

Nearest Neighbor Classification

nanopoulos@ismll.de

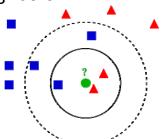
1

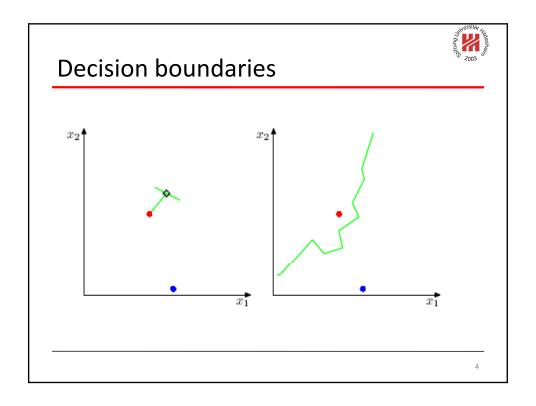
Outline

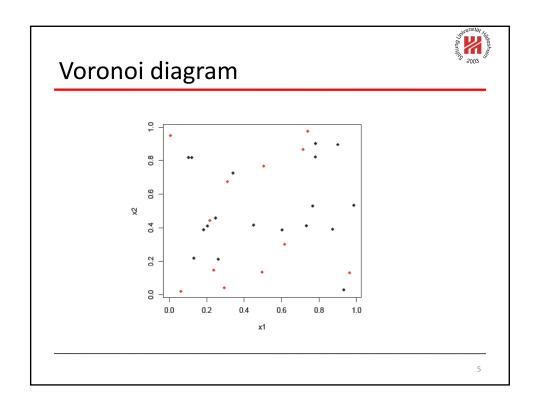
- Nearest neighbor classification
- Distance measures
- Error of 1-NN classification
- Dimensionality curse

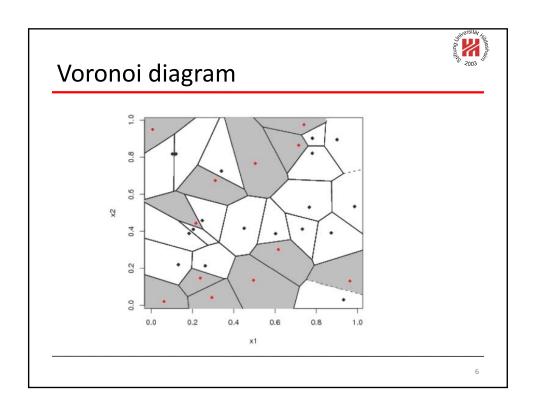
k-nearest neighbors classification

 An object is classified by a majority vote of its neighbors, with the object being assigned to the class most common amongst its k nearest neighbors









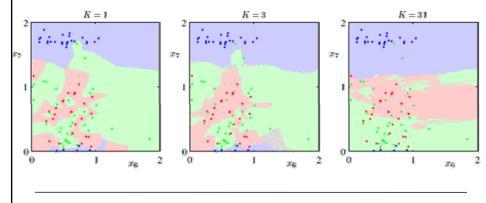
Characteristics of k-NN classification

- Amongst the simplest of all machine learning algorithms
- k is a positive integer, typically small
- If k = 1, then the object is simply assigned to the class of its nearest neighbor
- The training phase of the algorithm consists only of storing the feature vectors and class labels of the training samples (lazy classifier)

7

How to select k?

 Larger values of k reduce the effect of noise, but make boundaries between classes less distinct



Outline

- Nearest neighbor classification
- Distance measures
- Error of 1-NN classification
- Dimensionality curse

Distance measures

Let d be a $\mbox{\bf distance}$ measure (also called $\mbox{\bf metric})$ on a set $\mathcal{X},$ i.e.,

$$d: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_0^+$$

with

1. d is **positiv definite**: $d(x,y) \ge 0$ and $d(x,y) = 0 \Leftrightarrow x = y$

2. d is symmetric: d(x,y) = d(y,x)

3. d is **subadditive**: $d(x,z) \leq d(x,y) + d(y,z)$ (triangle inequality)

 $\text{(for all } x,y,z\in\mathcal{X}.\text{)}$

Example: **Euclidean metric** on $\mathcal{X} := \mathbb{R}^n$:

$$d(x,y) := (\sum_{i=1}^{n} (x_i - y_i)^2)^{\frac{1}{2}}$$

Minkowski metric

Minkowski Metric / L_p metric on $\mathcal{X}:=\mathbb{R}^n$:

$$d(x,y) := (\sum_{i=1}^n |x_i - y_i|^p)^{\frac{1}{p}}$$

with $p \in \mathbb{R}, p \ge 1$.

p=1 (taxicab distance; Manhattan distance):

$$d(x,y) := \sum_{i=1}^{n} |x_i - y_i|$$

p=2 (euclidean distance):

$$d(x,y) := (\sum_{i=1}^{n} (x_i - y_i)^2)^{\frac{1}{2}}$$

 $p=\infty$ (maximum distance; Chebyshev distance):

$$d(x,y) := \max_{i=1}^{n} |x_i - y_i|$$

11

Example

Example:

$$x := \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}, \quad y := \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}$$

$$d_{L_1}(x,y) = |1-2| + |3-4| + |4-1| = 1+1+3 = 5$$

$$d_{L_2}(x,y) = \sqrt{(1-2)^2 + (3-4)^2 + (4-1)^2} = \sqrt{1+1+9} = \sqrt{11} \approx 3.32$$

$$d_{L_{\infty}}(x,y) = \max\{|1-2|, |3-4|, |4-1|\} = \max\{1,1,3\} = 3$$

Distances for sets

For set-valued variables (which values are subsets of a set A) the **Hamming distance** often is used:

$$d(x,y) := |(x \setminus y) \cup (y \setminus x)| = |\{a \in A \mid I(a \in x) \neq I(a \in y)\}|$$

(the number of elements contained in only one of the two sets).

Example:

$$d({a,e,p,l},{a,b,n}) = 5, \quad d({a,e,p,l},{a,e,g,n,o,r}) = 6$$

Also often used is the similarity measure Jaccard coefficient:

$$\mathrm{sim}(x,y) := \frac{|x \cap y|}{|x \cup y|}$$

Example:

$$\mathrm{sim}(\{a,e,p,l\},\{a,b,n\}) = \frac{1}{6}, \quad \mathrm{sim}(\{a,e,p,l\},\{a,e,g,n,o,r\}) = \frac{2}{8}$$

13

Distances for strings

edit distance / Levenshtein distance:

d(x,y) := minimal number of deletions, insertions or substitions to transform x in y

Examples:

$$\begin{aligned} d(\mathsf{man},\mathsf{men}) = & 1 \\ d(\mathsf{house},\mathsf{spouse}) = & 2 \end{aligned}$$

d(order, express order) = 8

Outline

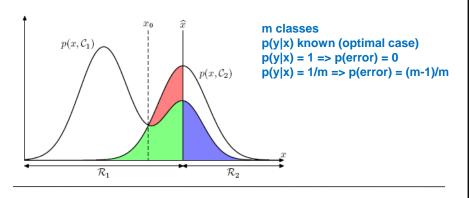
- Nearest neighbor classification
- Distance measures
- Error of 1-NN classification
- Dimensionality curse

Theorem for 1-NN classification

- **Theorem**: For sufficiently large training set size n, the error rate of the 1-NN classifier is less than twice the Bayes error rate
- Guarantees for error!

Bayes error rate

• The error prob is minimized if each x is assigned to the class $y^*(x) := \operatorname{argmax}_{y \in \mathcal{Y}} p(y \mid x)$



Proving the theorem for 1-NN

$$E^* = \int_x p(x)[1 - \max_i p(i|x)]$$

Expected Bayes (optimal) error

Let x' = 1-NN x. For each x the error of 1-NN about class i is: p(i|x) [1-p(i|x')]

x disagrees with x'

if $n \rightarrow \infty => p(i|x) = p(i|x')$

Critical assumption

Expected 1-NN error for each x:

$$\sum_{i=1}^{m} p(i|x)[1 - p(i|x)]$$

Proving the theorem for 1-NN

Expected 1-NN error for each *x*:

Expected Bayes error for all x:

$$\sum_{i=1}^{m} p(i|x)[1 - p(i|x)]$$

$$E^* = \int_x p(x) [1 - \max_i p(i|x)]$$

We need to show that:

$$\sum_{i=1}^{m} p(i|x)[1 - p(i|x)] \le 2[1 - \max_{i} p(i|x)]$$

19

Proving the theorem for 1-NN

$$\max_{i} p(i|x) = r$$
 Attained when for $i = j$

$$\sum_{i=1}^{m} p(i|x)[1-p(i|x)] \ = \ r(1-r) + \sum_{i \neq j} p(i|x)[1-p(i|x)]$$
 Left hand

$$2[1-\max_i p(i|x)] \quad = 2(1-r)$$
 Right hand

We need to show that:

$$r(1-r) + \sum_{i \neq j} p(i|x)[1-p(i|x)] \quad \leq \quad 2\big(1-r\big)$$

Proving the theorem for 1-NN

 $\sum_{i \neq j} p(i|x)[1-p(i|x)] \quad \text{ is maximum when all p(i|x) are equal for all } i \neq j$

For *m* classes this means that all $i \neq j$ p(i|x) = (1-r)/(m-1)

$$\sum_{i \neq j} p(i|x)[1 - p(i|x)] = (m-1)\frac{1-r}{m-1}\frac{m-1-(1-r)}{m-1}$$

$$\begin{split} r(1-r) + \sum_{i \neq j} p(i|x)[1-p(i|x)] &= r(1-r) + (m-1)\frac{1-r}{m-1}\frac{m-1-(1-r)}{m-1} \\ &= r(1-r) + (1-r)\frac{m+r-2}{m-1} \end{split}$$

21

Proving the theorem for 1-NN

We need to show that

$$r(1-r) + (1-r)\frac{m+r-2}{m-1} \le 2(1-r)$$

This holds because:

$$r \leq 1$$

$$m-2+r < m-1$$

QED

Implications of the theorem

- with a large enough training set, no classifier can do better than half the error rate of a 1NN classifier E* ≥ E/2
- Estimate a lower bound for the Bayes error rate by measuring the error rate of a 1NN classifier, then dividing by two
- True regardless of which distance metric is used
- Be careful: For finite sample sizes, not true!

23

Outline

- Nearest neighbor classification
- Distance measures
- Error of 1-NN classification
- Dimensionality curse

Dimensionality curse

x is d-dimensional

For high d, it is hard to find meaningful nearest neighbors

Let's see why

25

d-dimensional hypersphere

Volume of hypersphere in d dimensions

$$V(B_{1}(r)) = 2r$$

$$V(B_{2}(r)) = \pi r^{2}$$

$$V(B_{3}(r)) = \frac{4}{3}\pi r^{3}$$

$$V(B_{d}(r)) = K_{d}r^{d}$$

$$K_{d} = \frac{\pi^{d/2}}{\Gamma(\frac{d}{2} + 1)}$$

$$\Gamma(\frac{d}{2} + 1) = \begin{cases} (\frac{d}{2})! & \text{if } d \text{ is even} \\ \sqrt{\pi} \frac{d!!}{2^{\frac{n+1}{2}}} & \text{if } d \text{ is odd} \end{cases}$$

$$n!! = \begin{cases} 1 & n = 0, 1 \\ n(n-2)!! & n \geq 2 \end{cases}$$

Inscribe a Hypersphere Inside a Hypercube

$$\frac{V(B_d(r))}{V(H_d(2r))}$$

In 2 Dimensions

$$\frac{V(B_2(r))}{V(H_2(2r))} = \frac{\pi r^2}{4r^2} = \frac{\pi}{4} \approx 75\%$$

In 3 Dimensions

$$\frac{V(B_3(r))}{V(H_3(2r))} = \frac{\frac{4}{3}\pi r^3}{8r^3} = \frac{\pi}{6} \approx 50\%$$

In d Dimensions

$$\lim_{d\to\infty}\frac{V(B_d(r))}{V(H_d(2r))}=\lim_{d\to\infty}\frac{K_dr^d}{2^dr^d}=\lim_{d\to\infty}\frac{K_d}{2^d}=\lim_{d\to\infty}\frac{\pi^{d/2}}{\Gamma(\frac{d}{2}+1)*2^d}=0$$

In other words, a query for all results a certain distance from a given point will return no results as the number of dimensions approaches infinity.

How Many Points Lie in a Hypersphere?

In 2 dimensions

$$\frac{V(B_2(r-\varepsilon))}{V(B_2(r))} = \frac{\pi(r-\varepsilon)^2}{\pi(r)^2} = \frac{r^2 - 2r\varepsilon + \varepsilon^2}{r^2}$$

For a unit circle and $\varepsilon = 0.01$ the equation becomes:

Ratio between $V(B_d(r-\varepsilon))$ to $V(B_d(r))$ for small ε

$$1 - 0.02 + 0.01^2 = .9801 \approx 1$$

Generalized to d dimensions

$$\frac{\Delta V_d(r,\varepsilon)}{V(B_d(r))} = 1 - (1 - \frac{\varepsilon}{r})^d \qquad \lim_{d \to \infty} \frac{\Delta V_d(r,\varepsilon)}{V(B_d(r))} = 1$$

$$\lim_{d \to \infty} \frac{\Delta V_d(r, \varepsilon)}{V(B_d(r))} = 1$$

Thus, all results within a distance r of a point end up lying on the outer edge of the hypersphere $B_d(r)$ as $d \to \infty$.

Implications for k-NN classification

- As d → ∞, the ratio of the nearest neighbor to the farthest neighbor from a given point approaches 1.
- This means that it becomes much more difficult to distinguish which point is nearest and which is farthest from a given point.