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Machine Learning / 1. The Regression Problem

Example

Example: how does gas consumption
depend on external temperature?
(Whiteside, 1960s).

weekly measurements of
• average external temperature
• total gas consumption

(in 1000 cubic feets)
A third variable encodes two heating
seasons, before and after wall
insulation.

How does gas consumption depend on
external temperature?

How much gas is needed for a given
termperature ?
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Machine Learning / 1. The Regression Problem

Example

Average external temperature (deg. C)
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Example
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Average external temperature (deg. C)
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Machine Learning / 1. The Regression Problem

Variable Types and Coding

The most common variable types:

numerical / interval-scaled / quantitative
where differences and quotients etc. are meaningful,
usually with domain X := R,
e.g., temperature, size, weight.

nominal / discrete / categorical / qualitative / factor
where differences and quotients are not defined,
usually with a finite, enumerated domain,
e.g., X := {red,green,blue}
or X := {a,b, c, . . . , y, z}.

ordinal / ordered categorical
where levels are ordered, but differences and quotients are not
defined,
usually with a finite, enumerated domain,
e.g., X := {small,medium, large}
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Machine Learning / 1. The Regression Problem

Variable Types and Coding

Nominals are usually encoded as binary dummy variables:

δx0(X) :=

{
1, if X = x0,
0, else

one for each x0 ∈ X (but one).

Example: X := {red,green,blue}

Replace

one variable X with 3 levels: red,green,blue

by

two variables δred(X) and δgreen(X) with 2 levels each: 0, 1

X δred(X) δgreen(X)
red 1 0
green 0 1
blue 0 0
— 1 1
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Machine Learning / 1. The Regression Problem

The Regression Problem Formally

Let

X1, X2, . . . , Xp be random variables called predictors (or inputs,
covariates).
Let X 1,X 2, . . . ,X p be their domains.
We write shortly

X := (X1, X2, . . . , Xp)

for the vector of random predictor variables and

X := X 1×X 2× · · · × X p

for its domain.

Y be a random variable called target (or output, response).
Let Y be its domain.

D ⊆ P(X ×Y) be a (multi)set of instances of the unknown joint
distribution p(X, Y ) of predictors and target called data.
D is often written as enumeration

D = {(x1, y1), (x2, y2), . . . , (xn, yn)}
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Machine Learning / 1. The Regression Problem

The Regression Problem Formally

The task of regression and classification is
to predict Y based on X,
i.e., to estimate

r(x) := E(Y |X = x) =

∫
y p(y|x)dy

based on data (called regression function).

If Y is numerical, the task is called regression.

If Y is nominal, the task is called classification.
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Machine Learning / 2. Simple Linear Regression

Simple Examples: Single Predictor vs. Multiple Predictors
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y = 3x + 5

multiple predictors:

y = x1 + 2x2 + 5
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Machine Learning / 2. Simple Linear Regression

Simple Examples: Regression Function
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linear regression function:
y = 3x + 5

non-linear regression function:

y = 3x2 + x + 5
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Machine Learning / 2. Simple Linear Regression

Simple Examples: Size of Errors (1/2)
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Small errors vs. . . .
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Machine Learning / 2. Simple Linear Regression

Simple Examples: Size of Errors (2/2)

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

observations

x

y

● observations
average truth

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

errors

N = 100   Bandwidth = 0.3296

D
en

si
ty

● ●● ● ●●● ●● ●● ●● ●●●● ●● ● ●● ● ●● ●●● ● ●●●● ●● ●● ●●● ●● ●●● ●●● ● ●●●● ● ●●● ●● ● ●● ●●●● ●●●● ●●●●● ● ●● ●● ● ●●● ●●● ●●● ●●● ● ●●● ● ●●

. . . large errors.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 10/71



Machine Learning / 2. Simple Linear Regression

Simple Examples: Distribution of Errors (1/2)
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Normally distributed errors vs. . . .
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Machine Learning / 2. Simple Linear Regression

Simple Examples: Distribution of Errors (2/2)
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. . . uniformly distributed errors.
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Machine Learning / 2. Simple Linear Regression

Simple Examples: Homoscedastic vs. Heteroscedastic Errors (1/2)
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Errors do not depend on predictors (homoscedastic) vs. . . .
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Machine Learning / 2. Simple Linear Regression

Simple Examples: Homoscedastic vs. Heteroscedastic Errors (2/2)
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. . . errors do depend on predictors (heteroscedastic).
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Machine Learning / 2. Simple Linear Regression

Simple Examples: Distribution of Predictors (1/2)
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Predictors are uniformly distributed vs. . . .
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Machine Learning / 2. Simple Linear Regression

Simple Examples: Distribution of Predictors (2/2)
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. . . predictors are normally distributed.
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Machine Learning / 2. Simple Linear Regression

Simple Linear Regression Model

Make it simple:

• the predictor X is simple, i.e., one-dimensional (X = X1).

• r(x) is assumed to be linear:

r(x) = β0 + β1x

• assume that the variance does not depend on X:

Y = β0 + β1X + ε, E(ε|X) = 0, V (ε|X) = σ2

• 3 parameters:
β0 intercept (sometimes also called bias)
β1 slope
σ2 variance
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Machine Learning / 2. Simple Linear Regression

Simple Linear Regression Model

parameter estimates
β̂0, β̂1, σ̂

2

fitted line
r̂(x) := β̂0 + β̂1x

predicted / fitted values

ŷi := r̂(xi)

residuals
ε̂i := yi − ŷi = yi − (β̂0 + β̂1xi)

residual sums of squares (RSS) / square loss / L2 loss

RSS =

n∑
i=1

ε̂2
i
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Machine Learning / 2. Simple Linear Regression

How to estimate the parameters?

Example:
Given the data D := {(1, 2), (2, 3), (4, 6)}, predict a value for x = 3.
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Machine Learning / 2. Simple Linear Regression

How to estimate the parameters?

Example:
Given the data D := {(1, 2), (2, 3), (4, 6)}, predict a value for x = 3.

Line through first two points:

β̂1 =
y2 − y1

x2 − x1
= 1

β̂0 =y1 − β̂1x1 = 1

RSS:
i yi ŷi (yi − ŷi)2

1 2 2 0
2 3 3 0
3 6 5 1∑

1

r̂(3) = 4
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Machine Learning / 2. Simple Linear Regression

How to estimate the parameters?

Example:
Given the data D := {(1, 2), (2, 3), (4, 6)}, predict a value for x = 3.

Line through first and last point:

β̂1 =
y3 − y1

x3 − x1
= 4/3 = 1.333

β̂0 =y1 − β̂1x1 = 2/3 = 0.667

RSS:
i yi ŷi (yi − ŷi)2

1 2 2 0
2 3 3.333 0.111
3 6 6 0∑

0.111

r̂(3) = 4.667
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Machine Learning / 2. Simple Linear Regression

Least Squares Estimates / Definition

In principle, there are many different methods to estimate the
parameters β̂0, β̂1 and σ̂2 from data — depending on the
properties the solution should have.

The least squares estimates are those parameters that
minimize

RSS =

n∑
i=1

ε̂2
i =

n∑
i=1

(yi − ŷi)2 =

n∑
i=1

(yi − (β̂0 + β̂1xi))
2

They can be written in closed form as follows:

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

β̂0 =ȳ − β̂1x̄

σ̂2 =
1

n− 2

n∑
i=1

ε2
i
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Machine Learning / 2. Simple Linear Regression

Least Squares Estimates / Proof

Proof (1/2):

RSS =

n∑
i=1

(yi − (β̂0 + β̂1xi))
2

∂ RSS
∂β̂0

=

n∑
i=1

2(yi − (β̂0 + β̂1xi))(−1)
!

= 0

=⇒ nβ̂0 =

n∑
i=1

yi − β̂1xi
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Machine Learning / 2. Simple Linear Regression

Least Squares Estimates / Proof

Proof (2/2):

RSS =

n∑
i=1

(yi − (β̂0 + β̂1xi))
2

=

n∑
i=1

(yi − (ȳ − β̂1x̄)− β̂1xi)
2

=

n∑
i=1

(yi − ȳ − β̂1(xi − x̄))2

∂ RSS
∂β̂1

=

n∑
i=1

2(yi − ȳ − β̂1(xi − x̄))(−1)(xi − x̄)
!

= 0

=⇒ β̂1 =

∑n
i=1(yi − ȳ)(xi − x̄)∑n

i=1(xi − x̄)2
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Machine Learning / 2. Simple Linear Regression

Least Squares Estimates / Example

Example:
Given the data D := {(1, 2), (2, 3), (4, 6)}, predict a value for x = 3.
Assume simple linear model.
x̄ = 7/3, ȳ = 11/3.

i xi − x̄ yi − ȳ (xi − x̄)2 (xi − x̄)(yi − ȳ)
1 −4/3 −5/3 16/9 20/9
2 −1/3 −2/3 1/9 2/9
3 5/3 7/3 25/9 35/9∑

42/9 57/9

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
= 57/42 = 1.357

β̂0 =ȳ − β̂1x̄ =
11

3
− 57

42
· 7

3
=

63

126
= 0.5
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Machine Learning / 2. Simple Linear Regression

Least Squares Estimates / Example

Example:
Given the data D := {(1, 2), (2, 3), (4, 6)}, predict a value for x = 3.
Assume simple linear model.

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
= 57/42 = 1.357

β̂0 =ȳ − β̂1x̄ =
11

3
− 57

42
· 7

3
=

63

126
= 0.5

RSS:
i yi ŷi (yi − ŷi)2

1 2 1.857 0.020
2 3 3.214 0.046
3 6 5.929 0.005∑

0.071

r̂(3) = 4.571
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Machine Learning / 2. Simple Linear Regression

A Generative Model

So far we assumed the model

Y = β0 + β1X + ε, E(ε|X) = 0, V (ε|X) = σ2

where we required some properties of the errors,
but not its exact distribution.

If we make assumptions about its distribution, e.g.,

ε|X ∼ N (0, σ2)

and thus
Y ∼ N (β0 + β1X, σ

2)

we can sample from this model.
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Machine Learning / 2. Simple Linear Regression

Maximum Likelihood Estimates (MLE)

Let p(X, Y | θ) be a joint probability density function for X and Y
with parameters θ.

Likelihood:

LD(θ) :=

n∏
i=1

p(xi, yi | θ)

The likelihood describes the probability of the data.

The maximum likelihood estimates (MLE) are those
parameters that maximize the likelihood.
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Machine Learning / 2. Simple Linear Regression

Least Squares Estimates and Maximum Likelihood Estimates

Likelihood:

LD(β̂0, β̂1, σ̂
2) :=

n∏
i=1

p̂(xi, yi) =

n∏
i=1

p̂(yi |xi)p(xi) =

n∏
i=1

p̂(yi |xi)
n∏
i=1

p(xi)

Conditional likelihood:

Lcond
D (β̂0, β̂1, σ̂

2) :=

n∏
i=1

p̂(yi |xi) =

n∏
i=1

1√
2πσ̂

e
−(yi−ŷi)2

2σ̂2 =
1√

2π
n
σ̂n
e

1
−2σ̂2

∑n
i=1(yi−ŷi)2

Conditional log-likelihood:

logLcond
D (β̂0, β̂1, σ̂

2) ∝ −n log σ̂ − 1

2σ̂2

n∑
i=1

(yi − ŷi)2

=⇒ if we assume normality, the maximum likelihood estimates
are just the minimal least squares estimates.
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Machine Learning / 2. Simple Linear Regression

Implementation Details

1 simple-regression(D) :
2 sx := 0, sy := 0
3 for i = 1, . . . , n do
4 sx := sx + xi

5 sy := sy + yi

6 od
7 x̄ := sx/n, ȳ := sy/n
8 a := 0, b := 0
9 for i = 1, . . . , n do

10 a := a + (xi − x̄)(yi − ȳ)
11 b := b + (xi − x̄)2

12 od
13 β1 := a/b
14 β0 := ŷ − β1x̂
15 return (β0, β1)
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Machine Learning / 2. Simple Linear Regression

Implementation Details

naive:
1 simple-regression(D) :
2 sx := 0, sy := 0
3 for i = 1, . . . , n do
4 sx := sx + xi

5 sy := sy + yi

6 od
7 x̄ := sx/n, ȳ := sy/n
8 a := 0, b := 0
9 for i = 1, . . . , n do

10 a := a + (xi − x̄)(yi − ȳ)
11 b := b + (xi − x̄)2

12 od
13 β1 := a/b
14 β0 := ŷ − β1x̂
15 return (β0, β1)

single loop:

1 simple-regression(D) :
2 sx := 0, sy := 0, sxx := 0, syy := 0, sxy := 0
3 for i = 1, . . . , n do
4 sx := sx + xi

5 sy := sy + yi

6 sxx := sxx + x2
i

7 syy := syy + y2
i

8 sxy := sxy + xiyi

9 od
10 β1 := (n · sxy− sx · sy)/(n · sxx− sx · sx)
11 β0 := (sy− β1 · sx)/n
12 return (β0, β1)
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Machine Learning

1. The Regression Problem

2. Simple Linear Regression

3. Multiple Regression

4. Variable Interactions

5. Model Selection

6. Case Weights
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Machine Learning / 3. Multiple Regression

Several predictors

Several predictor variables X1, X2, . . . , Xp:

Y =β0 + β1X1 + β2X2 + · · · βPXP + ε

=β0 +

p∑
i=1

βiXi + ε

with p + 1 parameters β0, β1, . . . , βp.
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Machine Learning / 3. Multiple Regression

Linear form

Several predictor variables X1, X2, . . . , Xp:

Y =β0 +

p∑
i=1

βiXi + ε

=〈β,X〉 + ε

where

β :=


β0

β1
...
βp

 , X :=


1
X1
...
Xp

 ,

Thus, the intercept is handled like any other parameter, for the
artificial constant variable X0 ≡ 1.
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Machine Learning / 3. Multiple Regression

Simultaneous equations for the whole dataset

For the whole dataset (x1, y1), . . . , (xn, yn):

Y = Xβ + ε

where

Y :=

 y1
...
yn

 , X :=

 x1
...
xn

 =

 x1,1 x1,2 . . . x1,p
... ... ... ...
xn,1 xn,2 . . . xn,p

 , ε :=

 ε1
...
εn

 ,
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Machine Learning / 3. Multiple Regression

Least squares estimates

Least squares estimates β̂ minimize

||Y − Ŷ||2 = ||Y −Xβ̂||2

The least squares estimates β̂ are computed via

XTXβ̂ = XTY

Proof:
||Y −Xβ̂||2 = 〈Y −Xβ̂,Y −Xβ̂〉

∂(. . .)

∂β̂
= 2〈−X,Y −Xβ̂〉 = −2(XTY −XTXβ̂)

!
= 0
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Machine Learning / 3. Multiple Regression

How to compute least squares estimates β̂

Solve the p× p system of linear equations

XTXβ̂ = XTY

i.e., Ax = b (with A := XTX, b = XTY, x = β̂).

There are several numerical methods available:

1. Gaussian elimination

2. Cholesky decomposition

3. QR decomposition
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Machine Learning / 3. Multiple Regression

How to compute least squares estimates β̂ / Example

Given is the following data:

x1 x2 y
1 2 3
2 3 2
4 1 7
5 5 1

Predict a y value for x1 = 3, x2 = 4.
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Machine Learning / 3. Multiple Regression

How to compute least squares estimates β̂ / Example

Y =β0 + β1X1 + ε

=2.95 + 0.1X1 + ε
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ŷ(x1 = 3) = 3.25

Y =β0 + β2X2 + ε

=6.943− 1.343X2 + ε
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ŷ(x2 = 4) = 1.571
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Machine Learning / 3. Multiple Regression

How to compute least squares estimates β̂ / Example

Now fit

Y =β0 + β1X1 + β2X2 + ε

to the data:
x1 x2 y
1 2 3
2 3 2
4 1 7
5 5 1

X =


1 1 2
1 2 3
1 4 1
1 5 5

 , Y =


3
2
7
1



XTX =

 4 12 11
12 46 37
11 37 39

 , XTY =

 13
40
24


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Machine Learning / 3. Multiple Regression

How to compute least squares estimates β̂ / Example

 4 12 11 13
12 46 37 40
11 37 39 24

 ∼
 4 12 11 13

0 10 4 1
0 16 35 −47

 ∼
 4 12 11 13

0 10 4 1
0 0 143 −243



∼
 4 12 11 13

0 1430 0 1115
0 0 143 −243

 ∼
 286 0 0 1597

0 1430 0 1115
0 0 143 −243


i.e.,

β̂ =

 1597/286
1115/1430
−243/143

 ≈
 5.583

0.779
−1.699


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Machine Learning / 3. Multiple Regression

How to compute least squares estimates β̂ / Example
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Machine Learning / 3. Multiple Regression

How to compute least squares estimates β̂ / Example

To visually assess the model fit, a plot

residuals ε̂ = y − ŷ vs. true values y

can be plotted:
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Machine Learning / 3. Multiple Regression

The Normal Distribution (also Gaussian)

written as:

X ∼ N (µ, σ2)

with parameters:
µ mean,
σ standard deviance.

probability density function (pdf):

φ(x) :=
1√
2πσ

e
−(x−µ)2

2σ2

cummulative density function (cdf):

Φ(x) :=

∫ x

−∞
φ(x)dx

Φ−1 is called quantile function.

Φ and Φ−1 have no analytical form, but
have to computed numerically.
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Machine Learning / 3. Multiple Regression

The t Distribution

written as:
X ∼ tp

with parameter:
p degrees of freedom.

probability density function (pdf):

p(x) :=
Γ(p+1

2 )

Γ(p2)
(1 +

x2

p
)−

p+1
2

tp
p→∞−→ N (0, 1)
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Machine Learning / 3. Multiple Regression

The χ2 Distribution

written as:
X ∼ χ2

p

with parameter:
p degrees of freedom.

probability density function (pdf):

p(x) :=
1

Γ(p/2)2p/2
x
p
2−1e−

x
2

If X1, . . . , Xp ∼ N (0, 1), then

Y :=

p∑
i=1

X2
i ∼ χ2

p
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Machine Learning / 3. Multiple Regression

Parameter Variance

β̂ = (XTX)−1XTY is an unbiased estimator for β (i.e., E(β̂) = β).
Its variance is

V (β̂) = (XTX)−1σ2

proof:

β̂ =(XTX)−1XTY = (XTX)−1XT (Xβ + ε) = β + (XTX)−1XTε

As E(ε) = 0: E(β̂) = β

V (β̂) =E((β̂ − E(β̂))(β̂ − E(β̂))T )

=E((XTX)−1XTεεTX(XTX)−1)

=(XTX)−1σ2
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Machine Learning / 3. Multiple Regression

Parameter Variance

An unbiased estimator for σ2 is

σ̂2 =
1

n− p
n∑
i=1

ε̂2
i =

1

n− p
n∑
i=1

(y − ŷ)2

If ε ∼ N (0, σ2), then

β̂ ∼ N (β, (XTX)−1σ2)

Furthermore
(n− p)σ̂2 ∼ σ2χ2

n−p
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Machine Learning / 3. Multiple Regression

Parameter Variance / Standardized coefficient

standardized coefficient (“z-score”):

zi :=
β̂i

ŝe(β̂i)
, with ŝe2

(β̂i) the i-th diagonal element of (XTX)−1σ̂2

zi would be zi ∼ N (0, 1) if σ is known (under H0 : βi = 0).
With estimated σ̂ it is zi ∼ tn−p.

The Wald test for H0 : βi = 0 with size α is:

reject H0 if |zi| = | β̂i

ŝe(β̂i)
| > F−1

tn−p(1−
α

2
)

i.e., its p-value is

p-value(H0 : βi = 0) = 2(1− Ftn−p(|zi|)) = 2(1− Ftn−p(|
β̂i

ŝe(β̂i)
|))

and small p-values such as 0.01 and 0.05 are good.
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Machine Learning / 3. Multiple Regression

Parameter Variance / Confidence interval

The 1− α confidence interval for βi:

βi ± F−1
tn−p(1−

α

2
)ŝe(β̂i)

For large n, Ftn−p converges to the standard normal cdf Φ.

As Φ−1(1− 0.05
2 ) ≈ 1.95996 ≈ 2, the rule-of-thumb for a 5%

confidence interval is
βi ± 2ŝe(β̂i)
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Machine Learning / 3. Multiple Regression

Parameter Variance / Example

We have already fitted

Ŷ =β̂0 + β̂1X1 + β̂2X2

=5.583 + 0.779X1 − 1.699X2

to the data:
x1 x2 y ŷ ε̂2 = (y − ŷ)2

1 2 3 2.965 0.00122
2 3 2 2.045 0.00207
4 1 7 7.003 0.0000122
5 5 1 0.986 0.000196

RSS 0.00350

σ̂2 =
1

n− p
n∑
i=1

ε̂2
i =

1

4− 3
0.00350 = 0.00350

(XTX)−1σ̂2 =

 0.00520 −0.00075 −0.00076
−0.00075 0.00043 −0.00020
−0.00076 −0.00020 0.00049


covariate β̂i ŝe(β̂i) z-score p-value
(intercept) 5.583 0.0721 77.5 0.0082
X1 0.779 0.0207 37.7 0.0169
X2 −1.699 0.0221 −76.8 0.0083
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Machine Learning / 3. Multiple Regression

Parameter Variance / Example 2

Example: sociographic data of the 50
US states in 1977.

state dataset:
• income (per capita, 1974),
• illiteracy (percent of population,

1970),
• life expectancy (in years, 1969–71),
• percent high-school graduates

(1970).
• population (July 1, 1975)
• murder rate per 100,000 population

(1976)
• mean number of days with minimum

temperature below freezing
(1931–1960) in capital or large city
• land area in square miles
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Machine Learning / 3. Multiple Regression

Parameter Variance / Example 2

Murder =β0 + β1Population + β2Income + β3Illiteracy
+ β4LifeExp + β5HSGrad + β6Frost + β7Area

n = 50 states, p = 8 parameters, n− p = 42 degrees of
freedom.

Least squares estimators:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.222e+02 1.789e+01 6.831 2.54e-08 ***
Population 1.880e-04 6.474e-05 2.905 0.00584 **
Income -1.592e-04 5.725e-04 -0.278 0.78232
Illiteracy 1.373e+00 8.322e-01 1.650 0.10641
‘Life Exp‘ -1.655e+00 2.562e-01 -6.459 8.68e-08 ***
‘HS Grad‘ 3.234e-02 5.725e-02 0.565 0.57519
Frost -1.288e-02 7.392e-03 -1.743 0.08867 .
Area 5.967e-06 3.801e-06 1.570 0.12391
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Machine Learning

1. The Regression Problem

2. Simple Linear Regression

3. Multiple Regression

4. Variable Interactions

5. Model Selection

6. Case Weights
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Machine Learning / 4. Variable Interactions

Need for higher orders

Assume a target variable does not
depend linearly on a predictor variable,
but say quadratic.

Example: way length vs. duration of a
moving object with constant
acceleration a.

s(t) =
1

2
at2 + ε

Can we catch such a dependency?

Can we catch it with a linear model?
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Machine Learning / 4. Variable Interactions

Need for general transformations

To describe many phenomena, even more complex functions of
the input variables are needed.

Example: the number of cells n vs. duration of growth t:

n = βeαt + ε

n does not depend on t directly, but on eαt (with a known α).
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Machine Learning / 4. Variable Interactions

Need for variable interactions

In a linear model with two predictors

Y = β0 + β1X1 + β2X2 + ε

Y depends on both, X1 and X2.

But changes in X1 will affect Y the same way, regardless of X2.

There are problems where X2 mediates or influences the way X1

affects Y , e.g. : the way length s of a moving object vs. its
constant velocity v and duration t:

s = vt + ε

Then an additional 1s duration will increase the way length not in
a uniform way (regardless of the velocity), but a little for small
velocities and a lot for large velocities.

v and t are said to interact: y does not depend only on each
predictor separately, but also on their product.
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Machine Learning / 4. Variable Interactions

Derived variables

All these cases can be handled by looking at derived variables,
i.e., instead of

Y =β0 + β1X
2
1 + ε

Y =β0 + β1e
αX1 + ε

Y =β0 + β1X1 ·X2 + ε

one looks at

Y =β0 + β1X
′
1 + ε

with

X ′1 :=X2
1

X ′1 :=eαX1

X ′1 :=X1 ·X2

Derived variables are computed before the fitting process and
taken into account either additional to the original variables or
instead of.
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Machine Learning

1. The Regression Problem

2. Simple Linear Regression

3. Multiple Regression

4. Variable Interactions

5. Model Selection

6. Case Weights
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Machine Learning / 5. Model Selection

Underfitting
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If a model does not well explain the data,
e.g., if the true model is quadratic, but we try to fit a linear model,
one says, the model underfits.
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Machine Learning / 5. Model Selection

Overfitting / Fitting Polynomials of High Degree
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Machine Learning / 5. Model Selection

Overfitting / Fitting Polynomials of High Degree
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Machine Learning / 5. Model Selection
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Machine Learning / 5. Model Selection

Overfitting / Fitting Polynomials of High Degree
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Machine Learning / 5. Model Selection

Overfitting / Fitting Polynomials of High Degree

If to data
(x1, y1), (x2, y2), . . . , (xn, yn)

consisting of n points we fit

X = β0 + β1X1 + β2X2 + · · · + βn−1Xn−1

i.e., a polynomial with degree n− 1, then this results in an
interpolation of the data points
(if there are no repeated measurements, i.e., points with the
same X1.)

As the polynomial

r(X) =

n∑
i=1

yi
∏
j 6=i

X − xj
xi − xj

is of this type, and has minimal RSS = 0.
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Machine Learning / 5. Model Selection

Model Selection Measures

Model selection means: we have a set of models, e.g.,

Y =

p−1∑
i=0

βiXi

indexed by p (i.e., one model for each value of p),
make a choice which model describes the data best.

If we just look at losses / fit measures such as RSS, then

the larger p, the better the fit

or equivalently

the larger p, the lower the loss

as the model with p parameters can be reparametrized in a
model with p′ > p parameters by setting

β′i =

{
βi, for i ≤ p
0, for i > p
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Machine Learning / 5. Model Selection

Model Selection Measures

One uses model selection measures of type

model selection measure = fit− complexity

or equivalently

model selection measure = loss + complexity

The smaller the loss (= lack of fit), the better the model.

The smaller the complexity, the simpler and thus better the
model.

The model selection measure tries to find a trade-off between
fit/loss and complexity.
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Machine Learning / 5. Model Selection

Model Selection Measures

Akaike Information Criterion (AIC): (maximize)

AIC := logL− p
or (minimize)

AIC := −2 logL + 2p = −2n log(RSS/n) + 2p

Bayes Information Criterion (BIC) /
Bayes-Schwarz Information Criterion: (maximize)

BIC := logL− p

2
log n
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Machine Learning / 5. Model Selection

Variable Backward Selection

  

{ A, F, H, I, J, L, P } 
AIC = 63.01

{ A, F, H, I, J, L, P }
AIC = 63.87

{ A, F, H, I, J, L, P }
AIC = 61.11

{ A, F, H, I, J, L, P }
AIC = 70.17

X

X X X... ...

{ A, F, H, I, J, L, P }
AIC = 61.88

{ A, F, H, I, J, L, P }
AIC = 59.40

{ A, F, H, I, J, L, P }
AIC = 68.70

... ...X X X XX X

{ A, F, H, I, J, L, P }
AIC = 63.23

{ A, F, H, I, J, L, P }
AIC = 61.50

{ A, F, H, I, J, L, P }
AIC = 66.71

...XXX X XX XX X

removed variable
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AIC = 61.50

{ A, F, H, I, J, L, P }
AIC = 66.71

...XXX X XX XX X

removed variable
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Machine Learning / 5. Model Selection

Variable Backward Selection

  

{ A, F, H, I, J, L, P } 
AIC = 63.01

{ A, F, H, I, J, L, P }
AIC = 63.87

{ A, F, H, I, J, L, P }
AIC = 61.11

{ A, F, H, I, J, L, P }
AIC = 70.17

X

X X X... ...

{ A, F, H, I, J, L, P }
AIC = 61.88

{ A, F, H, I, J, L, P }
AIC = 59.40

{ A, F, H, I, J, L, P }
AIC = 68.70

... ...X X X XX X

{ A, F, H, I, J, L, P }
AIC = 63.23

{ A, F, H, I, J, L, P }
AIC = 61.50

{ A, F, H, I, J, L, P }
AIC = 66.71

...XXX X XX XX X

removed variable
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Variable Backward Selection
full model:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.222e+02 1.789e+01 6.831 2.54e-08 ***
Population 1.880e-04 6.474e-05 2.905 0.00584 **
Income -1.592e-04 5.725e-04 -0.278 0.78232
Illiteracy 1.373e+00 8.322e-01 1.650 0.10641
‘Life Exp‘ -1.655e+00 2.562e-01 -6.459 8.68e-08 ***
‘HS Grad‘ 3.234e-02 5.725e-02 0.565 0.57519
Frost -1.288e-02 7.392e-03 -1.743 0.08867 .
Area 5.967e-06 3.801e-06 1.570 0.12391

AIC optimal model by backward selection:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.202e+02 1.718e+01 6.994 1.17e-08 ***
Population 1.780e-04 5.930e-05 3.001 0.00442 **
Illiteracy 1.173e+00 6.801e-01 1.725 0.09161 .
‘Life Exp‘ -1.608e+00 2.324e-01 -6.919 1.50e-08 ***
Frost -1.373e-02 7.080e-03 -1.939 0.05888 .
Area 6.804e-06 2.919e-06 2.331 0.02439 *
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How to do it in R

library(datasets);
library(MASS);
st = as.data.frame(state.x77);

mod.full = lm(Murder ~ ., data=st);
summary(mod.full);

mod.opt = stepAIC(mod.full);
summary(mod.opt);
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Shrinkage

Model selection operates by

• fitting models for a set of models with varying complexity
and then picking the “best one” ex post,

• omitting some parameters completely (i.e., forcing them to be 0)

shrinkage operates by

• including a penalty term directly in the model equation and

• favoring small parameter values in general.
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Machine Learning / 5. Model Selection

Shrinkage / Ridge Regression [Hoe62]

Ridge regression: minimize

RSSλ(β̂) =RSS(β̂) + λ

p∑
j=1

β̂2
j

=〈y −Xβ̂,y −Xβ̂〉 + λ

p∑
j=1

β̂2
j

⇒ β̂ =(XTX + λI)−1XTy

with λ ≥ 0 a complexity parameter / regularization parameter.

As

• solutions of ridge regression are not equivariant under scaling of
the predictors, and as

• it does not make sense to include a constraint for the parameter of
the intercept

data is normalized before ridge regression:

x′i,j :=
xi,j − x̄.,j
σ̂(x.,j)
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Shrinkage / Ridge Regression (2/3)

Ridge regression is a combination of
n∑
i=1

(yi − ŷi)2

︸ ︷︷ ︸+λ

p∑
j=1

β2
j︸ ︷︷ ︸

= L2 loss +λ L2 regularization
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Machine Learning / 5. Model Selection

Shrinkage / Ridge Regression (3/3) / Tikhonov Regularization (1/2)

L2 regularization / Tikhonov regularization can be derived for
linear regression as follows:
Treat the true parameters θj as random variables Θj with the following
distribution (prior):

Θj ∼ N (0, σΘ), j = 1, . . . , p

Then the joint likelihood of the data and the parameters is

LD,Θ(θ) :=

(
n∏
i=1

p(xi, yi | θ)

)
p∏
j=1

p(Θj = θj)

and the conditional joint log likelihood of the data and the parameters
accordingly

logLcond
D,Θ (θ) :=

(
n∑
i=1

log p(yi |xi, θ)

)
+

p∑
j=1

log p(Θj = θj)

and

log p(Θj = θj) = log
1√

2πσΘ

e
− θ2j

2σ2
Θ = − log(

√
2πσΘ)− θ2

j

2σ2
Θ
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Shrinkage / Ridge Regression (3/3) / Tikhonov Regularization (2/2)

Dropping the terms that do not depend on θj yields:

logLcond
D,Θ (θ) :=

(
n∑
i=1

log p(yi |xi, θ)

)
+

p∑
j=1

log p(Θj = θj)

∝
(

n∑
i=1

log p(yi |xi, θ)

)
− 1

2σ2
Θ

p∑
j=1

θ2
j

This also gives a semantics to the complexity / regularization
parameter λ:

λ =
1

2σ2
Θ

but σ2
Θ is unknown. (We will see methods to estimate λ later on.)

The parameters θ that maximize the joint likelihood of the data and
the parameters are called Maximum Aposteriori Estimators (MAP
estimators).

Putting a prior on the parameters is called Bayesian approach.
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How to compute ridge regression / Example

Fit

Y =β0 + β1X1 + β2X2 + ε

to the data:
x1 x2 y
1 2 3
2 3 2
4 1 7
5 5 1

X =


1 1 2
1 2 3
1 4 1
1 5 5

 , Y =


3
2
7
1

 , I :=

 1 0 0
0 1 0
0 0 1

 ,

XTX =

 4 12 11
12 46 37
11 37 39

 , XTX + 5I =

 9 12 11
12 51 37
11 37 44

 , XTY =

 13
40
24


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Machine Learning

1. The Regression Problem

2. Simple Linear Regression

3. Multiple Regression

4. Variable Interactions

5. Model Selection

6. Case Weights
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Machine Learning / 6. Case Weights

Cases of Different Importance

Sometimes different cases are of different importance, e.g., if
their measurements are of different accurracy or reliability.

Example: assume the left most point is
known to be measured with lower
reliability.

Thus, the model does not need to fit to
this point equally as well as it needs to
do to the other points.

I.e., residuals of this point should get
lower weight than the others.
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Case Weights

In such situations, each case (xi, yi) is assigned a case weight
wi ≥ 0:

• the higher the weight, the more important the case.

• cases with weight 0 should be treated as if they have been
discarded from the data set.

Case weights can be managed as an additional pseudo-variable
w in applications.
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Machine Learning / 6. Case Weights

Weighted Least Squares Estimates

Formally, one tries to minimize the weighted residual sum of
squares

n∑
i=1

wi(yi − ŷi)2 =||W1
2(y − ŷ)||2

with

W :=


w1 0

w2
. . .

0 wn


The same argument as for the unweighted case results in the
weighted least squares estimates

XTWXβ̂ = XTWy
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Weighted Least Squares Estimates / Example

Do downweight the left most point, we assign case weights as
follows:

w x y
1 5.65 3.54
1 3.37 1.75
1 1.97 0.04
1 3.70 4.42
0.1 0.15 3.85
1 8.14 8.75
1 7.42 8.11
1 6.59 5.64
1 1.77 0.18
1 7.74 8.30
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Summary

• For regression, linear models of type Y = 〈X, β〉 + ε can be used to
predict a quantitative Y based on several (quantitative) X.

• The ordinary least squares estimates (OLS) are the parameters with
minimal residual sum of squares (RSS). They coincide with the
maximum likelihood estimates (MLE).

• OLS estimates can be computed by solving the system of linear
equations XTXβ̂ = XTY.

• The variance of the OLS estimates can be computed likewise
((XTX)−1σ̂2).

• For deciding about inclusion of predictors as well as of powers and
interactions of predictors in a model, model selection measures
(AIC, BIC) and different search strategies such as forward and
backward search are available.
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