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Motivation & 00 ¥

So far, regression and classification methods covered in the
lecture can be used for

e numerical variables,

e binary variables (re-interpreted as numerical), and

e nominal variables (coded as set of binary indicator variables).
Often one is also interested in more complex variables such as
e set-valued variables,

e sequence-valued variables (e.g., strings),
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Motivation 5 2000

There are two kinds of approaches to deal with such variables:

feature extraction:
try to derive binary or numerical variables,
then use standard methods on the feature vectors.

kernel methods:
try to establish a distance measure between two variables,

then use methods that use only distances between objects
(but no feature vectors).
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Distance measures % 200

Let d be a distance measure (also called metric) on a set A,

l.e.,
d:XXX—ﬂRBL

with
1. d is positiv definite: d(z,y) > 0and d(z,y) =0 x =y

2. d is symmetric: d(z,y) = d(y, z)

3. d is subadditive: d(z,2) < d(z,y) + d(y, 2)
(triangle inequality)

(forall x,y,z € X.)

Example: Euclidean metric on X := R":

n

d(x,y) = (O (2 — y)*)?

1=1
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Minkowski Metric / L, metric d&
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Minkowski Metric / L, metric on X := R":

n

d(x,y) = (O Ja; — il

1=1

withp e R,p > 1.

p = 1 (taxicab distance; Manhattan distance):
d(z,y) = Z |z — yil
i=1

p = 2 (euclidean distance):

n

d(x,y) = (O (2 — y)*)?

=1
p = oo (maximum distance; Chebyshev distance):

o) = el —
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Minkowski Metric / L,, metric / Example

Example:
1 2
r=\|3], y=14
4 1

dr,(z,y) =1 =2|+[3—4|+]4—-1=1+14+3=5

d,(z,y) =/(1 =22+ (3—42+ (4 —-12=vV14+1+9=11~3.32

dLOO<33,y> :max{\l - 2‘7 ’3 o 4‘7 |4 o 1|} = maX{la 173} =3
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Similarity measures

Instead of a distance measure sometimes similarity measures

are used, i.e.,
sim: X x X — RBL

with
e sim is symmetric: sim(z,y) = sim(y, x).

Some similarity measures have stronger properties:
e sim is discerning: sim(z,y) < landsim(z,y) =1 x=y

e Sim(z, z) > sim(z,y) + sim(y, z) — 1.

Some similarity measures have values in [—1, 1] or even R
where negative values denote “dissimilarity”.
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Distance vs. Similarity measures

A discerning similarity measure can be turned into a semi-metric
(pos. def. & symmetric, but not necessarily subadditive) via

d(z,y) :=1—sim(z,y)

In the same way, a metric can be turned into a discerning
similarity measure
(with values eventually in | — oo, 1]).
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Cosine Similarity e

The angle between two vectors in R" is used as similarity
measure: cosine similarity:

| (z,y)
sim(z,y) = arccos(m
Example:
1 2
A 1
1-24+3-4+4-1 =

sim(x, y) = arccos = arccos ————
(@.9) VItO0T VIt I0+1 NGl
~ arccos 0.77 ~ 0.69

cosine similarity is not discerning as vectors with the same
direction but of arbitrary length have angle 0 and thus similarity 1.
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Distances for Nominal Variables % e

For binary variables there is only one reasonable distance
measure:

, 1 ifz=
d(z,y):=1-I(z=y) withI(z=y):= { 0 othervgise

This coincides with the L., distance for the indicator/dummy
variables.

The same distance measure is useful for nominal variables with
more than two possible values.

For hierarchical variables, i.e., a nominal variable with levels
arranged in a hierarchy, there are more advanced distance
measures (not covered here).
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Distances for Set-valued Variables Ly

For set-valued variables (which values are subsets of a set A) the
Hamming distance often is used:

d(z,y) = |(z\y) U (y\z)| = {a € Al I(a € x) # I(a € y)}|
(the number of elements contained in only one of the two sets).

Example:
d({a‘7 €7p7 l}) {a7 b7 n}) = 57 d({a’7 €7p7 l}) {a‘7 67 g7 n? 07 T}) = 6

Also often used is the similarity measure Jaccard coefficient:
_ |z nyl

sim(z,y) = Uy
Example:

, 1 : 2
Slm({a7 €, D, l}) {CL, b7 TL}) = 67 S|m({CL, €D l}7 {CL, ¢ 9,1, 0, T}) - é
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Distances for Strings / Sequences % 200

edit distance / Levenshtein distance:
d(x,y) := minimal number of deletions, insertions or substitions to transform x in y

Examples:
d(man, men) =1
d(house, spouse) =2

d(order, express order) =8

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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The edit distance is computed recursively. With
X1 = <xi/)i/:1,,.,,i - (xla Xy ... 7332')7 (AS N
we compute the number of operations to transform z;.; into y;.; as

C(Iliia yl:j) = mm{ C(mlzz‘—l, yl;j) + 1, // delete Tiy T1:4—1 ~ Y1y
C(xlzz'a yl:j—l) + 1, // T1g ~ Y1:j—15 insert Yj
C(‘/Elii—]J ?Jl:j—l) + I(IZ 7& yj)} // T1-1 ~ Y151, substitute Yj for X;

starting from

c(x1.0,y1,5) = c(@,y1,;) == j /linsertyy, ...y,
c(x1i,y10) = c(x14,0) = i // delete 1, ..., x;

Such a recursive computing scheme is called dynamic
programming.
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Distances for Strings / Sequences

Example: compute d(excused, exhausted).

O 8 T & » <+ 0 Q
=N Wk Ot = 0 O

01234567
yljl/zli]| e x cused
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Example: compute d(excused, exhausted).

d 98776543
e 876654314
t 76554334
S 65443234
U 54332345
a 43222345
h 32112345
x 21012345
e 10123456
01234567
ylil/zli]| ez cu s ed
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Distances for Strings / Sequences

Example: compute d(excused, exhausted).

d 987760543
e 876605434
t 76554334
5 65443234
U 54332345
a 43222345
h 32112345
x 21012345
e 10123456
01234567
ylil/zli]| ez cu s e d
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1. Distance Measures

2. k-Nearest Neighbor Method

3. Parzen Windows
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Neighborhoods ey

Let d be a distance measure.

For a dataset
DCXxY

and x € X let
D - {(xla yl)) <I2, y?)? ceey (xn7 yn)}
be an enumeration with increasing distance to z, i.e.,
d(z,x;) < d(x,z;41) (ties broken arbitrarily).
The first k£ € N points of such an enumeration, i.e.,
Ni(x) = {(z1, 1), (T2, 92), - - - (T, y1)}

are called a k-neighborhood of x (in D).
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The k-nearest neighbor regressor

The k-nearest neighbor classifier
. 1 ,
pY =yla) =7 > Ily=v)
(=) eNk(x)
and then predict the class with maximal predicted probability
Y (z) == argmax,.,, p(Y =y | z)

i.e., the majority class w.r.t. the classes of the neighbors.
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Decision Boundaries 5 200 ©

For 1-nearest neighbor, the predictor space is partitioned in
regions of points that are closest to a given data point:

region(z1), region(zs), . .., region(z,)
with
region,(z) = {2’ € X |d(z',z) < d(',2") V(2" y") € D}

These regions often are called cells, the whole partition a
Voronoi tesselation.
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Decision Boundaries

x2

x1
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Expected error 2008
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To assess the quality of a classifier y(x), one can use the
expected error, i.e., the probability to predict the wrong class if

cases are picked at random:

plerror) = E(I(y # §)) = / Iy # §)da = / (1-p(Y = §(z) | 2)p(x)dz

X X
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Bayes Classifier 5

The minimal expected error can be achieved, if for each point z
the class y with the largest conditional probability p(y | x) is
predicted, i.e.,

y'(x) == argmax,cy p(y | z)

This classifier is called Bayes classifier y*,
its error Bayes error p*(error).

The Bayes classifier assumes the ideal case that the conditional
class probabilities p(Y | X') are known.
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In the case of a deterministic dependency of y on z,
i.e., for each x there is an y with p(y | z) = 1,

the Bayes error is
p*(error) =0

In the case that for each x there is a uniform distribution of the
classes y,
i.e., for k classes p(y | z) = 1/k for all y,
the Bayes error is maximal
E—1

p*(error) = —

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Error rate for nearest-neighbor rule (Cover and Hart 1967)
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If we have unlimited data, the error rate of the nearest neighbor
classifier is bound as follows:

k
p*(error) < lim p,(error) < p*(error)(2 — 1P *(error))

n—oo

where p,(error) denotes the error rate for the nearest neighbor
classifier in a sample of n points.

Roughly spoken “at least half of the classification information in
an infite data set resides in the nearest neighbor” (Duda et al.

2001).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Error rate for nearest-neighbor rule / proof 5

A strict proof of the error bounds is not so easy. A more informal
argument is as follows (cf. Duda et al. 2001, p. 179-182):

For =, denote by z/, the nearest neighbor of z, in a sample of n
points.

pa(error|zy,«)) = 1= > " plyo = v,y = ylzo, 2}) =1 — Zp Yo = ylzo)p(y, = ylar,)

lim p,(error|zy) = lim /pn(el’ror\xo,x;l)p(a:;l\a:o)da:
n—oo n—oo

=l [ (1= 3 plan = vlaolply, = ylal))pla 20,

n—oo

= / (1- Zp yo = ylzo)p(y, = yla),))8 (), — wo)da,
=1— Zp yo = ylao)’

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Error rate for nearest-neighbor rule / proof ® 2008 ¥

Now let y*(z) := argmax, p(y|x) the Bayes classifier:

Zp yo = ylzo)* =plyo = y*(zo)|zo)* + Y pyo = ylxo)’
y#y* (o)

1
>(1 — p*(error|zy))? + mp*(errodxo)2

k
=1 — 2p*(error|zy) + —lp*(error\xo)2

because the sum is minimal if all p(yy = y|z,) are equal, and thus

1 * 1 *
p(yo = ylzo) = m(l — (Yo = y"(wo)|z0)) = r_ 17 (error|x)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Then we continue
k

1— — 2 < op*(error|zy)———p*(error|zg)?

> bl = ylo)® < 2" (errorlag) " —p' error|z)

lim py(error|zg) =
n—oo
)

Now
lim p,(error) = hm /pn(error|x0)p(x0)d:p0

k
< /(Qp*(error\xo) — *(error|z)?)p(xo)dwg

k
=2p*(error) — T / p*(error|zy)*p(xo)dwg

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Error rate for nearest-neighbor rule / proof ® 20ce ¥

And finally as

\\

V (p*(error)) p*(error|zg) — p*(error))*p(zy)dxg

p*(error|zy)*p(xo)dxy — p*(error)* > 0

= / p*(error|zo)*p(zo)dxy >p*(error)?
we get

k
lim p,(error) <2p*(error) — - p*(error|zy)*p(xo)dxg

k
<2p*(error) — mp*(error)2
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Complexity of k-Nearest Neighbor Classifier 2008 >
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The k-Nearest Neighbor classifier does not need any learning
algorithm as it just stores all the training examples.

On the other hand, predicting using a k-nearest neighbor
classifier is slow:

e To predict the class of a new point z, the distance d(z, z;) from
x to each of the n training examples (x1,41), ..., (z,, y,) has to
be computed.

e If the predictor space is X := R?, for one such computation we
need O(p) operations.

e We then keep track of the k£ points with the smallest distance.

So in total one needs O(npk) operations.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Accelerations: partial distances

c_}'\,\\uﬂy

In practice, nearest neighbor classifiers often can be accelerated
by several methods.

Partial distances:
Compute the distance to each training point 2’ only partially, e.g.,

di(z,2') = (3 (@i — a2, 7 <p
1=1
As d, is non-decreasing in r, once d,(z, x’') exceeds the k-th
smallest distance computed so far, the training point 2’ can be
dropped.

This is a heuristic:
it may accelerate computations, but it also may slow it down
(as there are additional comparisions of the partial distances with

the k£ smallest distance).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Search trees:
Do not compute the distance of a new point z to all training

examples, but
1. organize the training examples as a tree (or a DAG) with
e sets of training examples at the leaves and

e a prototype (e.g., the mean of the training examples at all
descendent leaves) at each intermediate node.

2. starting at the root, recursively
e compute the distance to all children of the actual node and

e branch to the child with the smallest distance,

3. compute distances only to training examples in the leaf finally
found.

This is an approximation.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Accelerations: search trees
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Accelerations: editing
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Editing / Pruning / Condensing:
shrink the set of training data points,
e.g., select a subset of the original training data points.

Example: remove all points with cells that are surrounded by cells
of points of the same class.

Xedited == {(z,y) € X |3(2,y') € X,R(z') N R(z) # 0 and y' # y}

This basic editing algorithm
e retains the decision function,

o has complexity O(d®n!%) logn)
(with |z] := max{n € N|n < z}; Duda et al. 2001, p. 186).

See e.g., Ottmann/Widmayer 2002, p. 501-515 for computing
Voronoi diagrams in two dimensions.
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Accelerations: editing 5 a0 ¥

1 knn-edit-training-data(training data X) :

2 compute Voronoi cells R(x) V(z,y) € X,
3 esp. Voronoi neighbors N (z) := {(/,y') € X || R(z') N R(x) # 0}
4 B =0

s for (x,y) € X do

6 hasNeighborOfOtherClass := fase

7 for (2/,y') € N(x) do

8 ify#y

9 hasNeighborOfOtherClass := true
10 fi

11 od

12 if not hasNe ghborOfOtherClass

13 E:=EU{(zr,y)}

14 fi

15 od

16 for (z,y) € E'do

v X:=X\{(z,y)}

18 0d

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Accelerations: editing
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3. Parzen Windows
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Figure 8: Points generated by the model y = sin(4z) + A(0, 1/3) with
x ~ unif(0, 1).
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Figure 9: Points generated by the model y = sin(4z) + N/(0, 1/3) with
x ~ unif(0, 1). 30-nearest-neighbor regressor.
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k-Nearest Neighbor is locally constant 5 a0 ¥

k-nearest neighbor models are

e based on discrete decisions if a point is a k-nearest
neighbor or not,

e in effect, locally constant,

e and thus not continuous.

Discrete decisions can be captured by binary window

functions,
I.e., instead of
i ~ Z €T Ni.(x y
K(SL’ T > — 17 if (Jﬁ,y) € Nk(ﬂ?o) y(x()) — ( >y)2 k(7o)
077 0, otherwise
@(SE ) z(a?,y)EX K('Iv xO)?J
O p—
Z(:L‘,y)EX K(.I', IO)
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Machine Learning / 3. Parzen Windows Sprs
k-Nearest Neighbor is locally constant ® 2008

In k-nearest neighbor the size of the window varies from
point to point: it depends on the density of the data:

in dense parts
the effective window size is small,

in sparse parts
the effective window size is large.

Alternatively, it is also possible to set the size of the
windows to a constant A, e.g.,

L 1, if \x — SL’()| < A
K, 2o) = { 0, otherwise
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Kernel Regression s

2003

G’\'\,‘\\u L

Instead of discrete windows, one typically uses
continuous windows, i.e., continuous weights

K(x,x)
that reflect the distance of a training point = to a
prediction point x, called kernel or Parzen window,
e.g.,

_ == T
K(x,xo):z{l oo e — @] <A

0, otherwise

Instead of a binary neighbor/not-neighbor decision, a
continuous kernel captures a “degree of neighborship”.

Kernels can be used for prediction via kernel
regression, esp. Nadaraya-Watson kernel-weighted
average:
g(l’ ) ) Z(I,y)eX K<ZC7 370)?/
0) -—
Z(m,y)GX K(I‘, .ZL’0>
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Epanechnikov Kernel

Kernels are similarity measures:

the closer two points, the larger the kernel value.

Epanechnikov kernel

Kﬂ@yy:D(ht;M)

with

31-1%), t<1
P 4 )
i) = { 0, otherwise

The constant A\ € R" is called bandwidth.
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Machine Learning / 3. Parzen Windows

More kernels

Tri-cube kernel
=3 t<1
D(t) = { 0, otherwise

Gaussian kernel
1

V2m

1,2
e 2!

D(t) :=

The Epanechnikov and Tri-cube kernel have compact

support [zg — A, zg + A

The Gaussian kernel has noncompact support, A acts as

standard deviation.
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Example / Epanechnikov Kernel, A = 0.2 ey
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Choosing the Bandwidth ey

If the bandwidth ) is large
larger variance — as averaged over fewer points
smaller bias — as closer instances are used
= risks to be too bumpy

If the bandwidth )\ is small
smaller variance — as averaged over more points
larger bias — as instances further apart are used
= risks to be too rigid / over-smoothed

The bandwidth A is a parameter (sometimes called a
hyperparameter) of the model that needs to be
optimized / estimated by data.
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Example / Epanechnikov Kernel, various bandwidths ey
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Space-averaged Estimates 6

The probability that an instance z is within a given region

R C X:
pla € B) = [ plalda
R
For a sample
L1,y ..., Ly~ P
itis

(x; € P) ~ binom(p(x € R))

Let £ be the number of z; that are in region R:
k= |{z;|x;e Ryi=1,...,n}
then we can estimate

k
) R) = —
plr € R) "
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Space-averaged Estimates ® 2002 ¥

If p is continuous and R is very small, p(z) is almost
constant in R:

p(x € R) = /p(x)dx ~ p(x)vol(R), foranyxz e R
R
where vol(R) denotes the volume of region R.

_ k/n
ple) = vol(R)
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Space-averaged Estimates ® 2008 ¥

For unlimited data, i.e., n — oo, we can estimate p more
and more accurately:

. k,/n
pn<$>: V/ )

with V,, := vol(R,,).

It must be assured that
V, — 0
k, — 00
kn/n — 0

There are two methods to accomplish this:

1. nearest-neighbor method:
k, = +/n, V,is set adaptive to the data

2. Parzen windows:

V), =—,
Jn
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k, is set adaptive to the data

Machine Learning / 3. Parzen Windows Ue'%%
Space-averaged Estimates ® 2002 ¥
n=1 n =4 n=9 n = 16 n = 100

Vi=1/v/n |/ . \
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Summary
e Simple classification and regression models can be built by

— averaging over target values (regression)

— counting the occurrences of the target class (classification)
of training instances close by (measured in some distance measure).

e If always a fixed number of nearest points is taken into account,

= the model is called nearest neighbor,
if points are weighted with some similarity measure

(called kernel or Parzen window),
=- the model is called kernel regression and kernel classification.

e There are no learning tasks for these models, as simply all training
instances are stored (“memory-based methods”).

e Therefore, to compute predictions is more costly than for say linear
models. — There are several acceleration techniques (partial
distances, search trees, editing).

e The error rate of the 1-nearest-neighbor classifier is bound by twice

the Bayes error rate.
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