

Machine Learning

3. Nearest Neighbor and Kernel Methods

Steffen Rendle

(Slides mainly by Lars Schmidt-Thieme)

Information Systems and Machine Learning Lab (ISMLL) Institute for Business Economics and Information Systems & Institute for Computer Science University of Hildesheim http://www.ismll.uni-hildesheim.de

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 1/40

1. Distance Measures

2. k-Nearest Neighbor Method

3. Parzen Windows

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 1/40

Motivation

So far, regression and classification methods covered in the lecture can be used for

- numerical variables,
- binary variables (re-interpreted as numerical), and
- nominal variables (coded as set of binary indicator variables).

Often one is also interested in more complex variables such as

- set-valued variables,
- sequence-valued variables (e.g., strings),
- . . .

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Motivation

There are two kinds of approaches to deal with such variables:

feature extraction:

try to derive binary or numerical variables, then use standard methods on the feature vectors.

kernel methods:

try to establish a distance measure between two variables, then use methods that use only distances between objects (but no feature vectors).

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Distance measures

Let d be a **distance measure** (also called **metric**) on a set \mathcal{X} , i.e.,

$$d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+_0$$

with

- 1. *d* is **positiv definite**: $d(x, y) \ge 0$ and $d(x, y) = 0 \Leftrightarrow x = y$
- **2.** *d* is symmetric: d(x, y) = d(y, x)
- 3. d is subadditive: $d(x, z) \le d(x, y) + d(y, z)$ (triangle inequality)

(for all $x, y, z \in \mathcal{X}$.)

Example: **Euclidean metric** on $\mathcal{X} := \mathbb{R}^n$:

$$d(x, y) := \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{\frac{1}{2}}$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Minkowski Metric / L_p metric

Minkowski Metric / L_p metric on $\mathcal{X} := \mathbb{R}^n$:

$$d(x,y) := (\sum_{i=1}^{n} |x_i - y_i|^p)^{\frac{1}{p}}$$

with $p \in \mathbb{R}, p \ge 1$.

p = 1 (taxicab distance; Manhattan distance):

$$d(x,y) := \sum_{i=1}^{n} |x_i - y_i|$$

p = 2 (euclidean distance):

$$d(x,y) := (\sum_{i=1}^{n} (x_i - y_i)^2)^{\frac{1}{2}}$$

 $p = \infty$ (maximum distance; Chebyshev distance):

$$d(x,y) := \max_{i=1}^{n} |x_i - y_i|$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Juversität ,

2003

Example:

$$x := \begin{pmatrix} 1\\3\\4 \end{pmatrix}, \quad y := \begin{pmatrix} 2\\4\\1 \end{pmatrix}$$

$$d_{L_1}(x,y) = |1-2| + |3-4| + |4-1| = 1 + 1 + 3 = 5$$

$$d_{L_2}(x,y) = \sqrt{(1-2)^2 + (3-4)^2 + (4-1)^2} = \sqrt{1+1+9} = \sqrt{11} \approx 3.32$$

$$d_{L_{\infty}}(x,y) = \max\{|1-2|, |3-4|, |4-1|\} = \max\{1,1,3\} = 3$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 5/40

Similarity measures

Instead of a distance measure sometimes **similarity measures** are used, i.e.,

$$\mathsf{sim}:\mathcal{X} imes\mathcal{X} o\mathbb{R}^+_0$$

with

• sim is symmetric: sim(x, y) = sim(y, x).

Some similarity measures have stronger properties:

- sim is discerning: $sim(x, y) \le 1$ and $sim(x, y) = 1 \Leftrightarrow x = y$
- $sim(x, z) \ge sim(x, y) + sim(y, z) 1$.

Some similarity measures have values in [-1,1] or even $\mathbb R$ where negative values denote "dissimilarity".

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Distance vs. Similarity measures

A discerning similarity measure can be turned into a semi-metric (pos. def. & symmetric, but not necessarily subadditive) via

 $d(x,y) := 1 - \sin(x,y)$

In the same way, a metric can be turned into a discerning similarity measure (with values eventually in $] - \infty, 1]$).

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Cosine Similarity

The cosine of the angle between two vectors in \mathbb{R}^n is used as similarity measure: **cosine similarity**:

$$\operatorname{sim}(x,y) := \cos(\theta) = \frac{\langle x,y \rangle}{||x||_2 \, ||y||_2}$$

Example:

$$x := \begin{pmatrix} 1\\3\\4 \end{pmatrix}, \quad y := \begin{pmatrix} 2\\4\\1 \end{pmatrix}$$

$$\sin(x,y) = \frac{1 \cdot 2 + 3 \cdot 4 + 4 \cdot 1}{\sqrt{1 + 9 + 16}\sqrt{4 + 16 + 1}} = \frac{18}{\sqrt{26}\sqrt{21}} \approx 0.77$$

- Vectors with similarity 1 point in the same direction.
- Vectors with similarity -1 point in the opposite direction.
- Vectors with similarity 0 are orthogonal.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Distances for Nominal Variables

For binary variables there is only one reasonable distance measure:

$$d(x,y):=1-I(x=y) \quad \text{with } I(x=y):= \left\{ \begin{array}{ll} 1 \ \text{if } x=y \\ 0 \ \text{otherwise} \end{array} \right.$$

This coincides with the L_{∞} distance for the indicator/dummy variables.

The same distance measure is useful for nominal variables with more than two possible values.

For hierarchical variables, i.e., a nominal variable with levels arranged in a hierarchy, there are more advanced distance measures (not covered here).

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Distances for Set-valued Variables

For set-valued variables (which values are subsets of a set A) the **Hamming distance** often is used:

$$d(x,y) \coloneqq |(x \setminus y) \,\cup\, (y \setminus x)| = |\{a \in A \,|\, I(a \in x) \neq I(a \in y)\}|$$

(the number of elements contained in only one of the two sets).

Example:

$$d(\{a,e,p,l\},\{a,b,n\})=5, \quad d(\{a,e,p,l\},\{a,e,g,n,o,r\})=6$$

Also often used is the similarity measure **Jaccard coefficient**:

$$\operatorname{sim}(x,y) := \frac{|x \cap y|}{|x \cup y|}$$

Example:

$$\sin(\{a,e,p,l\},\{a,b,n\}) = \frac{1}{6}, \quad \sin(\{a,e,p,l\},\{a,e,g,n,o,r\}) = \frac{2}{8}$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 10/40

edit distance / Levenshtein distance:

d(x, y) := minimal number of deletions, insertions or substitions to transform x in y

Examples:

d(man, men) = 1d(house, spouse) = 2

d(order, express order) = 8

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 11/40

The edit distance is computed recursively. With

$$x_{1:i} := (x_{i'})_{i'=1,\dots,i} = (x_1, x_2, \dots, x_i), \quad i \in \mathbb{N}$$

we compute the number of operations to transform $x_{1:i}$ into $y_{1:j}$ as

$$\begin{array}{ll} c(x_{1:i},y_{1:j}) := \min\{ \begin{array}{ll} c(x_{1:i-1},y_{1:j}) + 1, & // \mbox{ delete } x_i, x_{1:i-1} \rightsquigarrow y_{1:j} \\ c(x_{1:i},y_{1:j-1}) + 1, & // \ x_{1:i} \rightsquigarrow y_{1:j-1}, \mbox{ insert } y_j \\ c(x_{1:i-1},y_{1:j-1}) + I(x_i \neq y_j) \} \ // \ x_{1:i-1} \rightsquigarrow y_{1:j-1}, \mbox{ substitute } y_j \mbox{ for } x_i \end{array}$$

starting from

$$c(x_{1:0}, y_{1:j}) = c(\emptyset, y_{1:j}) := j // \text{ insert } y_1, \dots, y_j$$

 $c(x_{1:i}, y_{1:0}) = c(x_{1:i}, \emptyset) := i // \text{ delete } x_1, \dots, x_i$

Such a recursive computing scheme is called **dynamic programming**.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 12/40

Sound States

Example: compute d(excused, exhausted).

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 13/40

Example: compute d(excused, exhausted).

d	9	8	7	7	6	5	4	3
e	8	7	6	6	5	4	3	4
t	$\overline{7}$	6	5	5	4	3	3	4
S	6	5	4	4	3	2	3	4
u	5	4	3	3	2	3	4	5
a	4	3	2	2	2	3	4	5
h	3	2	1	1	2	3	4	5
x	2	1	0	1	2	3	4	5
e	1	0	1	2	3	4	5	6
	0	1	2	3	4	5	6	7
y[j]/x[i]		e	x	С	u	s	e	d

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 13/40

Sound States

Example: compute d(excused, exhausted).

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 13/40

1. Distance Measures

2. *k*-Nearest Neighbor Method

3. Parzen Windows

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 14/40

Let d be a distance measure.

For a dataset

$$D \subseteq X \times Y$$

and $x \in \mathcal{X}$ let

$$D = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$$

be an enumeration with increasing distance to x, i.e., $d(x, x_i) \leq d(x, x_{i+1})$ (ties broken arbitrarily). The first $k \in \mathbb{N}$ points of such an enumeration, i.e.,

$$N_k(x) := \{(x_1, y_1), (x_2, y_2), \dots (x_k, y_k)\}$$

are called a k-neighborhood of x (in D).

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Nearest Neighbor Regression

The k-nearest neighbor regressor

$$\hat{Y}(x) := \frac{1}{k} \sum_{(x',y') \in N_k(x)} y'$$

The k-nearest neighbor classifier

$$\hat{p}(Y = y \mid x) := \frac{1}{k} \sum_{(x', y') \in N_k(x)} I(y = y')$$

and then predict the class with maximal predicted probability

$$\hat{Y}(x) := \operatorname{argmax}_{y \in \mathcal{Y}} \hat{p}(Y = y \,|\, x)$$

i.e., the majority class w.r.t. the classes of the neighbors.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 15/40

Decision Boundaries

For 1-nearest neighbor, the predictor space is partitioned in regions of points that are closest to a given data point:

region_D(x_1), region_D(x_2), ..., region_D(x_n)

with

$$\operatorname{region}_D(x) := \{ x' \in \mathcal{X} \mid d(x', x) \le d(x', x'') \quad \forall (x'', y'') \in D \}$$

These regions often are called **cells**, the whole partition a Voronoi tesselation.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Decision Boundaries

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 17/

Decision Boundaries

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 17/40

Complexity of k-Nearest Neighbor Classifier

The k-Nearest Neighbor classifier does not need any learning algorithm as it just stores all the training examples.

On the other hand, predicting using a k-nearest neighbor classifier is slow:

- To predict the class of a new point x, the distance $d(x, x_i)$ from x to each of the n training examples $(x_1, y_1), \ldots, (x_n, y_n)$ has to be computed.
- If the predictor space is $\mathcal{X} := \mathbb{R}^p$, for one such computation we need O(p) operations.
- We then keep track of the k points with the smallest distance. So in total one needs O(npk) operations.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 18/40

Accelerations: partial distances

Partial distances:

Compute the distance to each training point x' only partially, e.g.,

$$d_r(x, x') := (\sum_{i=1}^r (x_i - x'_i)^2)^{\frac{1}{2}}, \quad r \le p$$

As d_r is non-decreasing in r, once $d_r(x, x')$ exceeds the k-th smallest distance computed so far, the training point x' can be dropped.

This is a heuristic:

it may accelerate computations, but it also may slow it down (as there are additional comparisions of the partial distances with the k smallest distance).

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 19/40

Accelerations: search trees

Search trees:

Do not compute the distance of a new point x to **all** training examples, but

- 1. organize the training examples as a tree (or a DAG) with
 - sets of training examples at the leaves and
 - a prototype (e.g., the mean of the training examples at all descendent leaves) at each intermediate node.
- 2. starting at the root, recursively
 - compute the distance to all children of the actual node and
 - branch to the child with the smallest distance,
- 3. compute distances only to training examples in the leaf finally found.

This is an approximation.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Accelerations: search trees

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 21/40

Accelerations: search trees

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Editing / Pruning / Condensing:

shrink the set of training data points,

e.g., select a subset of the original training data points.

Example: remove all points with cells that are surrounded by cells of points of the same class.

$$X_{\text{edited}} := \{(x,y) \in X \, | \, \exists (x',y') \in X, R(x') \cap R(x) \neq \emptyset \text{ and } y' \neq y \}$$

This basic editing algorithm

- retains the decision function,
- has complexity $O(d^3n^{\lfloor \frac{d}{2} \rfloor} \log n)$ (with $\lfloor x \rfloor := \max\{n \in \mathbb{N} \mid n \leq x\}$; Duda et al. 2001, p. 186).

See e.g., Ottmann/Widmayer 2002, p. 501–515 for computing Voronoi diagrams in two dimensions.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 22/40


```
i knn-edit-training-data(training data X) :
 2 compute Voronoi cells R(x) \quad \forall (x, y) \in X,
    esp. Voronoi neighbors N(x) := \{(x', y') \in X \mid | R(x') \cap R(x) \neq \emptyset\}
 4 E := \emptyset
 5 for (x, y) \in X do
       hasNeighborOfOtherClass := false
 6
       \underline{\mathbf{for}}(x',y') \in N(x) \underline{\mathbf{do}}
 7
            if y \neq y'
 8
               hasNeighborOfOtherClass := true
 9
            fi
10
        od
11
       if not hasNeighborOfOtherClass
12
          E := E \cup \{(x, y)\}
13
       fi
14
15 Od
16 for (x, y) \in E do
    X := X \setminus \{(x, y)\}
17
18 Od
```

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 23/40

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 24

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 25/40

1. Distance Measures

2. *k*-Nearest Neighbor Method

3. Parzen Windows

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 26/40

Example

Figure 8: Points generated by the model $y = \sin(4x) + \mathcal{N}(0, 1/3)$ with $x \sim \text{unif}(0, 1)$.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 26/40

Example / k-Nearest-Neighbor

Figure 9: Points generated by the model $y = \sin(4x) + \mathcal{N}(0, 1/3)$ with $x \sim \text{unif}(0, 1)$. 30-nearest-neighbor regressor.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

k-Nearest Neighbor is locally constant

k-nearest neighbor models are

- based on discrete decisions if a point is a *k*-nearest neighbor or not,
- in effect, locally constant,
- and thus not continuous.

Discrete decisions can be captured by binary window functions,

i.e.,

instead of

$$K(x, x_0) := \begin{cases} 1, & \text{if } (x, y) \in N_k(x_0) \\ 0, & \text{otherwise} \end{cases}$$
$$\hat{y}(x_0) = \frac{\sum_{(x, y) \in X} K(x, x_0) y}{\sum_{(x, y) \in X} K(x, x_0)}$$

$$\hat{y}(x_0) = \frac{\sum_{(x,y) \in N_k(x_0)} y}{k}$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 27/40

k-Nearest Neighbor is locally constant

in dense parts

the effective window size is small,

in sparse parts

the effective window size is large.

Alternatively, it is also possible to set the size of the windows to a constant λ , e.g.,

$$K_{\lambda}(x, x_0) := \begin{cases} 1, & \text{if } |x - x_0| \leq \lambda \\ 0, & \text{otherwise} \end{cases}$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 28/40

Kernel Regression

Instead of discrete windows, one typically uses continuous windows, i.e., continuous weights

$K(x, x_0)$

that reflect the distance of a training point x to a prediction point x_0 , called **kernel** or **Parzen window**, e.g.,

$$K(x, x_0) := \begin{cases} 1 - \frac{|x - x_0|}{\lambda}, & \text{if } |x - x_0| \le \lambda \\ 0, & \text{otherwise} \end{cases}$$

Instead of a binary neighbor/not-neighbor decision, a continuous kernel captures a "degree of neighborship".

Kernels can be used for prediction via **kernel regression**, esp. **Nadaraya-Watson kernel-weighted average**:

$$\hat{y}(x_0) := \frac{\sum_{(x,y) \in X} K(x,x_0) y}{\sum_{(x,y) \in X} K(x,x_0)}$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 29/40

Epanechnikov Kernel

Kernels are similarity measures: the closer two points, the larger the kernel value.

Epanechnikov kernel

$$K_{\lambda}(x,y) := D\left(\frac{|x-y|}{\lambda}\right)$$

with

$$D(t) := \begin{cases} \frac{3}{4}(1-t^2), & t < 1\\ 0, & \text{otherwise} \end{cases}$$

The constant $\lambda \in \mathbb{R}^+$ is called **bandwidth**.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 30/40

Tri-cube kernel

$$D(t) := \left\{ \begin{array}{ll} (1-t^3)^3, & t < 1 \\ 0, & \text{otherwise} \end{array} \right.$$

Gaussian kernel

$$D(t) := \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2}$$

The Epanechnikov and Tri-cube kernel have compact support $[x_0 - \lambda, x_0 + \lambda]$.

The Gaussian kernel has noncompact support, λ acts as standard deviation.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 31/40

Machine Learning / 3. Parzen Windows

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 32/40

Example / Epanechnikov Kernel, $\lambda=0.2$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 33/40

Choosing the Bandwidth

If the bandwidth λ is small

larger variance – as averaged over fewer points smaller bias – as closer instances are used \Rightarrow risks to be too bumpy

If the bandwidth λ is large

smaller variance – as averaged over more points larger bias – as instances further apart are used \Rightarrow risks to be too rigid / over-smoothed

The bandwidth λ is a parameter (sometimes called a **hyperparameter**) of the model that needs to be optimized / estimated by data.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 34/40

Example / Epanechnikov Kernel, various bandwidths

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 35/40

Space-averaged Estimates

The probability that an instance x is within a given region $R \subseteq \mathcal{X}$:

$$p(x \in R) = \int_R p(x) dx$$

For a sample

$$x_1, x_2, \ldots, x_n \sim p$$

it is

$$(x_i \in P) \sim \mathsf{binom}(p(x \in R))$$

Let k be the number of x_i that are in region R:

$$k := |\{x_i \mid x_i \in R, i = 1, \dots, n\}|$$

then we can estimate

$$\hat{p}(x \in R) := \frac{k}{n}$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 36/40

Space-averaged Estimates

If p is continuous and R is very small, $p(\boldsymbol{x})$ is almost constant in R:

$$p(x \in R) = \int_R p(x) dx \approx p(x) \operatorname{vol}(R), \quad \text{for any } x \in R$$

where vol(R) denotes the volume of region R.

$$p(x) \approx \frac{k/n}{\operatorname{vol}(R)}$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 37/40

Space-averaged Estimates

For unlimited data, i.e., $n \to \infty$, we can estimate p more and more accurately:

$$\hat{p}_n(x) = \frac{k_n/n}{V_n}, \quad \text{with } V_n := \operatorname{vol}(R_n).$$

It must be assured that

$$V_n \to 0$$
$$k_n \to \infty$$
$$k_n/n \to 0$$

There are two methods to accomplish this:

1. nearest-neighbor method:

 $k_n := \sqrt{n}, \quad V_n$ is set adaptive to the data

2. Parzen windows:

$$V_n := \frac{1}{\sqrt{n}}, \quad k_n \text{ is set adaptive to the data}$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 38/40

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 39

Summary

Contraction of the strength of

- Simple classification and regression models can be built by
 - averaging over target values (regression)
 - counting the occurrences of the target class (classification)
 - of training instances close by (measured in some **distance measure**).
- If always a fixed number of nearest points is taken into account,
 the model is called **nearest neighbor**,
 - if points are weighted with some similarity measure (called **kernel** or **Parzen window**),
 - \Rightarrow the model is called **kernel regression** and **kernel classification**.
- There are no learning tasks for these models, as simply all training instances are stored ("memory-based methods").
- Therefore, to compute predictions is more costly than for say linear models. — There are several acceleration techniques (partial distances, search trees, editing).

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 40/40