Hierarchical Clustering

Produces a set of nested clusters organized as a hierarchical tree
Can be visualized as a dendrogram
A tree like diagram that records the sequences of merges or splits
Strengths of Hierarchical Clustering

Do not have to assume any particular number of clusters

Any desired number of clusters can be obtained by ‘cutting’ the dendogram at the proper level

They may correspond to meaningful taxonomies

Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

Two main types of hierarchical clustering

Agglomerative:
Start with the points as individual clusters
At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

Divisive:
Start with one, all-inclusive cluster
At each step, split a cluster until each cluster contains a point (or there are k clusters)

Traditional hierarchical algorithms use a similarity or distance matrix
Merge or split one cluster at a time
Agglomerative Clustering Algorithm

More popular hierarchical clustering technique

Basic algorithm is straightforward
1. Compute the proximity matrix
2. Let each data point be a cluster
3. Repeat
 4. Merge the two closest clusters
 5. Update the proximity matrix
4. Until only a single cluster remains

Key operation is the computation of the proximity of two clusters
Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

Start with clusters of individual points and a proximity matrix

Starting Situation

Proximity Matrix
Intermediate Situation

After some merging steps, we have some clusters

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proximity Matrix

We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proximity Matrix
After Merging

The question is “How do we update the proximity matrix?”

How to Define Inter-Cluster Similarity

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 -- Ward’s Method uses squared error
How to Define Inter-Cluster Similarity

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward’s Method uses squared error
How to Define Inter-Cluster Similarity

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward’s Method uses squared error
Cluster Similarity: MIN or Single Link

Similarity of two clusters is based on the two most similar (closest) points in the different clusters.

Determined by one pair of points, i.e., by one link in the proximity graph.

<table>
<thead>
<tr>
<th>Cluster 1</th>
<th>Cluster 2</th>
<th>Cluster 3</th>
<th>Cluster 4</th>
<th>Cluster 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0.90</td>
<td>0.10</td>
<td>0.65</td>
<td>0.20</td>
</tr>
<tr>
<td>0.90</td>
<td>1.00</td>
<td>0.70</td>
<td>0.60</td>
<td>0.50</td>
</tr>
<tr>
<td>0.10</td>
<td>0.70</td>
<td>1.00</td>
<td>0.40</td>
<td>0.30</td>
</tr>
<tr>
<td>0.65</td>
<td>0.60</td>
<td>0.40</td>
<td>1.00</td>
<td>0.80</td>
</tr>
<tr>
<td>0.20</td>
<td>0.50</td>
<td>0.30</td>
<td>0.80</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram
Strength of MIN

- Can handle non-elliptical shapes

Limitations of MIN

- Sensitive to noise and outliers
Cluster Similarity: MAX or Complete Linkage

Similarity of two clusters is based on the two least similar (most distant) points in the different clusters.

Determined by all pairs of points in the two clusters:

<table>
<thead>
<tr>
<th></th>
<th>I1</th>
<th>I2</th>
<th>I3</th>
<th>I4</th>
<th>I5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>1.00</td>
<td>0.90</td>
<td>0.10</td>
<td>0.65</td>
<td>0.20</td>
</tr>
<tr>
<td>I2</td>
<td>0.90</td>
<td>1.00</td>
<td>0.70</td>
<td>0.60</td>
<td>0.50</td>
</tr>
<tr>
<td>I3</td>
<td>0.10</td>
<td>0.70</td>
<td>1.00</td>
<td>0.40</td>
<td>0.30</td>
</tr>
<tr>
<td>I4</td>
<td>0.65</td>
<td>0.60</td>
<td>0.40</td>
<td>1.00</td>
<td>0.80</td>
</tr>
<tr>
<td>I5</td>
<td>0.20</td>
<td>0.50</td>
<td>0.30</td>
<td>0.80</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram
Strength of MAX

- Less susceptible to noise and outliers

Limitations of MAX

- Tends to break large clusters
- Biased towards globular clusters
Cluster Similarity: Group Average

Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

\[\text{proximity}(\text{Cluster}_i, \text{Cluster}_j) = \frac{\sum_{p_i \in \text{Cluster}_i, p_j \in \text{Cluster}_j} \text{proximity}(p_i, p_j)}{|\text{Cluster}_i| \cdot |\text{Cluster}_j|} \]

Need to use average connectivity for scalability since total proximity favors large clusters.

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram
Hierarchical Clustering: Group Average

Compromise between Single and Complete Link

Strengths
Less susceptible to noise and outliers

Limitations
Biased towards globular clusters

Cluster Similarity: Ward’s Method

Similarity of two clusters is based on the increase in squared error when two clusters are merged
Similar to group average if distance between points is distance squared

Less susceptible to noise and outliers

Biased towards globular clusters

Hierarchical analogue of K-means
Can be used to initialize K-means
Hierarchical Clustering: Comparison

Hierarchical Clustering: Time and Space requirements

$O(N^2)$ space since it uses the proximity matrix. N is the number of points.

$O(N^3)$ time in many cases
There are N steps and at each step the size, N^2, proximity matrix must be updated and searched
Complexity can be reduced to $O(N^2 \log(N))$ time for some approaches
Hierarchical Clustering: Problems and Limitations

Once a decision is made to combine two clusters, it cannot be undone.

No objective function is directly minimized.

Different schemes have problems with one or more of the following:
- Sensitivity to noise and outliers
- Difficulty handling different sized clusters and convex shapes
- Breaking large clusters

MST: Divisive Hierarchical Clustering

Build MST (Minimum Spanning Tree)

Start with a tree that consists of any point.
In successive steps, look for the closest pair of points (p, q) such that one point (p) is in the current tree but the other (q) is not.
Add q to the tree and put an edge between p and q.
MST: Divisive Hierarchical Clustering

Use MST for constructing hierarchy of clusters

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm
1: Compute a minimum spanning tree for the proximity graph.
2: repeat
3: Create a new cluster by breaking the link corresponding to the largest distance (smallest similarity).
4: until Only singleton clusters remain

Hierarchical Clustering: Revisited

Creates nested clusters

Agglomerative clustering algorithms vary in terms of how the proximity of two clusters are computed

MIN (single link): susceptible to noise/outliers
MAX/GROUP AVERAGE: may not work well with non-globular clusters
CURE algorithm tries to handle both problems

Often starts with a proximity matrix
A type of graph-based algorithm
CURE: Another Hierarchical Approach

Uses a number of points to represent a cluster

Representative points are found by selecting a constant number of points from a cluster and then “shrinking” them toward the center of the cluster

Cluster similarity is the similarity of the closest pair of representative points from different clusters

CURE

Shrinking representative points toward the center helps avoid problems with noise and outliers

CURE is better able to handle clusters of arbitrary shapes and sizes
Experimental Results: **CURE**

a) BIRCH b) MST METHOD c) CURE

Picture from *CURE*, Guha, Rastogi, Shim.
CURE Cannot Handle Differing Densities

Original Points CURE

Graph-Based Clustering

Graph-Based clustering uses the proximity graph

Start with the proximity matrix
Consider each point as a node in a graph
Each edge between two nodes has a weight which is the proximity between the two points
Initially the proximity graph is fully connected
MIN (single-link) and MAX (complete-link) can be viewed as starting with this graph

In the simplest case, clusters are connected components in the graph.
Graph-Based Clustering: Sparsification

The amount of data that needs to be processed is drastically reduced

- Sparsification can eliminate more than 99% of the entries in a proximity matrix
- The amount of time required to cluster the data is drastically reduced
- The size of the problems that can be handled is increased

Graph-Based Clustering: Sparsification ...

Clustering may work better
- Sparsification techniques keep the connections to the most similar (nearest) neighbors of a point while breaking the connections to less similar points.
- The nearest neighbors of a point tend to belong to the same class as the point itself.
- This reduces the impact of noise and outliers and sharpens the distinction between clusters.

Sparsification facilitates the use of graph partitioning algorithms (or algorithms based on graph partitioning algorithms).
- Chameleon and Hypergraph-based Clustering
Sparsification in the Clustering Process

Limitations of Current Merging Schemes

Existing merging schemes in hierarchical clustering algorithms are static in nature

MIN or CURE:
merge two clusters based on their \textit{closeness} (or minimum distance)

GROUP-AVERAGE:
merge two clusters based on their average \textit{connectivity}
Limitations of Current Merging Schemes

Closeness schemes will merge (a) and (b)

Average connectivity schemes will merge (c) and (d)

Chameleon: Clustering Using Dynamic Modeling

Adapt to the characteristics of the data set to find the natural clusters

Use a dynamic model to measure the similarity between clusters

Main property is the relative closeness and relative inter-connectivity of the cluster

Two clusters are combined if the resulting cluster shares certain properties with the constituent clusters

The merging scheme preserves self-similarity

One of the areas of application is spatial data
Characteristics of Spatial Data Sets

- Clusters are defined as densely populated regions of the space
- Clusters have arbitrary shapes, orientation, and non-uniform sizes
- Difference in densities across clusters and variation in density within clusters
- Existence of special artifacts (streaks) and noise

The clustering algorithm must address the above characteristics and also require minimal supervision.

Chameleon: Steps

Preprocessing Step:
Represent the Data by a Graph

Given a set of points, construct the k-nearest-neighbor (k-NN) graph to capture the relationship between a point and its k nearest neighbors

Concept of neighborhood is captured dynamically (even if region is sparse)

Phase 1: Use a multilevel graph partitioning algorithm on the graph to find a large number of clusters of well-connected vertices

Each cluster should contain mostly points from one “true” cluster, i.e., is a sub-cluster of a “real” cluster
Chameleon: Steps ...

Phase 2: Use Hierarchical Agglomerative Clustering to merge sub-clusters

Two clusters are combined if the resulting cluster shares certain properties with the constituent clusters.

Two key properties used to model cluster similarity:

Relative Interconnectivity: Absolute interconnectivity of two clusters normalized by the internal connectivity of the clusters.

Relative Closeness: Absolute closeness of two clusters normalized by the internal closeness of the clusters.

Experimental Results: CHAMELEON
Experimental Results: CHAMELEON

Experimental Results: CURE (10 clusters)
Experimental Results: CURE (15 clusters)

Experimental Results: CHAMELEON
Experimental Results: CURE (9 clusters)

Experimental Results: CURE (15 clusters)
Shared Near Neighbor Approach

SNN graph: the weight of an edge is the number of shared neighbors between vertices given that the vertices are connected.

Creating the SNN Graph

Sparse Graph
Link weights are similarities between neighboring points

Shared Near Neighbor Graph
Link weights are number of Shared Nearest Neighbors
Jarvis-Patrick Clustering

First, the k-nearest neighbors of all points are found. In graph terms, this can be regarded as breaking all but the k strongest links from a point to other points in the proximity graph.

A pair of points is put in the same cluster if:
- any two points share more than T neighbors and
- the two points are in each other's k nearest neighbor list.

For instance, we might choose a nearest neighbor list of size 20 and put points in the same cluster if they share more than 10 near neighbors.

Jarvis-Patrick clustering is too brittle.

When Jarvis-Patrick Works Reasonably Well

Original Points

Jarvis Patrick Clustering

6 shared neighbors out of 20
When Jarvis-Patrick Does NOT Work Well

Smallest threshold, T, that does not merge clusters.

Threshold of $T - 1$