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Nearest Neighbor Classification
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k-nearest neighbors classification

* An object is classified by a majority vote of
its neighbors, with the object being assigned
to the class most common amongst its k
nearest neighbors
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Characteristics of k-NN classification

* Amongst the simplest of all machine
learning algorithms

* kis a positive integer, typically small

* If k=1, then the object is simply assigned to
the class of its nearest neighbor

* The training phase of the algorithm consists
only of storing the feature vectors and class
labels of the training samples (lazy classifier)

How to select k?

* Larger values of k reduce the effect of noise,
but make boundaries between classes less
distinct
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Distance measures

Let d be a distance measure (also called metric) on a set &,
i.e.,
d:-XxX— RS
with
1. d is positiv definite: d(z,y) > 0and d(z,y) =0 x =y

2. d is symmetric: d(z,y) = d(y, )

3. d is subadditive: d(z,2) < d(z,y) + d(y, 2)
(triangle inequality)

(forall z,y,z € X.)

Example: Euclidean metric on X .= R™

n

d(z,y) = (3 (xi — v}

i=1
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Minkowski metric
Minkowski Metric / L, metric on A" := R™

n 1

d(z,y) = (E |z — yalP)?
i=1

withpe R,p > 1.
p =1 (taxicab distance; Manhattan distance):
d(z,y) =Y |z — il
i=1
p = 2 (euclidean distance):

d(z,y) = (3 (i — v

i=1
p = oo (maximum distance; Chebyshev distance):
d(z,y) = mifzfc | s — 14
11
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Example
Example:
1 2
T 3 y=|\4
4 1

dr(z,y) =1 -2+ 3 -4|+4-1=14+14+3=5

dr,(z,y) =/(1 =22+ (3 - 42+ (4 —1)2 =T+ 149 =11 ~ 3.32

dp (z,y) =max{|l —2[,|3—4|,|4 — 1|} =max{1,1,3} =3
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Distances for sets
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For set-valued variables (which values are subsets of a set A) the
Hamming distance often is used:

diz,y) = |(x\y) U (w\z)|=[{ac A|I{acx)#I{acy)}
(the number of elements contained in only one of the two sets).

Example:

d({a.e,p,1},{a.b.n}) =5 d{ae.pl}.{a,egnor})=06

Also often used is the similarity measure Jaccard coefficient:

. |z Myl
sim(z,y) =
=Y |z Uy
Example:
n‘)
sim({a,e,p, 1}, {a,b,n}) = é sim({a, e, p,1}.{a,e, g.n,0,1}) :é

Distances for strings
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edit distance / Levenshtein distance:

d(z, y) = minimal number of deletions, insertions or substitions to transform z in y

Examples:

d(man, men) =1
d(house, spouse) =2

d(order, express order) =8
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Theorem for 1-NN classification

* Theorem: For sufficiently large training set
size n, the error rate of the 1-NN classifier is
less than twice the Bayes error rate

e Guarantees for error!
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Bayes error rate

* The error prob is minimized if each x is
assigned to the class v*(x) :=argmax .y p(y | z)

L ) -
oo m classes
plz, ) i p(y|x) known (optimal case)
! p(y|x) =1 =>p(error) =0
: plz,Cz) p(y|x) = 1/m => p(error) = (m-1)/m
|
|
|
|
|
! x
- R i Rq i
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Proving the theorem for 1-NN

E* = [j)(.r')[l — max p(z|x)] Expected Bayes (optimal) error
T 2

Let x' = 1-NN x. For each x the error of

1-NN about class i is:

p(ilx) [1-p(ilx')] x disagrees with x’
if n — e => p(i|x) = p(i|x) Critical assumption

Expected 1-NN error for each x:

D plil=) [l = pli])]
i=1
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Proving the theorem for 1-NN

Expected 1-NN error for each x:

Expected Bayes error for all x:
Z G

)L = plef)] E* = ]er][l — max p(e|z)]

We need to show that:

m

> plife)[L = plilz)] < 2[1 — max p(i|r)]
i=1 !
. ¥ 2003
Proving the theorem for 1-NN
max; p(z|r) T Attained when for j = j
Z-p(-s‘lr)[l — pli]z)] (1=r) +Zp I = plilr)] Left hand
i=1 i]
211 — 1119x;_:(é|.e-)] =2(1—71) Right hand
We need to show that:
(L=r)+ > plilo)l —plilr)] < 2(1 —7)
i#j
20
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Proving the theorem for 1-NN

Zp L = pli]x)]

is maximum when all p(i|x) are equal for all j # j
i#j

For m classes this means that all j # j p(i]x) = (1-r)/((m-1)

S plile)[L = plile)] = (m - izt

m—1 m—1
i#j

) l—rm—-1—(1-r)
— — (1 —r -1
A=) +EZEP )= plifr)] r( r)+ (m )m—l m— 1

m4r—2

m—1

=r(l—r)+(1—7r)

21

Proving the theorem for 1-NN |
We need to show that
r(1—r)+ (1 - ,-)w < 21-—w)
m— 1
This holds because:
r<1
m—2+r<m-—1
QED
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Implications of the theorem

« with a large enough training set, no classifier
can do better than half the error rate of a
1NN classifier E* = E/2

* Estimate a lower bound for the Bayes error
rate by measuring the error rate of a INN
classifier, then dividing by two

* True regardless of which distance metric is
used

» Be careful: For finite sample sizes, not true!
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e Dimensionality curse
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Dimensionality curse

x is d-dimensional

For high d, it is hard to find meaningful nearest
neighbors

Let’s see why
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d-dimensional hypersphere
Volume of hypersphere in d dimensions
V(Bi(r) = 20
V(By(r)) = mr
; 4 3
V(Bs(r)) = i
V(By(r)) = Kgr?
. /2
MTTE )
d (2 if d is even
lg+b= {j:;j? if d is odd
. {1 n=0,1
n!ll =
nin—2)' n>2
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Inscribe a Hypersphere Inside a Hypercub ¥
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In 2 Dimensions

In 3 Dimensions

In d Dimensions

%
VI(H,(2r))

e=2r
VBi(r) _4rrt

(B(E(T))

the number of dimensions approaches infinity.

o VBar) Kt Ky /2 .

m ———=1mn —— = 1l — = 1l — =

d—so V(Hg(2r))  d—oo 24pd  dooc 20 deoo 1"(%' +1) %24

In other words, a query for all results a certain distance from a given point will return no results as

How Many Points Lie

in a Hypersphere? =

In 2 dimensions

V(Ba(r—e)) _7(r—2)® _
V(Ba(r)) m(r)?

2 — e 4 22
2

r

For a univ circle and ¢ = 0.01 the equation becomes:

=002+ 00 = 9801 = 1

o | , i AI‘{)'(T'? \E‘)
enerali t L i i s I D oy
eneralized O dlmensions 1 (Bd(?.j)

E

a

Ratio between V(By(r — =) to V(By(r)) for small &

lim

=1 (1 - ;) d—oc "’IY(BJ(T‘))

Bylr) asd — oc.

Thus, all results within a distance r of a point end up lying on the outer edge of the hypersphere
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Implications for k-NN classification

* Asd - oo, the ratio of the nearest neighbor
to the farthest neighbor from a given point
approaches 1.

* This means that it becomes much more
difficult to distinguish which point is nearest
and which is farthest from a given point.
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