherwise

win+l)=

Epoch = the application of the update rule to each example
of the training set. Then terminate the execution of the

learning algorithm if the weights do not change after one
epoch.
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Arithmetic example

+ the execution of the perceptron learning algorthm for each epoch is
illustrated below, with w(1)=(1,0,0), n =1, and transformed inputs
(11,7, (1,1, -1, (1,0, 1), 1,1, 1), (1,1, 1), (1,0, -1)

Adjusted Weight wi(n) x(n) Update?

pattern applied

(1,1,1](1,0,0) 1 No (1,0,0)
(,1,-1)] (1,0,0) 1 No (1,0,0)
(1,0,-1) | (1,0,0) 1 No (1,0,0)
(-1.1,1) ] (1,0,0) -1 Yes 0.1,1)
-1,1,-1] (0,1, 1) 0 Yes [(-1,2,0)
(-1,0, -1) | (-1, 2, 0) 1 No (-1,2,0)
End epoch 1

34
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Arithmetic example
Adjusted Weight w(n) x(n) Update?
pattern applied
0) . 0)
.2, 0) (-1,2.0)
(1,0,-1) [ (-1,2,0) -1 Yes (0,2, -1)
(1,1, 1 1(0,2 -1) 1 No (0,2, -1)
(-1,1,-1](0,2,-1) 3 No (0,2,-1)
(-1,0,-1) ] (0,2, -1) 1 No (0,2, -1)
End epoch 2
At epoch 3 no weight changes. (check!) = stop execution of
algorithm.
Final weight vect.: (0, 2, -1) = decision hyperplane is 2x4 - x; = 0.
35
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Arithmetic example: result

1 &
( ' R
© ¥ ) ¥ Decision boundary:
C, 2%,- X, =0
[ o .
-1 J|oe | X4
o /el @ C,
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Outline
* The perceptron model
* Minimization with gradient descent
* Solution for the perceptron model
e Convergence theorem
* Properties and limitations of perceptron

Convergence theorem

Suppose the classes C,, C, are linearly separable (that is, there
exists a hyper-plane that separates them). Then the perceptron
algorithm applied to C, u C, terminates successfully after a
finite number of iterations.
Proof:
Consider the set C containing the inputs of C, v C, transformed by
replacing x with -x for each x with class label -1.
For simplicity assume w(1)=0, n="1.
Let x(1) ... x(k) e Chbe the sequence of inputs that have been used
after k iterations. Then

wi2)  =w(l)+x(1)

wi(3) —w 2}+x(2) = wk+1)=x(1)+ ... + X(k)

wike1) = wik) + x(h)

38

11/13/2008

19



11/13/2008

&
2

%.éi\\l Q%{
= &

i

N\ F
“’fausaﬁ\&\

Convergence theorem

Since C, and C, are linearly separable then there exists
w.suchthatw.Tx>0, VxeC.

Let o = min w.T x
Then w.T wik+1) =w.Tx(1) + ... + W.T x(k) 2 ket
By the Cauchy-Schwarz inequality we get:

w2 [Iw(k+ )12 = [w.T w(k+1)]?

o kg ?
[wik+1)]2 = ||‘J-L-||2 (A)

iU
SWIG,

1 F
O\
""fal,us;:ﬂ‘\‘(h

Convergence theorem

+ Now we consider another route:
w(k+1) = w(k) + x(k)
| wik+1)[|2 = || w(k)|]2+ |[x(k)[|2+ 2 w T(k)x(k)
<+ euclidean norm . —_
< 0 because x(k) is misclassified
= |Iwk+1)[]2 < [[w(k)][2+ [|x(K)[|2
=0
[W(2)[[2 < [[w(1)]2 + [[x(1)][?
[Iw(3)[12 < [[w(2)I2 + |[x(2)][?

-
-
-
-

k

= [Iw(k+1)|2 < D JIx@IF

i=1

40
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Convergence theorem

Let p = max ||[x(n)|? x(n)eC

Iw(k+T)IE<k B (B)

For sufficiently large values of k:

(B) becomes in conflict with (A).

Then k cannot be greater than k., such that (A) and (B) are both
satisfied with the equality sign.

2 2 2
i (e

4 — kmm.ﬂ — kjm;rx: 3 [3
NG o

2
*The algorithm terminates successfully in at most % iterations, i.e.

lim w(k)=w(k__ ) and lim w(k+1)—w(k)=0

ke ks
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Outline

The perceptron model

Minimization with gradient decent

Solution for the perceptron model

Convergence theorem

Properties and limitations of perceptron
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Many solutions
= Which of these linear separators is optimal?
43
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Nonlinear cases

The perceptron can only model linearly
separable classes, like (those described
by) the following Boolean functions:

AND
OR
It cannot model the XORI

44
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