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Machine Learning / 1. Separating Hyperplanes

Separating Hyperplanes

Logistic Regression:
Linear Discriminant Analysis (LDA):
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Machine Learning / 1. Separating Hyperplanes

Hyperplanes

Hyperplanes can be modeled explicitly as

Hβ,β0 := {x | 〈β, x〉 = −β0}, β =


β1
β2
...
βp

 ∈ Rp, β0 ∈ R

We will write Hβ shortly for Hβ,β0 (although β0 is very relevant!).

For any two points x, x′ ∈ Hβ we have

〈β, x− x′〉 = 〈β, x〉 − 〈β, x′〉 = −β0 + β0 = 0

thus β is orthogonal to all translation vectors in Hβ,
and thus β/||β|| is the normal vector of Hβ.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2010/2011 2/56



Machine Learning / 1. Separating Hyperplanes

Hyperplanes

The projection of a point x ∈ Rp onto Hβ, i.e., the closest point on
Hβ to x is given by

πHβ(x) := x− 〈β, x〉 + β0
〈β, β〉 β

Proof:
(i) πx := πHβ(x) ∈ Hβ:

〈β, πHβ(x)〉 =〈β, x− 〈β, x〉 + β0
〈β, β〉 β〉

=〈β, x〉 − 〈β, x〉 + β0
〈β, β〉 〈β, β〉 = −β0

(ii) πHβ(x) is the closest such point to x:
For any other point x′ ∈ Hβ:

||x− x′||2 =〈x− x′, x− x′〉 = 〈x− πx + πx− x′, x− πx + πx− x′〉
=〈x− πx, x− πx〉 + 2〈x− πx, πx− x′〉 + 〈πx− x′, πx− x′〉
=||x− πx||2 + 0 + ||πx− x′||2

as x− πx is proportional to β and πx and x′ are on Hβ.
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Machine Learning / 1. Separating Hyperplanes

Hyperplanes

The signed distance of a point x ∈ Rp to Hβ is given by

〈β, x〉 + β0
||β||

Proof:
x− πx =

〈β, x〉 − β0
〈β, β〉 β

Therefore

||x− πx||2 =〈〈β, x〉 + β0
〈β, β〉 β,

〈β, x〉 + β0
〈β, β〉 β〉

=(
〈β, x〉 + β0
〈β, β〉 )2〈β, β〉

||x− πx|| =〈β, x〉 + β0
||β||
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Machine Learning / 1. Separating Hyperplanes

Separating Hyperplanes

For given data
(x1, y1), (x2, y2), . . . , (xn, yn)

with a binary class label Y ∈ {−1,+1}
a hyperplane Hβ is called separating if

yih(xi) > 0, i = 1, . . . , n, with h(x) := 〈β, x〉 + β0
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Machine Learning / 1. Separating Hyperplanes

Linear Separable Data

The data is called linear separable if there exists such a
separating hyperplane.

In general, if there is one, there are many.

If there is a choice, we need a criterion to narrow down which one
we want / is the best.
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Machine Learning / 2. Perceptron

Perceptron as Linear Model

Perceptron is another name for a linear binary classification
model (Rosenblatt 1958):

Y (X) = signh(X), with signx =

 +1, x > 0
0, x = 0
−1, x < 0

h(X) =β0 + 〈β,X〉 + ε

that is very similar to the logisitic regression model

Y (X) = argmaxy p(Y = y |X)

p(Y = +1 |X) =logistic(〈X, β〉) + ε =
e
∑n
i=1 βiXi

1 + e
∑n
i=1 βiXi

+ ε

p(Y = −1 |X) =1− p(Y = +1 |X)

as well as to linear discriminant analysis (LDA).

The perceptron does just provide class labels ŷ(x) and unscaled
certainty factors ĥ(x), but no class probabilities p̂(Y |X).
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Machine Learning / 2. Perceptron

Perceptron as Linear Model

The perceptron does just provide class labels ŷ(x) and unscaled
certainty factors ĥ(x), but no class probabilities p̂(Y |X).

Therefore, probabilistic fit/error criteria such as maximum
likelihood cannot be applied.

For perceptrons, the sum of the certainty factors of misclassified
points is used as error criterion:

q(β, β0) :=

n∑
i=1:ŷi 6=yi

|hβ(xi)| = −
n∑

i=1:ŷi 6=yi
yihβ(xi)
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Machine Learning / 2. Perceptron

Perceptron as Linear Model

For learning, gradient descent is used:

∂q(β, β0)

∂β
=−

n∑
i=1:ŷi 6=yi

yixi

∂q(β, β0)

∂β0
=−

n∑
i=1:ŷi 6=yi

yi

Instead of looking at all points at the same time,
stochastic gradient descent is applied where all points are looked
at sequentially (in a random sequence).
The update for a single point (xi, yi) then is

β̂(k+1) :=β̂(k) + αyixi

β̂
(k+1)
0 :=β̂

(k)
0 + αyi

with a step length α (often called learning rate).
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Machine Learning / 2. Perceptron

Perceptron Learning Algorithm

1 learn-perceptron(training data X, step length α) :

2 β̂ := a random vector
3 β̂0 := a random value
4 do
5 errors := 0
6 for (x, y) ∈ X (in random order) do
7 if y(β̂0 + 〈β̂, x〉) ≤ 0
8 errors := errors + 1

9 β̂ := β̂ + αyx

11 β̂0 := β̂0 + αy
12 fi
13 od
14 while errors > 0

15 return (β̂, β̂0)
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Machine Learning / 2. Perceptron

Perceptron Learning Algorithm: Properties

For linear separable data the perceptron learning algorithm can
be shown to converge: it finds a separating hyperplane in a finite
number of steps.

But there are many problems with this simple algorithm:

• If there are several separating hyperplanes,
there is no control about which one is found
(it depends on the starting values).

• If the gap between the classes is narrow,
it may take many steps until convergence.

• If the data are not separable,
the learning algorithm does not converge at all.
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Machine Learning / 3. Maximum Margin Separating Hyperplanes

Maximum Margin Separating Hyperplanes

Many of the problems of perceptrons can be overcome by
designing a better fit/error criterion.

Maximum Margin Separating Hyperplanes use the width of the
margin, i.e., the distance of the closest points to the hyperplane
as criterion:

maximize C

w.r.t. yi
β0 + 〈β, xi〉
||β|| ≥C, i = 1, . . . , n

β ∈Rp

β0 ∈R

———————————————————————-
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Machine Learning / 3. Maximum Margin Separating Hyperplanes

Maximum Margin Separating Hyperplanes

As for any solutions β, β0 also all positive scalar multiples fullfil
the equations, we can arbitrarily set

||β|| = 1

C

Then the problem can be reformulated as

minimize
1

2
||β||2

w.r.t. yi(β0 + 〈β, xi〉) ≥1, i = 1, . . . , n

β ∈Rp

β0 ∈R

This problem is a convex optimization problem
(quadaratic target function with linear inequality constraints).

———————————————————————-
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Machine Learning / 3. Maximum Margin Separating Hyperplanes

Quadratic Optimization
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Machine Learning / 3. Maximum Margin Separating Hyperplanes

To get rid of the linear inequality constraints, one usually applies
Lagrange multipliers.
The Lagrange (primal) function of this problem is

L :=
1

2
||β||2 −

n∑
i=1

αi(yi(β0 + 〈β, xi〉)− 1)

w.r.t. αi ≥0

For an extremum it is required that

∂L

∂β
=β −

n∑
i=1

αiyixi
!

= 0

⇒ β =

n∑
i=1

αiyixi

and

∂L

∂β0
=−

n∑
i=1

αiyi
!

= 0

———————————————————————-
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Machine Learning / 3. Maximum Margin Separating Hyperplanes

Quadratic Optimization

Input

β =

n∑
i=1

αiyixi,

n∑
i=1

αiyi = 0

into

L :=
1

2
||β||2 −

n∑
i=1

αi(yi(β0 + 〈β, xi〉)− 1)

yields the dual problem

L =
1

2
〈

n∑
i=1

αiyixi,

n∑
j=1

αjyjxj〉 −
n∑
i=1

αi(yi(β0 + 〈
n∑
j=1

αjyjxj, xi〉)− 1)

=
1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi, xj〉 +

n∑
i=1

αi −
n∑
i=1

αiyiβ0 −
n∑
i=1

n∑
j=1

αiαjyiyj〈xi, xj〉

=− 1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi, xj〉 +

n∑
i=1

αi

———————————————————————-
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Machine Learning / 3. Maximum Margin Separating Hyperplanes

Quadratic Optimization

The dual problem is

maximize L =− 1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi, xj〉 +

n∑
i=1

αi

w.r.t.
n∑
i=1

αiyi =0

αi ≥0

with much simpler constraints.
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Machine Learning / 4. Digression: Quadratic Optimization

Unconstrained Problem

The unconstrained quadratic optimization problem is

minimize f (x) :=
1

2
〈x,Cx〉 − 〈c, x〉

w.r.t. x ∈Rn

(with C ∈ Rn×n symmetric and positive definite, c ∈ Rn).

The solution of the unconstrained quadratic optimization problem
coincides with the solution of the linear systems of equations

Cx = c

that can be solved by Gaussian Elimination, Cholesky
decomposition, QR decomposition etc.

Proof:

∂f (x)

∂x
= xTC − cT !

= 0⇔ Cx = c
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Machine Learning / 4. Digression: Quadratic Optimization

Equality Constraints

The quadratic optimization problem with equality constraints
is

minimize f (x) :=
1

2
〈x,Cx〉 − 〈c, x〉

w.r.t. g(x) :=Ax− b = 0

x ∈Rn

(with C ∈ Rn×n symmetric and positive definite, c ∈ Rn, A ∈ Rm×n,
b ∈ Rm).
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Machine Learning / 4. Digression: Quadratic Optimization

Lagrange Function

Definition 1. Consider the optimization problem
minimize f (x)

subject to g(x) ≤ 0

h(x) = 0

x ∈ Rn

with f : Rn → R, g : Rn → Rm and h : Rn → Rp.

The Lagrange function of this problem is defined as
L(x, λ, ν) := f (x) + 〈λ, g(x)〉 + 〈ν, h(x)〉

λ and ν are called Lagrange multipliers.

The dual problem is defined as
maximize f̄ (λ, ν) := inf

x
L(x, λ, ν)

subject to λ ≥ 0

λ ∈ Rm, ν ∈ Rp
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Machine Learning / 4. Digression: Quadratic Optimization

Lower Bounds Lemma

Lemma 1. The dual function yields lower bounds for the optimal
value of the problem, i.e.,

f̄ (λ, ν) ≤ f (x∗), ∀λ ≥ 0, ν

Proof:
For feasible x, i.e., g(x) ≤ 0 and h(x) = 0:

L(x, λ, ν) = f (x) + 〈λ, g(x)〉 + 〈ν, h(x)〉 ≤ f (x)

Hence
f̄ (λ, ν) = inf

x
L(x, λ, ν) ≤ f (x)

and especially for x = x∗.
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Machine Learning / 4. Digression: Quadratic Optimization

Karush-Kuhn-Tucker Conditions

Theorem 1 (Karush-Kuhn-Tucker Conditions). If
(i) x is optimal for the problem,
(ii) λ, ν are optimal for the dual problem and
(iii) f (x) = f̄ (λ, ν),
then the following conditions hold:

g(x) ≤ 0

h(x) = 0

λ ≥ 0

λigi(x) = 0

∂f (x)

∂x
+ 〈λ, ∂g(x)

∂x
〉 + 〈ν, ∂h(x)

∂x
〉 = 0

If f is convex and h is affine, then the KKT conditions are also
sufficient.
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Machine Learning / 4. Digression: Quadratic Optimization

Karush-Kuhn-Tucker Conditions

Proof: “⇒”

f (x) = f̄ (λ, ν) = inf
x′
f (x′) + 〈λ, g(x′)〉 + 〈ν, h(x′)〉

≤ f (x) + 〈λ, g(x)〉 + 〈ν, h(x)〉 ≤ f (x)

and therefore equality holds, thus

〈λ, g(x)〉 =

m∑
i=1

λigi(x) = 0

and as all terms are non-positive: λigi(x) = 0.
Since x minimizes L(x′, λ, ν) over x′, the derivative must vanish:

∂L(x, λ, ν)

∂x
=
∂f (x)

∂x
+ 〈λ, ∂g(x)

∂x
〉 + 〈ν, ∂h(x)

∂x
〉 = 0
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Machine Learning / 4. Digression: Quadratic Optimization

Karush-Kuhn-Tucker Conditions

Proof (ctd.): “⇐”
Now let f be convex. Since λ ≥ 0, L(x′, λ, ν) is convex in x′.
As its first derivative vanishes at x, x minimizes L(x′, λ, ν) over x′,
and thus:

f̄ (λ, ν) = L(x, λ, ν) = f (x) + 〈λ, g(x)〉 + 〈ν, h(x)〉 = f (x)

Therefore is x optimal for the problem and λ, ν optimal for the
dual problem.
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Machine Learning / 4. Digression: Quadratic Optimization

Equality Constraints

The quadratic optimization problem with equality constraints
is

minimize f (x) :=
1

2
〈x,Cx〉 − 〈c, x〉

w.r.t. h(x) :=Ax− b = 0

x ∈Rn

(with C ∈ Rn×n symmetric and positive definite, c ∈ Rn, A ∈ Rm×n,
b ∈ Rm).

The KKT conditons for the optimal solution x∗, ν∗ are:

h(x∗) = Ax∗ − b = 0

∂f (x∗)

∂x
+ 〈ν∗, ∂h(x∗)

∂x
〉 = Cx∗ − c + ATν∗ = 0

which can be written as a single system of linear equations(
C AT

A 0

)(
x∗

ν∗

)
=

(
c
b

)
Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2010/2011 25/56



Machine Learning / 4. Digression: Quadratic Optimization

Inequality Constraints

The quadratic optimization problem with inequality
constraints is

minimize f (x) :=
1

2
〈x,Cx〉 − 〈c, x〉

w.r.t. g(x) :=Ax− b ≤ 0

x ∈Rn

(with C ∈ Rn×n symmetric and positive definite, c ∈ Rn, A ∈ Rm×n,
b ∈ Rm).

Inequality constraints are more complex to solve.
But they can be reduced to a sequence of equality constraints.
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Machine Learning / 4. Digression: Quadratic Optimization

Inequality Constraints

At each point x ∈ Rn one distinguishes between
active constraints gi with gi(x) = 0 and
inactive constraints gi with gi(x) < 0.
Active set:

I0(x) := {i ∈ {1, . . . ,m} | gi(x) = 0}

Inactive constraints stay inactive in a neighborhood of x and can
be neglected there.
Active constraints are equality constraints that identify points at
the border of the feasible area.
We can restrict our attention to just the points at the actual
border, i.e., use the equality constraints

hi(x) := gi(x), i ∈ I0
.
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Machine Learning / 4. Digression: Quadratic Optimization

Inequality Constraints

If there is an optimal point x∗ found with optimal lagrange
multiplier ν∗ ≥ 0:

∂f (x∗)

∂x
+
∑
i∈I0

ν∗i
∂hi(x

∗)

∂x
= 0

then x∗ with

λ∗i :=

{
ν∗i , i ∈ I0
0, else

fullfils the KKT conditions of the original problem:

λ∗igi(x
∗) =

{
ν∗i hi(x

∗) = 0, i ∈ I0
0gi(x

∗) = 0, else

and
∂f (x∗)

∂x
+ 〈λ∗, ∂h(x∗)

∂x
〉 =

∂f (x∗)

∂x
+
∑
i∈I0

ν∗i
∂hi(x

∗)

∂x
= 0
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Machine Learning / 4. Digression: Quadratic Optimization

Inequality Constraints

If the optimal point x∗ on the border has an optimal lagrange
multiplier ν∗ with ν∗i < 0 for some i ∈ I0,

∂f (x∗)

∂x
+
∑
i∈I0

ν∗i
∂hi(x

∗)

∂x
= 0

then f decreases along hi := gi, thus we can decrease f by
moving away from the border by dropping the constraint i.
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Machine Learning / 4. Digression: Quadratic Optimization

Inequality Constraints

1 minimize-submanifold(target function f, inequality constraint function g) :
2 x := a random vector with g(x) ≤ 0
3 I0 := I0(x) := {i | gi(x) = 0}
4 do
5 x∗ := argminx f(x) subject to gi(x) = 0, i ∈ I0
6 while f(x∗) < f(x) do
7 α := max{α ∈ [0, 1] | g(x+ α(x∗ − x)) ≤ 0}
8 x := x+ α(x∗ − x)
9 I0 := I0(x)

10 x∗ := argminx f(x) subject to gi(x) = 0, i ∈ I0
11 od
12 Let ν∗ be the optimal Lagrange multiplier for x∗

13 if ν∗ ≥ 0 break fi
14 choose i ∈ I0 : ν

∗
i < 0

15 I0 := I0 \ {i}
16 while true
17 return x
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Machine Learning / 4. Digression: Quadratic Optimization

The dual problem for the maximum margin separating hyperplane
is such a constrained quadratic optimization problem:

maximize L =− 1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi, xj〉 +

n∑
i=1

αi

w.r.t.
n∑
i=1

αiyi =0

αi ≥0

Set f :=− L
Ci,j :=yiyj〈xi, xj〉
ci :=1

xi :=αi
Ai :=(0, 0, . . . , 0,−1, 0, . . . , 0) (with the -1 at column i), i = 1, . . . , n

bi :=0

h(x) :=

n∑
i=1

αiyi
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Machine Learning / 4. Digression: Quadratic Optimization

Example

Find a maximum margin separating hyperplane for the
following data:

x1 x2 y
1 1 −1
3 3 +1
4 3 +1

−

+ +

0 1 2 3 4

0
1

2
3

4

x

y
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Machine Learning / 4. Digression: Quadratic Optimization

Example

C = (yiyj〈xi, xy〉)i,j =

 2 −6 −7
−6 18 21
−7 21 25

 , c =

 1
1
1

 ,

A =

 −1 0 0
0 −1 0
0 0 −1

 , b =

 0
0
0


h(α) = 〈α, y〉 = −α1 + α2 + α3

As the equality constraint h always needs to be met, it
can be added to C:

C ′ =

(
C y
yT 0

)
, =


2 −6 −7 −1
−6 18 21 1
−7 21 25 1
−1 1 1 0

 ,
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Machine Learning / 4. Digression: Quadratic Optimization

Example

Let us start with a random

x =

 2
1
1


that meets both constraints:

g(x) = Ax− b =

 −2
−1
−1

 ≤ 0

h(x) = 〈y, x〉 = −2 + 1 + 1 = 0

As none of the inequality constaints is active: I0(x) = ∅.
Step 1: We have to solve

C ′
(
x
µ

)
=

(
c
0

)
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Machine Learning / 4. Digression: Quadratic Optimization

Example

This yields

x∗ =

 0.5
1.5
−1.0


which does not fulfill the (inactive) inequality constraint
x3 ≥ 0.
So we look for

x + α(x∗ − x) =

 2
1
1

 + α

 −1.5
0.5
−2

 ≥ 0

that fulfills all inequality constraints and has large step
size α. Obviously, α = 0.5 is best and yields

x := x + α(x∗ − x) =

 1.25
1.25
0
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Machine Learning / 4. Digression: Quadratic Optimization

Example

Step 2: Now the third inequality constraint is active:
I0(x) = {3}.

C ′′ =

 C ′ y −e3
yT 0 0
−eT3 0 0

 , =


2 −6 −7 −1 0
−6 18 21 1 0
−7 21 25 1 −1
−1 1 1 0 0

0 0 −1 0 0

 ,

and we have to solve

C ′′

 x
µ
ν∗

 =

 c
0
0


which yields

x∗ =

 0.25
0.25
0

 , ν∗ = 0.5
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Machine Learning / 4. Digression: Quadratic Optimization

Example

As x∗ fulfills all constraints, it becomes the next x (step
size α = 1):

x := x∗

As the lagrange multiplier ν∗ ≥ 0, the algorithm stops:
x is optimal.

So we found the optimal

α =

 0.25
0.25
0

 (called x in the algorithm!)

and can compute

β =

n∑
i=1

αiyixi = 0.25·(−1)·
(

1
1

)
+0.25·(+1)·

(
3
3

)
=

(
0.5
0.5

)
β0 can be computed from the original constraints of the
points with αi > 0 which have to be sharp, i.e.,

y1(β0 + 〈β, x1〉) = 1 ⇒ β0 = y1 − 〈β, x1〉 = −1− 〈
(

0.5
0.5

)
,

(
1
1

)
〉 = −2
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Machine Learning

1. Separating Hyperplanes

2. Perceptron

3. Maximum Margin Separating Hyperplanes

4. Digression: Quadratic Optimization

5. Non-separable Problems

6. Support Vectors and Kernels

7. Support Vector Regression
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Machine Learning / 5. Non-separable Problems

Optimal Hyperplane

Inseparable problems can be modeled by allowing some points to
be on the wrong side of the hyperplane.
Hyperplanes are better if
(i) the fewer points are on the wrong side and
(ii) the closer these points are to the hyperplane
(modeled by slack variables ξi).

minimize
1

2
||β||2 + γ

n∑
i=1

ξi

w.r.t. yi(β0 + 〈β, xi〉) ≥1− ξi, i = 1, . . . , n

ξ ≥0

β ∈Rp

β0 ∈R

This problem also is a convex optimization problem
(quadaratic target function with linear inequality constraints).
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Machine Learning / 5. Non-separable Problems

Dual Problem

Compute again the dual problem:

L :=
1

2
||β||2 + γ

n∑
i=1

ξi −
n∑
i=1

αi(yi(β0 + 〈β, xi〉)− (1− ξi))−
n∑
i=1

µiξi

w.r.t. αi ≥0

µi ≥0

For an extremum it is required that

∂L

∂β
=β −

n∑
i=1

αiyixi
!

= 0 ⇒ β =

n∑
i=1

αiyixi

and

∂L

∂β0
=−

n∑
i=1

αiyi
!

= 0

and
∂L

∂ξi
=γ − αi − µi !

= 0 ⇒ αi = γ − µi
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Machine Learning / 5. Non-separable Problems

Dual Problem

Input

β =

n∑
i=1

αiyixi,

n∑
i=1

αiyi = 0, αi = γ − µi

into

L :=
1

2
||β||2 + γ

n∑
i=1

ξi −
n∑
i=1

αi(yi(β0 + 〈β, xi〉)− (1− ξ))−
n∑
i=1

µiξi

yields the dual problem

L =
1

2
〈

n∑
i=1

αiyixi,

n∑
j=1

αjyjxj〉 −
n∑
i=1

αi(yi(β0 + 〈
n∑
j=1

αjyjxj, xi〉)− (1− ξi))

+ γ

n∑
i=1

ξi −
n∑
i=1

µiξi
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Machine Learning / 5. Non-separable Problems

Dual Problem

L =
1

2
〈

n∑
i=1

αiyixi,

n∑
j=1

αjyjxj〉 −
n∑
i=1

αi(yi(β0 + 〈
n∑
j=1

αjyjxj, xi〉)− (1− ξi))

+ γ

n∑
i=1

ξi −
n∑
i=1

µiξi

=
1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi, xj〉 +

n∑
i=1

αi −
n∑
i=1

αiyiβ0 −
n∑
i=1

n∑
j=1

αiαjyiyj〈xi, xj〉

−
n∑
i=1

αiξi +

n∑
i=1

αiξi

=− 1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi, xj〉 +

n∑
i=1

αi

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2010/2011 41/56



Machine Learning / 5. Non-separable Problems

Dual Problem

The dual problem is

maximize L =− 1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi, xj〉 +

n∑
i=1

αi

w.r.t.
n∑
i=1

αiyi =0

αi ≤γ
αi ≥0

with much simpler constraints.
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Machine Learning / 6. Support Vectors and Kernels

Support Vectors / Separable Case

For points on the right side of the hyperplane (i.e., if a constraint
holds),

yi(β0 + 〈β, xi〉) > 1

then L is maximized by αi = 0: xi is irrelevant.

For points on the wrong side of the hyperplane (i.e., if a
constraint is violated),

yi(β0 + 〈β, xi〉) < 1

then L is maximized for αi →∞.
For separable data, β and β0 needs to be changed to make the
constraint hold.

For points on the margin, i.e.,

yi(β0 + 〈β, xi〉) = 1

αi is some finite value.
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Machine Learning / 6. Support Vectors and Kernels

Support Vectors / Inseparable Case

For points on the right side of the hyperplane,

yi(β0 + 〈β, xi〉) > 1, ξi = 0

then L is maximized by αi = 0: xi is irrelevant.

For points in the margin as well as on the wrong side of the
hyperplane,

yi(β0 + 〈β, xi〉) = 1− ξi, ξi > 0

αi is some finite value.

For points on the margin, i.e.,

yi(β0 + 〈β, xi〉) = 1, ξi = 0

αi is some finite value.

The data points xi with αi > 0 are called support vectors.
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Machine Learning / 6. Support Vectors and Kernels

Decision Function

Due to

β̂ =

n∑
i=1

α̂iyixi,

the decision function

ŷ(x) = sign β̂0 + 〈β̂, x〉
can be expressed using the training data:

ŷ(x) = sign β̂0 +

n∑
i=1

α̂iyi〈xi, x〉

Only support vectors are required, as only for them α̂i 6= 0.

Both, the learning problem and the decision function can be
expressed using an inner product / a similarity measure / a kernel
〈x, x′〉.
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Machine Learning / 6. Support Vectors and Kernels

High-Dimensional Embeddings / The “kernel trick”

Example:
we map points from R2 into the higher dimensional space R6 via

h :

(
x1
x2

)
7→



1√
2x1√
2x2
x21
x22√

2x1x2


Then the inner product

〈h(

(
x1
x2

)
), h(

(
x′1
x′2

)
)〉 = 1 + 2x1x

′
1 + 2x2x

′
2 + x21x

′
1
2

+ x22x
′
2
2

+ 2x1x2x
′
1x
′
2

= (1 + x1x
′
1 + x2x

′
2)

2

can be computed without having to compute h explicitely !
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Machine Learning / 6. Support Vectors and Kernels

Popular Kernels

Some popular kernels are:

linear kernel:

K(x, x′) := 〈x, x′〉 :=

n∑
i=1

xix
′
i

polynomial kernel of degree d:

K(x, x′) := (1 + 〈x, x′〉)d

radial basis kernel / gaussian kernel :

K(x, x′) := e−
||x−x′||2

c

neural network kernel / sigmoid kernel :

K(x, x′) := tanh(a〈x, x′〉 + b)
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Machine Learning / 7. Support Vector Regression

Optimal Hyperplanes as Regularization

Optimal separating hyperplanes

minimize
1

2
||β||2 + γ

n∑
i=1

ξi

w.r.t. yi(β0 + 〈β, xi〉) ≥1− ξi, i = 1, . . . , n

ξ ≥0

β ∈Rp

β0 ∈R

can also be understood as regularization “error + complexity”:

minimize γ
n∑
i=1

[1− yi(β0 + 〈β, xi〉)]+ +
1

2
||β||2

w.r.t. β ∈Rp

β0 ∈R
where the postitive part is defined as

[x]+ :=

{
x, if x ≥ 0
0, else
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Machine Learning / 7. Support Vector Regression

Optimal Hyperplanes as Regularization / Error functions

Specific for the SVM model then is the error function (also often
called loss function).

model error function minimizing function

logistic regression negative
binomial
loglikelihood

log(1 + e−yf(x)) f (x) = log
p(y = +1|x)

p(y = −1|x)

LDA squared
error

(y − f (x))2 f (x) = p(y = +1|x)− p(y = −1|x)

SVM [1− yf (x)]+ f (x) =

{
1, if p(y = +1|x) ≥ 1

2
0, else
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Machine Learning / 7. Support Vector Regression

Optimal Hyperplanes as Regularization / Error functions
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Machine Learning / 7. Support Vector Regression

SVM Regression / Error functions

In regression, squared error sometimes is dominated by outliers,
i.e., points with large residuum, due to the quadratic dependency:

err(y, ŷ) := (y − ŷ)2

Therefore, robust error functions such as the Huber error have
been developed that keep the quadratic form near zero, but are
linear for larger values:

errc(y, ŷ) :=

{
(y−ŷ)2

2 , if |y − ŷ| < c

c|y − ŷ| − c2

2 , else

SVM regression uses the ε-insensitive error:

errc(y, ŷ) :=

{
0, if |y − ŷ| < ε
|y − ŷ| − ε, else
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Machine Learning / 7. Support Vector Regression

SVM Regression / Error functions
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Machine Learning / 7. Support Vector Regression

SVM Regression

Any of these error functions can be used to find optimal
parameters for the linear regression model

f (X) := β0 + 〈β,X〉 + ε

by solving the optimization problem

min.
n∑
i=1

err(yi, β̂0 + 〈β̂, xi〉) +
λ

2
||β̂||2
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Machine Learning / 7. Support Vector Regression

SVM Regression

For the ε-insensitive error, the solution can be shown to have the
form

β̂ =

n∑
i=1

(α̂∗i − α̂i)xi

f̂ (x) =β0 +

n∑
i=1

(α̂∗i − α̂i)〈xi, x〉

where α̂∗i and α̂i are the solutions of the quadratic problem

min ε
n∑
i=1

(α∗i − αi)−
n∑
i=1

yi(α
∗
i − αi) +

1

2

n∑
i=1

n∑
j=1

(α∗i − αi)(α∗j − αj)〈xi, xj〉

s.t. αi ≥ 0

α∗i ≤
1

λ
n∑
i=1

(α∗i − αi) = 0

α∗iαi = 0
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Machine Learning / 7. Support Vector Regression

Summary (1/2)

• Binary classification problems with linear decision boundaries can be
rephrased as finding a separating hyperplane.

• In the linear separable case, there are simple algorithms like
perceptron learning to find such a separating hyperplane.

• If one requires the additional property that the hyperplane should have
maximal margin, i.e., maximal distance to the closest points of both
classes, then a quadratic optimization problem with inequality
constraints arises.

• Quadratic optimization problems without constraints as well as with
equality constraints can be solved by linear systems of equations.
Quadratic optimization problems with inequality constraints require
some more complex methods such as submanifold optimization (a
sequence of linear systems of equations).
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Machine Learning / 7. Support Vector Regression

Summary (2/2)

• Optimal hyperplanes can also be formulated for the inseparable case
by allowing some points to be on the wrong side of the margin, but
penalize for their distance from the margin. This also can be
formulated as a quadratic optimization problem with inequality
constraints.

• The final decision function can be computed in terms of inner products
of the query points with some of the data points (called support
vectors), which allows to bypass the explicit computation of high
dimensional embeddings.
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