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Machine Learning / 1. Distance Measures

Motivation

So far, regression and classification methods covered in the
lecture can be used for

• numerical variables,

• binary variables (re-interpreted as numerical), and

• nominal variables (coded as set of binary indicator variables).

Often one is also interested in more complex variables such as

• set-valued variables,

• sequence-valued variables (e.g., strings),

• . . .
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Machine Learning / 1. Distance Measures

Motivation

There are two kinds of approaches to deal with such variables:

feature extraction:
try to derive binary or numerical variables,
then use standard methods on the feature vectors.

kernel methods:
try to establish a distance measure between two variables,
then use methods that use only distances between objects
(but no feature vectors).
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Machine Learning / 1. Distance Measures

Distance measures

Let d be a distance measure (also called metric) on a set X ,
i.e.,

d : X ×X → R+
0

with

1. d is positiv definite: d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y

2. d is symmetric: d(x, y) = d(y, x)

3. d is subadditive: d(x, z) ≤ d(x, y) + d(y, z)
(triangle inequality)

(for all x, y, z ∈ X .)

Example: Euclidean metric on X := Rn:

d(x, y) := (

n∑
i=1

(xi − yi)2)
1
2

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2010/2011 3/40



Machine Learning / 1. Distance Measures

Minkowski Metric / Lp metric

Minkowski Metric / Lp metric on X := Rn:

d(x, y) := (

n∑
i=1

|xi − yi|p)
1
p

with p ∈ R, p ≥ 1.

p = 1 (taxicab distance; Manhattan distance):

d(x, y) :=

n∑
i=1

|xi − yi|

p = 2 (euclidean distance):

d(x, y) := (

n∑
i=1

(xi − yi)2)
1
2

p =∞ (maximum distance; Chebyshev distance):

d(x, y) :=
n

max
i=1
|xi − yi|
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Machine Learning / 1. Distance Measures

Minkowski Metric / Lp metric / Example

Example:

x :=

 1
3
4

 , y :=

 2
4
1



dL1(x, y) =|1− 2| + |3− 4| + |4− 1| = 1 + 1 + 3 = 5

dL2(x, y) =
√
(1− 2)2 + (3− 4)2 + (4− 1)2 =

√
1 + 1 + 9 =

√
11 ≈ 3.32

dL∞(x, y) =max{|1− 2|, |3− 4|, |4− 1|} = max{1, 1, 3} = 3
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Machine Learning / 1. Distance Measures

Similarity measures

Instead of a distance measure sometimes similarity measures
are used, i.e.,

sim : X ×X → R+
0

with

• sim is symmetric: sim(x, y) = sim(y, x).

Some similarity measures have stronger properties:

• sim is discerning: sim(x, y) ≤ 1 and sim(x, y) = 1⇔ x = y

• sim(x, z) ≥ sim(x, y) + sim(y, z)− 1.

Some similarity measures have values in [−1, 1] or even R
where negative values denote “dissimilarity”.
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Machine Learning / 1. Distance Measures

Distance vs. Similarity measures

A discerning similarity measure can be turned into a semi-metric
(pos. def. & symmetric, but not necessarily subadditive) via

d(x, y) := 1− sim(x, y)

In the same way, a metric can be turned into a discerning
similarity measure
(with values eventually in ]−∞, 1]).
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Machine Learning / 1. Distance Measures

Cosine Similarity

The cosine of the angle between two vectors in Rn is used as
similarity measure: cosine similarity:

sim(x, y) := cos(θ) =
〈x, y〉
||x||2 ||y||2

Example:

x :=

 1
3
4

 , y :=

 2
4
1



sim(x, y) =
1 · 2 + 3 · 4 + 4 · 1√

1 + 9 + 16
√
4 + 16 + 1

=
18√
26
√
21
≈ 0.77

• Vectors with similarity 1 point in the same direction.

• Vectors with similarity -1 point in the opposite direction.

• Vectors with similarity 0 are orthogonal.
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Machine Learning / 1. Distance Measures

Distances for Nominal Variables

For binary variables there is only one reasonable distance
measure:

d(x, y) := 1− I(x = y) with I(x = y) :=

{
1 if x = y
0 otherwise

This coincides with the L∞ distance for the indicator/dummy
variables.

The same distance measure is useful for nominal variables with
more than two possible values.

For hierarchical variables, i.e., a nominal variable with levels
arranged in a hierarchy, there are more advanced distance
measures (not covered here).
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Machine Learning / 1. Distance Measures

Distances for Set-valued Variables

For set-valued variables (which values are subsets of a set A) the
Hamming distance often is used:

d(x, y) := |(x \ y) ∪ (y \ x)| = |{a ∈ A | I(a ∈ x) 6= I(a ∈ y)}|
(the number of elements contained in only one of the two sets).

Example:

d({a, e, p, l}, {a, b, n}) = 5, d({a, e, p, l}, {a, e, g, n, o, r}) = 6

Also often used is the similarity measure Jaccard coefficient:

sim(x, y) :=
|x ∩ y|
|x ∪ y|

Example:

sim({a, e, p, l}, {a, b, n}) = 1

6
, sim({a, e, p, l}, {a, e, g, n, o, r}) = 2

8
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Machine Learning / 1. Distance Measures

Distances for Strings / Sequences

edit distance / Levenshtein distance:

d(x, y) := minimal number of deletions, insertions or substitions to transform x in y

Examples:

d(man,men) =1
d(house, spouse) =2

d(order,express order) =8
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Machine Learning / 1. Distance Measures

Distances for Strings / Sequences

The edit distance is computed recursively. With

x1:i := (xi′)i′=1,...,i = (x1, x2, . . . , xi), i ∈ N

we compute the number of operations to transform x1:i into y1:j as

c(x1:i, y1:j) := min{ c(x1:i−1, y1:j) + 1, // delete xi, x1:i−1  y1:j
c(x1:i, y1:j−1) + 1, // x1:i  y1:j−1, insert yj
c(x1:i−1, y1:j−1) + I(xi 6= yj)} // x1:i−1  y1:j−1, substitute yj for xi

starting from

c(x1:0, y1:j) = c(∅, y1:j) := j // insert y1, . . . , yj
c(x1:i, y1:0) = c(x1:i, ∅) := i // delete x1, . . . , xi

Such a recursive computing scheme is called dynamic
programming.
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Machine Learning / 1. Distance Measures

Distances for Strings / Sequences

Example: compute d(excused,exhausted).

d 9
e 8
t 7
s 6
u 5
a 4
h 3
x 2
e 1

0 1 2 3 4 5 6 7
y[j]/x[i] e x c u s e d
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Machine Learning / 1. Distance Measures

Distances for Strings / Sequences

Example: compute d(excused,exhausted).

d 9 8 7 7 6 5 4 3
e 8 7 6 6 5 4 3 4
t 7 6 5 5 4 3 3 4
s 6 5 4 4 3 2 3 4
u 5 4 3 3 2 3 4 5
a 4 3 2 2 2 3 4 5
h 3 2 1 1 2 3 4 5
x 2 1 0 1 2 3 4 5
e 1 0 1 2 3 4 5 6

0 1 2 3 4 5 6 7
y[j]/x[i] e x c u s e d
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Machine Learning
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Machine Learning / 2. k-Nearest Neighbor Method

Neighborhoods

Let d be a distance measure.
For a dataset

D ⊆ X × Y
and x ∈ X let

D = {(x1, y1), (x2, y2), . . . , (xn, yn)}
be an enumeration with increasing distance to x, i.e.,
d(x, xi) ≤ d(x, xi+1) (ties broken arbitrarily).
The first k ∈ N points of such an enumeration, i.e.,

Nk(x) := {(x1, y1), (x2, y2), . . . (xk, yk)}
are called a k-neighborhood of x (in D).
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Machine Learning / 2. k-Nearest Neighbor Method

Nearest Neighbor Regression

The k-nearest neighbor regressor

Ŷ (x) :=
1

k

∑
(x′,y′)∈Nk(x)

y′

The k-nearest neighbor classifier

p̂(Y = y |x) := 1

k

∑
(x′,y′)∈Nk(x)

I(y = y′)

and then predict the class with maximal predicted probability

Ŷ (x) := argmaxy∈Y p̂(Y = y |x)
i.e., the majority class w.r.t. the classes of the neighbors.
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Machine Learning / 2. k-Nearest Neighbor Method

Decision Boundaries

For 1-nearest neighbor, the predictor space is partitioned in
regions of points that are closest to a given data point:

regionD(x1), regionD(x2), . . . , regionD(xn)

with

regionD(x) := {x′ ∈ X | d(x′, x) ≤ d(x′, x′′) ∀(x′′, y′′) ∈ D}

These regions often are called cells, the whole partition a
Voronoi tesselation.
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Machine Learning / 2. k-Nearest Neighbor Method

Decision Boundaries
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Machine Learning / 2. k-Nearest Neighbor Method

Decision Boundaries
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Machine Learning / 2. k-Nearest Neighbor Method

Complexity of k-Nearest Neighbor Classifier

The k-Nearest Neighbor classifier does not need any learning
algorithm as it just stores all the training examples.

On the other hand, predicting using a k-nearest neighbor
classifier is slow:

• To predict the class of a new point x, the distance d(x, xi) from
x to each of the n training examples (x1, y1), . . . , (xn, yn) has to
be computed.

• If the predictor space is X := Rp, for one such computation we
need O(p) operations.

• We then keep track of the k points with the smallest distance.

So in total one needs O(npk) operations.
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Machine Learning / 2. k-Nearest Neighbor Method

Accelerations: partial distances

In practice, nearest neighbor classifiers often can be accelerated
by several methods.
Partial distances:
Compute the distance to each training point x′ only partially, e.g.,

dr(x, x
′) := (

r∑
i=1

(xi − x′i)2)
1
2 , r ≤ p

As dr is non-decreasing in r, once dr(x, x′) exceeds the k-th
smallest distance computed so far, the training point x′ can be
dropped.

This is a heuristic:
it may accelerate computations, but it also may slow it down
(as there are additional comparisions of the partial distances with
the k smallest distance).
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Machine Learning / 2. k-Nearest Neighbor Method

Accelerations: search trees

Search trees:
Do not compute the distance of a new point x to all training
examples, but

1. organize the training examples as a tree (or a DAG) with
• sets of training examples at the leaves and

• a prototype (e.g., the mean of the training examples at all
descendent leaves) at each intermediate node.

2. starting at the root, recursively
• compute the distance to all children of the actual node and

• branch to the child with the smallest distance,

3. compute distances only to training examples in the leaf finally
found.

This is an approximation.
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Machine Learning / 2. k-Nearest Neighbor Method

Accelerations: search trees
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Machine Learning / 2. k-Nearest Neighbor Method

Accelerations: search trees
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Machine Learning / 2. k-Nearest Neighbor Method

Accelerations: editing

Editing / Pruning / Condensing:
shrink the set of training data points,
e.g., select a subset of the original training data points.

Example: remove all points with cells that are surrounded by cells
of points of the same class.

Xedited := {(x, y) ∈ X | ∃(x′, y′) ∈ X,R(x′) ∩R(x) 6= ∅ and y′ 6= y}

This basic editing algorithm

• retains the decision function,

• has complexity O(d3nb
d
2c log n)

(with bxc := max{n ∈ N |n ≤ x}; Duda et al. 2001, p. 186).

See e.g., Ottmann/Widmayer 2002, p. 501–515 for computing
Voronoi diagrams in two dimensions.
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Machine Learning / 2. k-Nearest Neighbor Method

Accelerations: editing

1 knn-edit-training-data(training data X) :
2 compute Voronoi cells R(x) ∀(x, y) ∈ X,
3 esp. Voronoi neighbors N(x) := {(x′, y′) ∈ X ‖R(x′) ∩ R(x) 6= ∅}
4 E := ∅
5 for (x, y) ∈ X do
6 hasNeighborOfOtherClass := false
7 for (x′, y′) ∈ N(x) do
8 if y 6= y′

9 hasNeighborOfOtherClass := true
10 fi
11 od
12 if not hasNeighborOfOtherClass
13 E := E ∪ {(x, y)}
14 fi
15 od
16 for (x, y) ∈ E do
17 X := X \ {(x, y)}
18 od
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Machine Learning / 2. k-Nearest Neighbor Method

Accelerations: editing
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Machine Learning / 2. k-Nearest Neighbor Method

Accelerations: editing
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Machine Learning / 3. Parzen Windows

Example
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Figure 8: Points generated by the model y = sin(4x) +N (0, 1/3) with
x ∼ unif(0, 1).
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Machine Learning / 3. Parzen Windows

Example / k-Nearest-Neighbor
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Figure 9: Points generated by the model y = sin(4x) +N (0, 1/3) with
x ∼ unif(0, 1). 30-nearest-neighbor regressor.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2010/2011 26/40



Machine Learning / 3. Parzen Windows

k-Nearest Neighbor is locally constant

k-nearest neighbor models are

• based on discrete decisions if a point is a k-nearest
neighbor or not,

• in effect, locally constant,

• and thus not continuous.

Discrete decisions can be captured by binary window
functions,

i.e.,

K(x, x0) :=

{
1, if (x, y) ∈ Nk(x0)
0, otherwise

ŷ(x0) =

∑
(x,y)∈XK(x, x0)y∑
(x,y)∈XK(x, x0)

instead of

ŷ(x0) =

∑
(x,y)∈Nk(x0) y

k
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Machine Learning / 3. Parzen Windows

k-Nearest Neighbor is locally constant

In k-nearest neighbor the size of the window varies from
point to point: it depends on the density of the data:

in dense parts
the effective window size is small,

in sparse parts
the effective window size is large.

Alternatively, it is also possible to set the size of the
windows to a constant λ, e.g.,

Kλ(x, x0) :=

{
1, if |x− x0| ≤ λ
0, otherwise
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Machine Learning / 3. Parzen Windows

Kernel Regression

Instead of discrete windows, one typically uses
continuous windows, i.e., continuous weights

K(x, x0)

that reflect the distance of a training point x to a
prediction point x0, called kernel or Parzen window,
e.g.,

K(x, x0) :=

{
1− |x−x0|λ , if |x− x0| ≤ λ
0, otherwise

Instead of a binary neighbor/not-neighbor decision, a
continuous kernel captures a “degree of neighborship”.

Kernels can be used for prediction via kernel
regression, esp. Nadaraya-Watson kernel-weighted
average:

ŷ(x0) :=

∑
(x,y)∈XK(x, x0)y∑
(x,y)∈XK(x, x0)
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Machine Learning / 3. Parzen Windows

Epanechnikov Kernel

Kernels are similarity measures:
the closer two points, the larger the kernel value.

Epanechnikov kernel

Kλ(x, y) :=D

(|x− y|
λ

)
with

D(t) :=

{
3
4(1− t2), t < 1
0, otherwise

The constant λ ∈ R+ is called bandwidth.
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More kernels

Tri-cube kernel

D(t) :=

{
(1− t3)3, t < 1
0, otherwise

Gaussian kernel

D(t) :=
1√
2π
e−

1
2t

2

The Epanechnikov and Tri-cube kernel have compact
support [x0 − λ, x0 + λ].

The Gaussian kernel has noncompact support, λ acts as
standard deviation.
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Kernels
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Example / Epanechnikov Kernel, λ = 0.2
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Choosing the Bandwidth

If the bandwidth λ is small
larger variance – as averaged over fewer points
smaller bias – as closer instances are used
⇒ risks to be too bumpy

If the bandwidth λ is large
smaller variance – as averaged over more points
larger bias – as instances further apart are used
⇒ risks to be too rigid / over-smoothed

The bandwidth λ is a parameter (sometimes called a
hyperparameter) of the model that needs to be
optimized / estimated by data.
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Example / Epanechnikov Kernel, various bandwidths
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Space-averaged Estimates

The probability that an instance x is within a given region
R ⊆ X :

p(x ∈ R) =
∫
R

p(x)dx

For a sample
x1, x2, . . . , xn ∼ p

it is
(xi ∈ P ) ∼ binom(p(x ∈ R))

Let k be the number of xi that are in region R:

k := |{xi |xi ∈ R, i = 1, . . . , n}|
then we can estimate

p̂(x ∈ R) := k

n
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Space-averaged Estimates

If p is continuous and R is very small, p(x) is almost
constant in R:

p(x ∈ R) =
∫
R

p(x)dx ≈ p(x) vol(R), for any x ∈ R

where vol(R) denotes the volume of region R.

p(x) ≈ k/n

vol(R)
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Space-averaged Estimates

For unlimited data, i.e., n→∞, we can estimate p more
and more accurately:

p̂n(x) =
kn/n

Vn
, with Vn := vol(Rn).

It must be assured that
Vn → 0

kn →∞
kn/n→ 0

There are two methods to accomplish this:

1. nearest-neighbor method:
kn :=

√
n, Vn is set adaptive to the data

2. Parzen windows:

Vn :=
1√
n
, kn is set adaptive to the data
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Space-averaged Estimates

Vn = 1/
√
n

kn =
√
n

n = 1
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Summary

• Simple classification and regression models can be built by
– averaging over target values (regression)

– counting the occurrences of the target class (classification)
of training instances close by (measured in some distance measure).

• If always a fixed number of nearest points is taken into account,
⇒ the model is called nearest neighbor,
if points are weighted with some similarity measure

(called kernel or Parzen window),
⇒ the model is called kernel regression and kernel classification.

• There are no learning tasks for these models, as simply all training
instances are stored (“memory-based methods”).

• Therefore, to compute predictions is more costly than for say linear
models. — There are several acceleration techniques (partial
distances, search trees, editing).
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