
Machine Learning

Machine Learning

3. Nearest Neighbor and Kernel Methods

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Business Economics and Information Systems

& Institute for Computer Science
University of Hildesheim

http://www.ismll.uni-hildesheim.de

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 1/48

Machine Learning

1. Distance Measures

2. k-Nearest Neighbor Method

3. Parzen Windows

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 1/48

Machine Learning / 1. Distance Measures

Motivation

So far, regression and classification methods covered in the
lecture can be used for

• numerical variables,

• binary variables (re-interpreted as numerical), and

• nominal variables (coded as set of binary indicator variables).

Often one is also interested in more complex variables such as

• set-valued variables,

• sequence-valued variables (e.g., strings),

• . . .

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 1/48

Machine Learning / 1. Distance Measures

Motivation

There are two kinds of approaches to deal with such variables:

feature extraction:
try to derive binary or numerical variables,
then use standard methods on the feature vectors.

kernel methods:
try to establish a distance measure between two variables,
then use methods that use only distances between objects
(but no feature vectors).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 2/48

Machine Learning / 1. Distance Measures

Distance measures

Let d be a distance measure (also called metric) on a set X ,
i.e.,

d : X ×X → R+
0

with

1. d is positiv definite: d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y

2. d is symmetric: d(x, y) = d(y, x)

3. d is subadditive: d(x, z) ≤ d(x, y) + d(y, z)
(triangle inequality)

(for all x, y, z ∈ X .)

Example: Euclidean metric on X := Rn:

d(x, y) := (

n∑
i=1

(xi − yi)2)1
2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 3/48

Machine Learning / 1. Distance Measures

Minkowski Metric / Lp metric

Minkowski Metric / Lp metric on X := Rn:

d(x, y) := (

n∑
i=1

|xi − yi|p)
1
p

with p ∈ R, p ≥ 1.

p = 1 (taxicab distance; Manhattan distance):

d(x, y) :=

n∑
i=1

|xi − yi|

p = 2 (euclidean distance):

d(x, y) := (

n∑
i=1

(xi − yi)2)1
2

p =∞ (maximum distance; Chebyshev distance):

d(x, y) :=
n

max
i=1
|xi − yi|

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 4/48

Machine Learning / 1. Distance Measures

Minkowski Metric / Lp metric / Example

Example:

x :=

 1
3
4

 , y :=

 2
4
1

dL1(x, y) =|1− 2| + |3− 4| + |4− 1| = 1 + 1 + 3 = 5

dL2(x, y) =
√

(1− 2)2 + (3− 4)2 + (4− 1)2 =
√

1 + 1 + 9 =
√

11 ≈ 3.32

dL∞(x, y) = max{|1− 2|, |3− 4|, |4− 1|} = max{1, 1, 3} = 3

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 5/48

Machine Learning / 1. Distance Measures

Similarity measures

Instead of a distance measure sometimes similarity measures
are used, i.e.,

sim : X ×X → R+
0

with

• sim is symmetric: sim(x, y) = sim(y, x).

Some similarity measures have stronger properties:

• sim is discerning: sim(x, y) ≤ 1 and sim(x, y) = 1⇔ x = y

• sim(x, z) ≥ sim(x, y) + sim(y, z)− 1.

Some similarity measures have values in [−1, 1] or even R
where negative values denote “dissimilarity”.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 6/48

Machine Learning / 1. Distance Measures

Distance vs. Similarity measures

A discerning similarity measure can be turned into a semi-metric
(pos. def. & symmetric, but not necessarily subadditive) via

d(x, y) := 1− sim(x, y)

In the same way, a metric can be turned into a discerning
similarity measure
(with values eventually in]−∞, 1]).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 7/48

Machine Learning / 1. Distance Measures

Cosine Similarity

The angle between two vectors in Rn is used as similarity
measure: cosine similarity:

sim(x, y) := arccos(
〈x, y〉
||x||2 ||y||2)

Example:

x :=

 1
3
4

 , y :=

 2
4
1

sim(x, y) = arccos
1 · 2 + 3 · 4 + 4 · 1√

1 + 9 + 16
√

4 + 16 + 1
= arccos

18√
26
√

21
≈ arccos 0.77 ≈ 0.69

cosine similarity is not discerning as vectors with the same
direction but of arbitrary length have angle 0 and thus similarity 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 8/48

Machine Learning / 1. Distance Measures

Distances for Nominal Variables

For binary variables there is only one reasonable distance
measure:

d(x, y) := 1− I(x = y) with I(x = y) :=

{
1 if x = y
0 otherwise

This coincides with the L∞ distance for the indicator/dummy
variables.

The same distance measure is useful for nominal variables with
more than two possible values.

For hierarchical variables, i.e., a nominal variable with levels
arranged in a hierarchy, there are more advanced distance
measures (not covered here).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 9/48

Machine Learning / 1. Distance Measures

Distances for Set-valued Variables

For set-valued variables (which values are subsets of a set A) the
Hamming distance often is used:

d(x, y) := |(x \ y) ∪ (y \ x)| = |{a ∈ A | I(a ∈ x) 6= I(a ∈ y)}|
(the number of elements contained in only one of the two sets).

Example:

d({a, e, p, l}, {a, b, n}) = 5, d({a, e, p, l}, {a, e, g, n, o, r}) = 6

Also often used is the similarity measure Jaccard coefficient:

sim(x, y) :=
|x ∩ y|
|x ∪ y|

Example:

sim({a, e, p, l}, {a, b, n}) =
1

6
, sim({a, e, p, l}, {a, e, g, n, o, r}) =

2

8

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 10/48

Machine Learning / 1. Distance Measures

Distances for Strings / Sequences

edit distance / Levenshtein distance:

d(x, y) := minimal number of deletions, insertions or substitions to transform x in y

Examples:

d(man,men) =1

d(house, spouse) =2

d(order,express order) =8

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 11/48

Machine Learning / 1. Distance Measures

Distances for Strings / Sequences

The edit distance is computed recursively. With

x1:i := (xi′)i′=1,...,i = (x1, x2, . . . , xi), i ∈ N

we compute the number of operations to transform x1:i into y1:j as

c(x1:i, y1:j) := min{ c(x1:i−1, y1:j) + 1, // delete xi, x1:i−1 y1:j

c(x1:i, y1:j−1) + 1, // x1:i y1:j−1, insert yj
c(x1:i−1, y1:j−1) + I(xi 6= yj)} // x1:i−1 y1:j−1, substitute yj for xi

starting from

c(x1:0, y1:j) = c(∅, y1:j) := j // insert y1, . . . , yj
c(x1:i, y1:0) = c(x1:i, ∅) := i // delete x1, . . . , xi

Such a recursive computing scheme is called dynamic
programming.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 12/48

Machine Learning / 1. Distance Measures

Distances for Strings / Sequences

Example: compute d(excused,exhausted).

d 9
e 8
t 7
s 6
u 5
a 4
h 3
x 2
e 1

0 1 2 3 4 5 6 7
y[j]/x[i] e x c u s e d

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 13/48

Machine Learning / 1. Distance Measures

Distances for Strings / Sequences

Example: compute d(excused,exhausted).

d 9 8 7 7 6 5 4 3
e 8 7 6 6 5 4 3 4
t 7 6 5 5 4 3 3 4
s 6 5 4 4 3 2 3 4
u 5 4 3 3 2 3 4 5
a 4 3 2 2 2 3 4 5
h 3 2 1 1 2 3 4 5
x 2 1 0 1 2 3 4 5
e 1 0 1 2 3 4 5 6

0 1 2 3 4 5 6 7
y[j]/x[i] e x c u s e d

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 13/48

Machine Learning / 1. Distance Measures

Distances for Strings / Sequences

Example: compute d(excused,exhausted).

d 9 8 7 7 6 5 4 3
e 8 7 6 6 5 4 3 4
t 7 6 5 5 4 3 3 4
s 6 5 4 4 3 2 3 4
u 5 4 3 3 2 3 4 5
a 4 3 2 2 2 3 4 5
h 3 2 1 1 2 3 4 5
x 2 1 0 1 2 3 4 5
e 1 0 1 2 3 4 5 6

0 1 2 3 4 5 6 7
y[j]/x[i] e x c u s e d

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 13/48

Machine Learning

1. Distance Measures

2. k-Nearest Neighbor Method

3. Parzen Windows

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 14/48

Machine Learning / 2. k-Nearest Neighbor Method

Neighborhoods

Let d be a distance measure.
For a dataset

D ⊆ X × Y
and x ∈ X let

D = {(x1, y1), (x2, y2), . . . , (xn, yn)}
be an enumeration with increasing distance to x, i.e.,
d(x, xi) ≤ d(x, xi+1) (ties broken arbitrarily).
The first k ∈ N points of such an enumeration, i.e.,

Nk(x) := {(x1, y1), (x2, y2), . . . (xk, yk)}
are called a k-neighborhood of x (in D).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 14/48

Machine Learning / 2. k-Nearest Neighbor Method

Nearest Neighbor Regression

The k-nearest neighbor regressor

Ŷ (x) :=
1

k

∑
(x′,y′)∈Nk(x)

y′

The k-nearest neighbor classifier

p̂(Y = y |x) :=
1

k

∑
(x′,y′)∈Nk(x)

I(y = y′)

and then predict the class with maximal predicted probability

Ŷ (x) := argmaxy∈Y p̂(Y = y |x)

i.e., the majority class w.r.t. the classes of the neighbors.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 15/48

Machine Learning / 2. k-Nearest Neighbor Method

Decision Boundaries

For 1-nearest neighbor, the predictor space is partitioned in
regions of points that are closest to a given data point:

regionD(x1), regionD(x2), . . . , regionD(xn)

with

regionD(x) := {x′ ∈ X | d(x′, x) ≤ d(x′, x′′) ∀(x′′, y′′) ∈ D}

These regions often are called cells, the whole partition a
Voronoi tesselation.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 16/48

Machine Learning / 2. k-Nearest Neighbor Method

Decision Boundaries

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 17/48

Machine Learning / 2. k-Nearest Neighbor Method

Decision Boundaries

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 17/48

Machine Learning / 2. k-Nearest Neighbor Method

Expected error

To assess the quality of a classifier ŷ(x), one can use the
expected error, i.e., the probability to predict the wrong class if
cases are picked at random:

p(error) = E(I(y 6= ŷ)) =

∫
X
I(y 6= ŷ)dx =

∫
X

(1−p(Y = ŷ(x) |x))p(x)dx

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 18/48

Machine Learning / 2. k-Nearest Neighbor Method

Bayes Classifier

The minimal expected error can be achieved, if for each point x
the class y with the largest conditional probability p(y |x) is
predicted, i.e.,

y∗(x) := argmaxy∈Y p(y |x)

This classifier is called Bayes classifier y∗,
its error Bayes error p∗(error).

The Bayes classifier assumes the ideal case that the conditional
class probabilities p(Y |X) are known.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 19/48

Machine Learning / 2. k-Nearest Neighbor Method

Bayes error

In the case of a deterministic dependency of y on x,
i.e., for each x there is an y with p(y |x) = 1,
the Bayes error is

p∗(error) = 0

In the case that for each x there is a uniform distribution of the
classes y,
i.e., for k classes p(y |x) = 1/k for all y,
the Bayes error is maximal

p∗(error) =
k − 1

k

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 20/48

Machine Learning / 2. k-Nearest Neighbor Method

Error rate for nearest-neighbor rule (Cover and Hart 1967)

If we have unlimited data, the error rate of the nearest neighbor
classifier is bound as follows:

p∗(error) ≤ lim
n→∞ pn(error) ≤ p∗(error)(2− k

k − 1
p∗(error))

where pn(error) denotes the error rate for the nearest neighbor
classifier in a sample of n points.

Roughly spoken “at least half of the classification information in
an infite data set resides in the nearest neighbor” (Duda et al.
2001).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 21/48

Machine Learning / 2. k-Nearest Neighbor Method

Error rate for nearest-neighbor rule / proof

A strict proof of the error bounds is not so easy. A more informal
argument is as follows (cf. Duda et al. 2001, p. 179–182):
For x0 denote by x′n the nearest neighbor of x0 in a sample of n
points.

pn(error|x0, x
′
n) = 1−

∑
y

p(y0 = y, y′n = y|x0, x
′
n) = 1−

∑
y

p(y0 = y|x0)p(y
′
n = y|x′n)

lim
n→∞ pn(error|x0) = lim

n→∞

∫
pn(error|x0, x

′
n)p(x

′
n|x0)dx

′
n

= lim
n→∞

∫
(1−

∑
y

p(y0 = y|x0)p(y
′
n = y|x′n))p(x′n|x0)dx

′
n

=

∫
(1−

∑
y

p(y0 = y|x0)p(y
′
n = y|x′n))δ(x′n − x0)dx

′
n

=1−
∑
y

p(y0 = y|x0)
2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 22/48

Machine Learning / 2. k-Nearest Neighbor Method

Error rate for nearest-neighbor rule / proof

Now let y∗(x) := argmaxy p(y|x) the Bayes classifier:∑
y

p(y0 = y|x0)
2 =p(y0 = y∗(x0)|x0)

2 +
∑

y 6=y∗(x0)

p(y0 = y|x0)
2

≥(1− p∗(error|x0))
2 +

1

k − 1
p∗(error|x0)

2

=1− 2p∗(error|x0) +
k

k − 1
p∗(error|x0)

2

because the sum is minimal if all p(y0 = y|x0) are equal, and thus

p(y0 = y|x0) =
1

k − 1
(1− p(y0 = y∗(x0)|x0)) =

1

k − 1
p∗(error|x0)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 23/48

Machine Learning / 2. k-Nearest Neighbor Method

Error rate for nearest-neighbor rule / proof

Then we continue

lim
n→∞ pn(error|x0) = 1−

∑
y

p(y0 = y|x0)
2 ≤ 2p∗(error|x0)− k

k − 1
p∗(error|x0)

2

Now

lim
n→∞ pn(error) = lim

n→∞

∫
pn(error|x0)p(x0)dx0

≤
∫

(2p∗(error|x0)− k

k − 1
p∗(error|x0)

2)p(x0)dx0

=2p∗(error)− k

k − 1

∫
p∗(error|x0)

2p(x0)dx0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 24/48

Machine Learning / 2. k-Nearest Neighbor Method

Error rate for nearest-neighbor rule / proof

And finally as

V (p∗(error)) =

∫
(p∗(error|x0)− p∗(error))2p(x0)dx0

=

∫
p∗(error|x0)

2p(x0)dx0 − p∗(error)2 ≥ 0

⇒
∫
p∗(error|x0)

2p(x0)dx0 ≥p∗(error)2

we get

lim
n→∞ pn(error) ≤2p∗(error)− k

k − 1

∫
p∗(error|x0)

2p(x0)dx0

≤2p∗(error)− k

k − 1
p∗(error)2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 25/48

Machine Learning / 2. k-Nearest Neighbor Method

Complexity of k-Nearest Neighbor Classifier

The k-Nearest Neighbor classifier does not need any learning
algorithm as it just stores all the training examples.

On the other hand, predicting using a k-nearest neighbor
classifier is slow:

• To predict the class of a new point x, the distance d(x, xi) from
x to each of the n training examples (x1, y1), . . . , (xn, yn) has to
be computed.

• If the predictor space is X := Rp, for one such computation we
need O(p) operations.

• We then keep track of the k points with the smallest distance.

So in total one needs O(npk) operations.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 26/48

Machine Learning / 2. k-Nearest Neighbor Method

Accelerations: partial distances

In practice, nearest neighbor classifiers often can be accelerated
by several methods.
Partial distances:
Compute the distance to each training point x′ only partially, e.g.,

dr(x, x
′) := (

r∑
i=1

(xi − x′i)2)
1
2 , r ≤ p

As dr is non-decreasing in r, once dr(x, x′) exceeds the k-th
smallest distance computed so far, the training point x′ can be
dropped.

This is a heuristic:
it may accelerate computations, but it also may slow it down
(as there are additional comparisions of the partial distances with
the k smallest distance).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 27/48

Machine Learning / 2. k-Nearest Neighbor Method

Accelerations: search trees

Search trees:
Do not compute the distance of a new point x to all training
examples, but

1. organize the training examples as a tree (or a DAG) with
• sets of training examples at the leaves and

• a prototype (e.g., the mean of the training examples at all
descendent leaves) at each intermediate node.

2. starting at the root, recursively
• compute the distance to all children of the actual node and

• branch to the child with the smallest distance,

3. compute distances only to training examples in the leaf finally
found.

This is an approximation.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 28/48

Machine Learning / 2. k-Nearest Neighbor Method

Accelerations: search trees

x2

x1

x2

x1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 29/48

Machine Learning / 2. k-Nearest Neighbor Method

Accelerations: search trees

x2

x1

x2

x1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 29/48

Machine Learning / 2. k-Nearest Neighbor Method

Accelerations: editing

Editing / Pruning / Condensing:
shrink the set of training data points,
e.g., select a subset of the original training data points.

Example: remove all points with cells that are surrounded by cells
of points of the same class.

Xedited := {(x, y) ∈ X | ∃(x′, y′) ∈ X,R(x′) ∩R(x) 6= ∅ and y′ 6= y}

This basic editing algorithm

• retains the decision function,

• has complexity O(d3nb
d
2c log n)

(with bxc := max{n ∈ N |n ≤ x}; Duda et al. 2001, p. 186).

See e.g., Ottmann/Widmayer 2002, p. 501–515 for computing
Voronoi diagrams in two dimensions.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 30/48

Machine Learning / 2. k-Nearest Neighbor Method

Accelerations: editing

1 knn-edit-training-data(training data X) :
2 compute Voronoi cells R(x) ∀(x, y) ∈ X,
3 esp. Voronoi neighbors N(x) := {(x′, y′) ∈ X ‖R(x′) ∩ R(x) 6= ∅}
4 E := ∅
5 for (x, y) ∈ X do
6 hasNeighborOfOtherClass := false
7 for (x′, y′) ∈ N(x) do
8 if y 6= y′

9 hasNeighborOfOtherClass := true
10 fi
11 od
12 if not hasNeighborOfOtherClass
13 E := E ∪ {(x, y)}
14 fi
15 od
16 for (x, y) ∈ E do
17 X := X \ {(x, y)}
18 od

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 31/48

Machine Learning / 2. k-Nearest Neighbor Method

Accelerations: editing

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal.Length

S
ep

al
.W

id
th

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 32/48

Machine Learning / 2. k-Nearest Neighbor Method

Accelerations: editing

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal.Length

S
ep

al
.W

id
th

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 33/48

Machine Learning

1. Distance Measures

2. k-Nearest Neighbor Method

3. Parzen Windows

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 34/48

Machine Learning / 3. Parzen Windows

Example

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

x

y

Figure 8: Points generated by the model y = sin(4x) +N (0, 1/3) with
x ∼ unif(0, 1).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 34/48

Machine Learning / 3. Parzen Windows

Example / k-Nearest-Neighbor

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

x

y

Figure 9: Points generated by the model y = sin(4x) +N (0, 1/3) with
x ∼ unif(0, 1). 30-nearest-neighbor regressor.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 34/48

Machine Learning / 3. Parzen Windows

k-Nearest Neighbor is locally constant

k-nearest neighbor models are

• based on discrete decisions if a point is a k-nearest
neighbor or not,

• in effect, locally constant,

• and thus not continuous.

Discrete decisions can be captured by binary window
functions,

i.e.,

K(x, x0) :=

{
1, if (x, y) ∈ Nk(x0)
0, otherwise

ŷ(x0) =

∑
(x,y)∈XK(x, x0)y∑
(x,y)∈XK(x, x0)

instead of

ŷ(x0) =

∑
(x,y)∈Nk(x0)

y

k

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 35/48

Machine Learning / 3. Parzen Windows

k-Nearest Neighbor is locally constant

In k-nearest neighbor the size of the window varies from
point to point: it depends on the density of the data:

in dense parts
the effective window size is small,

in sparse parts
the effective window size is large.

Alternatively, it is also possible to set the size of the
windows to a constant λ, e.g.,

Kλ(x, x0) :=

{
1, if |x− x0| ≤ λ
0, otherwise

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 36/48

Machine Learning / 3. Parzen Windows

Kernel Regression

Instead of discrete windows, one typically uses
continuous windows, i.e., continuous weights

K(x, x0)

that reflect the distance of a training point x to a
prediction point x0, called kernel or Parzen window,
e.g.,

K(x, x0) :=

{
1− |x−x0|

λ , if |x− x0| ≤ λ
0, otherwise

Instead of a binary neighbor/not-neighbor decision, a
continuous kernel captures a “degree of neighborship”.

Kernels can be used for prediction via kernel
regression, esp. Nadaraya-Watson kernel-weighted
average:

ŷ(x0) :=

∑
(x,y)∈XK(x, x0)y∑
(x,y)∈XK(x, x0)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 37/48

Machine Learning / 3. Parzen Windows

Epanechnikov Kernel

Kernels are similarity measures:
the closer two points, the larger the kernel value.

Epanechnikov kernel

Kλ(x, y) :=D

(|x− y|
λ

)
with

D(t) :=

{
3
4(1− t2), t < 1
0, otherwise

The constant λ ∈ R+ is called bandwidth.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 38/48

Machine Learning / 3. Parzen Windows

More kernels

Tri-cube kernel

D(t) :=

{
(1− t3)3, t < 1
0, otherwise

Gaussian kernel

D(t) :=
1√
2π
e−

1
2t

2

The Epanechnikov and Tri-cube kernel have compact
support [x0 − λ, x0 + λ].

The Gaussian kernel has noncompact support, λ acts as
standard deviation.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 39/48

Machine Learning / 3. Parzen Windows

Kernels

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

x

K
(x

,0
)

Tri−cube
Epanechnikov
Gaussian

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 40/48

Machine Learning / 3. Parzen Windows

Example / Epanechnikov Kernel, λ = 0.2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

x

y

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 41/48

Machine Learning / 3. Parzen Windows

Choosing the Bandwidth

If the bandwidth λ is large
larger variance – as averaged over fewer points
smaller bias – as closer instances are used
⇒ risks to be too bumpy

If the bandwidth λ is small
smaller variance – as averaged over more points
larger bias – as instances further apart are used
⇒ risks to be too rigid / over-smoothed

The bandwidth λ is a parameter (sometimes called a
hyperparameter) of the model that needs to be
optimized / estimated by data.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 42/48

Machine Learning / 3. Parzen Windows

Example / Epanechnikov Kernel, various bandwidths

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

x

y

lambda=1
lambda=0.8
lambda=0.6
lambda=0.4
lambda=0.2
lambda=0.1
lambda=0.05

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 43/48

Machine Learning / 3. Parzen Windows

Space-averaged Estimates

The probability that an instance x is within a given region
R ⊆ X :

p(x ∈ R) =

∫
R

p(x)dx

For a sample
x1, x2, . . . , xn ∼ p

it is
(xi ∈ P) ∼ binom(p(x ∈ R))

Let k be the number of xi that are in region R:

k := |{xi |xi ∈ R, i = 1, . . . , n}|
then we can estimate

p̂(x ∈ R) :=
k

n

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 44/48

Machine Learning / 3. Parzen Windows

Space-averaged Estimates

If p is continuous and R is very small, p(x) is almost
constant in R:

p(x ∈ R) =

∫
R

p(x)dx ≈ p(x) vol(R), for any x ∈ R

where vol(R) denotes the volume of region R.

p(x) ≈ k/n

vol(R)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 45/48

Machine Learning / 3. Parzen Windows

Space-averaged Estimates

For unlimited data, i.e., n→∞, we can estimate p more
and more accurately:

p̂n(x) =
kn/n

Vn
, with Vn := vol(Rn).

It must be assured that
Vn → 0

kn →∞
kn/n→ 0

There are two methods to accomplish this:

1. nearest-neighbor method:
kn :=

√
n, Vn is set adaptive to the data

2. Parzen windows:

Vn :=
1√
n
, kn is set adaptive to the data

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 46/48

Machine Learning / 3. Parzen Windows

Space-averaged Estimates

Vn = 1/
√
n

kn =
√
n

n = 1

●

●

n = 4

●

●

●

●

●

●

●

●

n = 9

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

n = 16

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

n = 100

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 47/48

Machine Learning / 3. Parzen Windows

Summary
• Simple classification and regression models can be built by

– averaging over target values (regression)

– counting the occurrences of the target class (classification)
of training instances close by (measured in some distance measure).

• If always a fixed number of nearest points is taken into account,
⇒ the model is called nearest neighbor,
if points are weighted with some similarity measure

(called kernel or Parzen window),
⇒ the model is called kernel regression and kernel classification.

• There are no learning tasks for these models, as simply all training
instances are stored (“memory-based methods”).

• Therefore, to compute predictions is more costly than for say linear
models. — There are several acceleration techniques (partial
distances, search trees, editing).

• The error rate of the 1-nearest-neighbor classifier is bound by twice
the Bayes error rate.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2009/2010 48/48

