

Machine Learning

5. Support Vector Machines (SVMs)

Steffen Rendle

(Slides mainly by Lars Schmidt-Thieme)

Information Systems and Machine Learning Lab (ISMLL) Institute for Business Economics and Information Systems & Institute for Computer Science University of Hildesheim http://www.ismll.uni-hildesheim.de

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

1. Separating Hyperplanes

- 2. Perceptron
- 3. Maximum Margin Separating Hyperplanes
- 4. Digression: Quadratic Optimization
- 5. Non-separable Problems
- 6. Support Vectors and Kernels
- 7. Support Vector Regression

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Separating Hyperplanes

Logistic Regression: Linear Discriminant Analysis (LDA):

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Hyperplanes can be modeled explicitly as

$$H_{\beta,\beta_0} := \{ x \, | \, \langle \beta, x \rangle = -\beta_0 \}, \quad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{pmatrix} \in \mathbb{R}^p, \beta_0 \in \mathbb{R}$$

We will write H_{β} shortly for H_{β,β_0} (although β_0 is very relevant!).

For any two points $x, x' \in H_{\beta}$ we have

$$\langle \beta, x - x' \rangle = \langle \beta, x \rangle - \langle \beta, x' \rangle = -\beta_0 + \beta_0 = 0$$

thus β is orthogonal to all translation vectors in H_{β} , and thus $\beta/||\beta||$ is the **normal vector** of H_{β} .

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Hyperplanes

The projection of a point $x \in \mathbb{R}^p$ onto H_β , i.e., the closest point on H_β to x is given by

$$\pi_{H_{\beta}}(x) := x - \frac{\langle \beta, x \rangle + \beta_0}{\langle \beta, \beta \rangle} \beta$$

Proof:

(i) $\pi x := \pi_{H_{\beta}}(x) \in H_{\beta}$:

$$\begin{split} \langle \beta, \pi_{H_{\beta}}(x) \rangle = &\langle \beta, x - \frac{\langle \beta, x \rangle + \beta_{0}}{\langle \beta, \beta \rangle} \beta \rangle \\ = &\langle \beta, x \rangle - \frac{\langle \beta, x \rangle + \beta_{0}}{\langle \beta, \beta \rangle} \langle \beta, \beta \rangle = -\beta_{0} \end{split}$$

(ii) $\pi_{H_{\beta}}(x)$ is the closest such point to x: For any other point $x' \in H_{\beta}$:

$$||x - x'||^{2} = \langle x - x', x - x' \rangle = \langle x - \pi x + \pi x - x', x - \pi x + \pi x - x' \rangle$$

= $\langle x - \pi x, x - \pi x \rangle + 2 \langle x - \pi x, \pi x - x' \rangle + \langle \pi x - x', \pi x - x' \rangle$
= $||x - \pi x||^{2} + 0 + ||\pi x - x'||^{2}$

as $x - \pi x$ is proportional to β and πx and x' are on H_{β} .

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Hyperplanes

4/56

The **signed distance** of a point $x \in \mathbb{R}^p$ to H_β is given by

$$\frac{\langle \beta, x \rangle + \beta_0}{||\beta||}$$

Proof:

$$x - \pi x = \frac{\langle \beta, x \rangle - \beta_0}{\langle \beta, \beta \rangle} \beta$$

Therefore

$$\begin{aligned} ||x - \pi x||^2 &= \langle \frac{\langle \beta, x \rangle + \beta_0}{\langle \beta, \beta \rangle} \beta, \frac{\langle \beta, x \rangle + \beta_0}{\langle \beta, \beta \rangle} \beta \rangle \\ &= (\frac{\langle \beta, x \rangle + \beta_0}{\langle \beta, \beta \rangle})^2 \langle \beta, \beta \rangle \\ ||x - \pi x|| &= \frac{\langle \beta, x \rangle + \beta_0}{||\beta||} \end{aligned}$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Separating Hyperplanes

For given data

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

with a binary class label $Y \in \{-1, +1\}$ a hyperplane H_{β} is called **separating** if

$$y_i h(x_i) > 0$$
, $i = 1, ..., n$, with $h(x) := \langle \beta, x \rangle + \beta_0$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Linear Separable Data

The data is called **linear separable** if there exists such a separating hyperplane.

In general, if there is one, there are many.

If there is a choice, we need a criterion to narrow down which one we want / is the best.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

- **1. Separating Hyperplanes**
- 2. Perceptron
- 3. Maximum Margin Separating Hyperplanes
- 4. Digression: Quadratic Optimization
- 5. Non-separable Problems
- 6. Support Vectors and Kernels
- 7. Support Vector Regression

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Perceptron as Linear Model

Perceptron is another name for a linear binary classification model (Rosenblatt 1958):

$$Y(X) = \operatorname{sign} h(X), \quad \text{with } \operatorname{sign} x = \begin{cases} +1, \ x > 0 \\ 0, \ x = 0 \\ -1, \ x < 0 \end{cases}$$
$$h(X) = \beta_0 + \langle \beta, X \rangle + \epsilon$$

that is very similar to the logisitic regression model

$$\begin{split} Y(X) = &\operatorname{argmax}_{y} p(Y = y \mid X) \\ p(Y = +1 \mid X) = &\operatorname{logistic}(\langle X, \beta \rangle) + \epsilon = \frac{e^{\sum_{i=1}^{n} \beta_{i} X_{i}}}{1 + e^{\sum_{i=1}^{n} \beta_{i} X_{i}}} + \epsilon \\ p(Y = -1 \mid X) = &1 - p(Y = +1 \mid X) \end{split}$$

as well as to linear discriminant analysis (LDA).

The perceptron does just provide class labels $\hat{y}(x)$ and unscaled certainty factors $\hat{h}(x)$, but no class probabilities $\hat{p}(Y | X)$.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Perceptron as Linear Model

8/56

The perceptron does just provide class labels $\hat{y}(x)$ and unscaled certainty factors $\hat{h}(x)$, but no class probabilities $\hat{p}(Y | X)$.

Therefore, probabilistic fit/error criteria such as maximum likelihood cannot be applied.

For perceptrons, the sum of the certainty factors of misclassified points is used as error criterion:

$$q(\beta, \beta_0) := \sum_{i=1:\hat{y}_i \neq y_i}^n |h_\beta(x_i)| = -\sum_{i=1:\hat{y}_i \neq y_i}^n y_i h_\beta(x_i)$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Perceptron as Linear Model

For learning, gradient descent is used:

Instead of looking at all points at the same time,

stochastic gradient descent is applied where all points are looked at sequentially (in a random sequence).

The update for a single point (x_i, y_i) then is

$$\hat{\beta}^{(k+1)} := \hat{\beta}^{(k)} + \alpha y_i x_i$$
$$\hat{\beta}^{(k+1)}_0 := \hat{\beta}^{(k)}_0 + \alpha y_i$$

with a step length α (often called **learning rate**).

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Perceptron Learning Algorithm

i learn-perceptron(training data X, step length α) : $\hat{\beta} := a$ random vector $\beta \hat{\beta}_0 :=$ a random value 4 **do** errors := 05 <u>**for**</u> $(x, y) \in X$ (in random order) <u>**do**</u> 6 $\underline{\mathbf{if}} y(\hat{\beta}_0 + \langle \hat{\beta}, x \rangle) \le 0$ 7 errors := errors + 18 $\hat{\beta} := \hat{\beta} + \alpha y x$ 9 $\hat{\beta}_0 := \hat{\beta}_0 + \alpha y$ 11 fi 12 od 13 14 while errors > 015 <u>return</u> $(\hat{\beta}, \hat{\beta}_0)$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 10/56

Perceptron Learning Algorithm: Properties

For linear separable data the perceptron learning algorithm can be shown to converge: it finds a separating hyperplane in a finite number of steps.

But there are many problems with this simple algorithm:

- If there are several separating hyperplanes, there is no control about which one is found (it depends on the starting values).
- If the gap between the classes is narrow, it may take many steps until convergence.
- If the data are not separable, the learning algorithm does not converge at all.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

- **1. Separating Hyperplanes**
- 2. Perceptron

3. Maximum Margin Separating Hyperplanes

- 4. Digression: Quadratic Optimization
- 5. Non-separable Problems
- 6. Support Vectors and Kernels
- 7. Support Vector Regression

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 12/56

Maximum Margin Separating Hyperplanes

Many of the problems of perceptrons can be overcome by designing a better fit/error criterion.

Maximum Margin Separating Hyperplanes use the width of the margin, i.e., the distance of the closest points to the hyperplane as criterion:

$$\begin{array}{l} \text{maximize } C\\ \text{w.r.t. } y_i \frac{\beta_0 + \langle \beta, x_i \rangle}{||\beta||} \geq C, \quad i = 1, \dots, n\\ \beta \in \mathbb{R}^p\\ \beta_0 \in \mathbb{R} \end{array}$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 12/56

Journal 2003

Maximum Margin Separating Hyperplanes

As for any solutions β , β_0 also all positive scalar multiples fullfil the equations, we can arbitrarily set

$$||\beta|| = \frac{1}{C}$$

Then the problem can be reformulated as

$$\begin{array}{l} \text{minimize } \frac{1}{2} ||\beta||^2\\ \text{w.r.t. } y_i(\beta_0 + \langle \beta, x_i \rangle) \geq 1, \quad i = 1, \dots, n\\ \beta \in \mathbb{R}^p\\ \beta_0 \in \mathbb{R} \end{array}$$

This problem is a convex optimization problem (quadaratic target function with linear inequality constraints).

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 13/56

Quadratic Optimization

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 14/56 Machine Learning / 3. Maximum Margin Separating Hyperplanes

To get rid of the linear inequality constraints, one usually applies Lagrange multipliers.

The Lagrange (primal) function of this problem is

$$L := \frac{1}{2} ||\beta||^2 - \sum_{i=1}^n \alpha_i (y_i(\beta_0 + \langle \beta, x_i \rangle) - 1)$$

w.r.t. $\alpha_i \ge 0$

For an extremum it is required that

$$\frac{\partial L}{\partial \beta} = \beta - \sum_{i=1}^{n} \alpha_i y_i x_i \stackrel{!}{=} 0$$
$$\Rightarrow \beta = \sum_{i=1}^{n} \alpha_i y_i x_i$$

and

$$\frac{\partial L}{\partial \beta_0} = -\sum_{i=1}^n \alpha_i y_i \stackrel{!}{=} 0$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 15/56

Quadratic Optimization

Input

$$\beta = \sum_{i=1}^{n} \alpha_i y_i x_i, \quad \sum_{i=1}^{n} \alpha_i y_i = 0$$

into

$$L := \frac{1}{2} ||\beta||^2 - \sum_{i=1}^n \alpha_i (y_i(\beta_0 + \langle \beta, x_i \rangle) - 1)$$

yields the dual problem

$$\begin{split} L &= \frac{1}{2} \langle \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}, \sum_{j=1}^{n} \alpha_{j} y_{j} x_{j} \rangle - \sum_{i=1}^{n} \alpha_{i} (y_{i} (\beta_{0} + \langle \sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}, x_{i} \rangle) - 1) \\ &= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle x_{i}, x_{j} \rangle + \sum_{i=1}^{n} \alpha_{i} - \sum_{i=1}^{n} \alpha_{i} y_{i} \beta_{0} - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle x_{i}, x_{j} \rangle \\ &= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle x_{i}, x_{j} \rangle + \sum_{i=1}^{n} \alpha_{i} \end{split}$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 16/56

Quadratic Optimization

The dual problem is

maximize
$$L = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle + \sum_{i=1}^{n} \alpha_i$$

w.r.t. $\sum_{i=1}^{n} \alpha_i y_i = 0$
 $\alpha_i \ge 0$

with much simpler constraints.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 17/56

- **1. Separating Hyperplanes**
- 2. Perceptron
- 3. Maximum Margin Separating Hyperplanes

4. Digression: Quadratic Optimization

- 5. Non-separable Problems
- 6. Support Vectors and Kernels
- 7. Support Vector Regression

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 18/56

Unconstrained Problem

The unconstrained quadratic optimization problem is

minimize
$$f(x) := \frac{1}{2} \langle x, Cx \rangle - \langle c, x \rangle$$

w.r.t. $x \in \mathbb{R}^n$

(with $C \in \mathbb{R}^{n \times n}$ symmetric and positive definite, $c \in \mathbb{R}^n$).

The solution of the unconstrained quadratic optimization problem coincides with the solution of the linear systems of equations

$$Cx = c$$

that can be solved by Gaussian Elimination, Cholesky decomposition, QR decomposition etc.

Proof:

$$\frac{\partial f(x)}{\partial x} = x^T C - c^T \stackrel{!}{=} 0 \Leftrightarrow Cx = c$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 18/56

The quadratic optimization problem with equality constraints İS

minimize
$$f(x) := \frac{1}{2} \langle x, Cx \rangle - \langle c, x \rangle$$

w.r.t. $g(x) := Ax - b = 0$
 $x \in \mathbb{R}^n$

(with $C \in \mathbb{R}^{n \times n}$ symmetric and positive definite, $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$).

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

2003

Lagrange Function

Definition 1. Consider the optimization problem minimize f(x)subject to $g(x) \le 0$ h(x) = 0 $x \in \mathbb{R}^n$

with $f : \mathbb{R}^n \to \mathbb{R}$, $g : \mathbb{R}^n \to \mathbb{R}^m$ and $h : \mathbb{R}^n \to \mathbb{R}^p$.

The Lagrange function of this problem is defined as $L(x,\lambda,\nu) := f(x) + \langle \lambda, g(x) \rangle + \langle \nu, h(x) \rangle$ λ and ν are called Lagrange multipliers.

The dual problem is defined as

$$\begin{array}{l} \text{maximize } \bar{f}(\lambda,\nu) := \inf_{x} L(x,\lambda,\nu) \\ \text{subject to } \lambda \geq 0 \\ \lambda \in \mathbb{R}^{m}, \quad \nu \in \mathbb{R}^{p} \end{array}$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 20/56

Lower Bounds Lemma

Lemma 1. The dual function yields lower bounds for the optimal value of the problem, i.e.,

 $\bar{f}(\lambda,\nu) \leq f(x^*), \quad \forall \lambda \geq 0, \nu$

Proof:

For feasible x, i.e., $g(x) \leq 0$ and h(x) = 0:

$$L(x,\lambda,\nu) = f(x) + \langle \lambda, g(x) \rangle + \langle \nu, h(x) \rangle \le f(x)$$

Hence

$$\bar{f}(\lambda,\nu) = \inf_{x} L(x,\lambda,\nu) \le f(x)$$

and especially for $x = x^*$.

Karush-Kuhn-Tucker Conditions

Theorem 1 (Karush-Kuhn-Tucker Conditions). *If* (*i*) x is optimal for the problem, (*ii*) λ, ν are optimal for the dual problem and (*iii*) $f(x) = \overline{f}(\lambda, \nu)$, then the following conditions hold:

$$\begin{aligned} g(x) &\leq 0\\ h(x) &= 0\\ \lambda &\geq 0\\ \lambda_i g_i(x) &= 0\\ \frac{\partial f(x)}{\partial x} + \langle \lambda, \frac{\partial g(x)}{\partial x} \rangle + \langle \nu, \frac{\partial h(x)}{\partial x} \rangle = 0 \end{aligned}$$

If *f* is convex and *h* is affine, then the KKT conditions are also sufficient.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 22/56

Karush-Kuhn-Tucker Conditions

Proof: " \Rightarrow "

$$f(x) = \bar{f}(\lambda, \nu) = \inf_{x'} f(x') + \langle \lambda, g(x') \rangle + \langle \nu, h(x') \rangle$$
$$\leq f(x) + \langle \lambda, g(x) \rangle + \langle \nu, h(x) \rangle \leq f(x)$$

and therefore equality holds, thus

$$\langle \lambda, g(x) \rangle = \sum_{i=1}^{m} \lambda_i g_i(x) = 0$$

and as all terms are non-positive: $\lambda_i g_i(x) = 0$. Since *x* minimizes $L(x', \lambda, \nu)$ over *x'*, the derivative must vanish:

$$\frac{\partial L(x,\lambda,\nu)}{\partial x} = \frac{\partial f(x)}{\partial x} + \langle \lambda, \frac{\partial g(x)}{\partial x} \rangle + \langle \nu, \frac{\partial h(x)}{\partial x} \rangle = 0$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 23/56

Karush-Kuhn-Tucker Conditions

Proof (ctd.): "⇐" Now let f be convex. Since $\lambda \ge 0$, $L(x', \lambda, \nu)$ is convex in x'. As its first derivative vanishes at x, x minimizes $L(x', \lambda, \nu)$ over x', and thus:

$$\bar{f}(\lambda,\nu) = L(x,\lambda,\nu) = f(x) + \langle \lambda, g(x) \rangle + \langle \nu, h(x) \rangle = f(x)$$

Therefore is x optimal for the problem and λ, ν optimal for the dual problem.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

The quadratic optimization problem with equality constraints is

minimize
$$f(x) := \frac{1}{2} \langle x, Cx \rangle - \langle c, x \rangle$$

w.r.t. $h(x) := Ax - b = 0$
 $x \in \mathbb{R}^n$

(with $C \in \mathbb{R}^{n \times n}$ symmetric and positive definite, $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$).

The KKT conditons for the optimal solution x^*, ν^* are:

$$\begin{aligned} h(x^*) &= Ax^* - b = 0\\ \frac{\partial f(x^*)}{\partial x} + \langle \nu^*, \frac{\partial h(x^*)}{\partial x} \rangle = Cx^* - c + A^T \nu^* = 0 \end{aligned}$$

which can be written as a single system of linear equations

$$\begin{pmatrix} C & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} x^* \\ \nu^* \end{pmatrix} = \begin{pmatrix} c \\ b \end{pmatrix}$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 25/56

r

Inequality Constraints

The quadratic optimization problem with inequality constraints is

minimize
$$f(x) := \frac{1}{2} \langle x, Cx \rangle - \langle c, x \rangle$$

w.r.t. $g(x) := Ax - b \le 0$
 $x \in \mathbb{R}^n$

(with $C \in \mathbb{R}^{n \times n}$ symmetric and positive definite, $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$).

Inequality constraints are more complex to solve. But they can be reduced to a sequence of equality constraints.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 26/56

At each point $x \in \mathbb{R}^n$ one distinguishes between active constraints g_i with $g_i(x) = 0$ and inactive constraints g_i with $g_i(x) < 0$. Active set:

$$I_0(x) := \{ i \in \{1, \dots, m\} \mid g_i(x) = 0 \}$$

Inactive constraints stay inactive in a neighborhood of x and can be neglected there.

Active constraints are equality constraints that identify points at the border of the feasible area.

We can restrict our attention to just the points at the actual border, i.e., use the equality constraints

$$h_i(x) := g_i(x), \quad i \in I_0$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 27/56

If there is an optimal point x^* found with optimal lagrange multiplier $\nu^* \geq 0$:

$$\frac{\partial f(x^*)}{\partial x} + \sum_{i \in I_0} \nu_i^* \frac{\partial h_i(x^*)}{\partial x} = 0$$

then x^* with

$$\lambda_i^* := \begin{cases} \nu_i^*, & i \in I_0 \\ 0, & \text{else} \end{cases}$$

fullfils the KKT conditions of the original problem:

$$\lambda_i^* g_i(x^*) = \begin{cases} \nu_i^* h_i(x^*) = 0, & i \in I_0 \\ 0g_i(x^*) = 0, & \text{else} \end{cases}$$

and

$$\frac{\partial f(x^*)}{\partial x} + \langle \lambda^*, \frac{\partial h(x^*)}{\partial x} \rangle = \frac{\partial f(x^*)}{\partial x} + \sum_{i \in I_0} \nu_i^* \frac{\partial h_i(x^*)}{\partial x} = 0$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 28/56

If the optimal point x^* on the border has an optimal lagrange multiplier ν^* with $\nu_i^* < 0$ for some $i \in I_0$,

$$\frac{\partial f(x^*)}{\partial x} + \sum_{i \in I_0} \nu_i^* \frac{\partial h_i(x^*)}{\partial x} = 0$$

then f decreases along $h_i := g_i$, thus we can decrease f by moving away from the border by dropping the constraint i.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 29/56


```
i minimize-submanifold(target function f, inequality constraint function g) :
 2 x := a random vector with g(x) \leq 0
I_0 := I_0(x) := \{i \mid g_i(x) = 0\}
4 do
       x^* := \operatorname{argmin}_x f(x) subject to g_i(x) = 0, i \in I_0
 5
       while f(x^*) < f(x) do
6
                \alpha := \max\{\alpha \in [0, 1] \mid q(x + \alpha(x^* - x)) \le 0\}
 7
                x := x + \alpha (x^* - x)
 8
                I_0 := I_0(x)
 9
                x^* := \operatorname{argmin}_x f(x) subject to g_i(x) = 0, i \in I_0
10
11
       od
       Let \nu^* be the optimal Lagrange multiplier for x^*
12
       \underline{\mathbf{if}} \ \nu^* \ge 0 \text{ break } \underline{\mathbf{fi}}
13
    choose i \in I_0 : \nu_i^* < 0
14
      I_0 := I_0 \setminus \{i\}
15
16 while true
17 return x
```

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 30/56

The dual problem for the maximum margin separating hyperplane is such a constrained quadratic optimization problem:

maximize
$$L = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle + \sum_{i=1}^{n} \alpha_i$$

w.r.t. $\sum_{i=1}^{n} \alpha_i y_i = 0$
 $\alpha_i \ge 0$

Set
$$f := -L$$

 $C_{i,j} := y_i y_j \langle x_i, x_j \rangle$
 $c_i := 1$
 $x_i := \alpha_i$
 $A_i := (0, 0, \dots, 0, -1, 0, \dots, 0)$ (with the -1 at column *i*), $i = 1, \dots, n$
 $b_i := 0$
 $h(x) := \sum_{i=1}^n \alpha_i y_i$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 31/56

Find a maximum margin separating hyperplane for the following data:

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 32/56

$$C = (y_i y_j \langle x_i, x_y \rangle)_{i,j} = \begin{pmatrix} 2 & -6 & -7 \\ -6 & 18 & 21 \\ -7 & 21 & 25 \end{pmatrix}, \quad c = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},$$
$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
$$h(\alpha) = \langle \alpha, y \rangle = -\alpha_1 + \alpha_2 + \alpha_3$$

As the equality constraint h always needs to be met, it can be added to C:

$$C' = \begin{pmatrix} C & y \\ y^T & 0 \end{pmatrix}, = \begin{pmatrix} 2 & -6 & -7 & -1 \\ -6 & 18 & 21 & 1 \\ -7 & 21 & 25 & 1 \\ -1 & 1 & 1 & 0 \end{pmatrix},$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 33/56

Let us start with a random

$$x = \begin{pmatrix} 2\\1\\1 \end{pmatrix}$$

that meets both constraints:

$$g(x) = Ax - b = \begin{pmatrix} -2\\ -1\\ -1 \end{pmatrix} \le 0$$
$$h(x) = \langle y, x \rangle = -2 + 1 + 1 = 0$$

As none of the inequality constaints is active: $I_0(x) = \emptyset$. Step 1: We have to solve

$$C'\left(\begin{array}{c}x\\\mu\end{array}\right) = \left(\begin{array}{c}c\\0\end{array}\right)$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

This yields

$$x^* = \begin{pmatrix} 0.5\\ 1.5\\ -1.0 \end{pmatrix}$$

which does not fulfill the (inactive) inequality constraint $x_3 \ge 0$.

So we look for

$$x + \alpha(x^* - x) = \begin{pmatrix} 2\\1\\1 \end{pmatrix} + \alpha \begin{pmatrix} -1.5\\0.5\\-2 \end{pmatrix} \ge 0$$

that fulfills all inequality constraints and has large step size $\alpha.$ Obviously, $\alpha=0.5$ is best and yields

$$x := x + \alpha(x^* - x) = \begin{pmatrix} 1.25 \\ 1.25 \\ 0 \end{pmatrix}$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 35/56

Step 2: Now the third inequality constraint is active: $I_0(x) = \{3\}.$

$$C'' = \begin{pmatrix} C' & y & -e_3 \\ y^T & 0 & 0 \\ -e_3^T & 0 & 0 \end{pmatrix}, = \begin{pmatrix} 2 & -6 & -7 & -1 & 0 \\ -6 & 18 & 21 & 1 & 0 \\ -7 & 21 & 25 & 1 & -1 \\ -1 & 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \end{pmatrix},$$

and we have to solve

$$C''\begin{pmatrix}x\\\mu\\\nu^*\end{pmatrix} = \begin{pmatrix}c\\0\\0\end{pmatrix}$$

which yields

$$x^* = \begin{pmatrix} 0.25\\ 0.25\\ 0 \end{pmatrix}, \quad \nu^* = 0.5$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 36/56

$$x := x^*$$

As the lagrange multiplier $\nu^* \ge 0$, the algorithm stops: *x* is optimal.

So we found the optimal

$$\alpha = \begin{pmatrix} 0.25\\ 0.25\\ 0 \end{pmatrix}$$

(called x in the algorithm!)

and can compute

$$\beta = \sum_{i=1}^{n} \alpha_i y_i x_i = 0.25 \cdot (-1) \cdot \begin{pmatrix} 1\\1 \end{pmatrix} + 0.25 \cdot (+1) \cdot \begin{pmatrix} 3\\3 \end{pmatrix} = \begin{pmatrix} 0.5\\0.5 \end{pmatrix}$$

 β_0 can be computed from the original constraints of the points with $\alpha_i > 0$ which have to be sharp, i.e.,

$$y_1(\beta_0 + \langle \beta, x_1 \rangle) = 1 \quad \Rightarrow \quad \beta_0 = y_1 - \langle \beta, x_1 \rangle = -1 - \langle \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rangle = -2$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 37.

- **1. Separating Hyperplanes**
- 2. Perceptron
- **3. Maximum Margin Separating Hyperplanes**
- 4. Digression: Quadratic Optimization
- **5. Non-separable Problems**
- 6. Support Vectors and Kernels
- 7. Support Vector Regression

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Optimal Hyperplane

Inseparable problems can be modeled by allowing some points to be on the wrong side of the hyperplane.

Hyperplanes are better if (i) the fewer points are on the wrong side and (ii) the closer these points are to the hyperplane (modeled by **slack variables** ξ_i).

$$\begin{array}{l} \text{minimize } \frac{1}{2} ||\beta||^2 + \gamma \sum_{i=1}^n \xi_i \\ \text{w.r.t. } y_i(\beta_0 + \langle \beta, x_i \rangle) \geq 1 - \xi_i, \quad i = 1, \dots, n \\ \xi \geq 0 \\ \beta \in \mathbb{R}^p \\ \beta_0 \in \mathbb{R} \end{array}$$

This problem also is a convex optimization problem (quadaratic target function with linear inequality constraints).

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 38/56

Dual Problem

Compute again the dual problem:

$$\begin{split} L := & \frac{1}{2} ||\beta||^2 + \gamma \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i (y_i (\beta_0 + \langle \beta, x_i \rangle) - (1 - \xi_i)) - \sum_{i=1}^n \mu_i \xi_i \\ \text{w.r.t.} \ \alpha_i \ge & 0 \\ \mu_i \ge & 0 \end{split}$$

For an extremum it is required that

$$\frac{\partial L}{\partial \beta} = \beta - \sum_{i=1}^{n} \alpha_i y_i x_i \stackrel{!}{=} 0 \qquad \qquad \Rightarrow \beta = \sum_{i=1}^{n} \alpha_i y_i x_i$$

and

$$\frac{\partial L}{\partial \beta_0} = -\sum_{i=1}^n \alpha_i y_i \stackrel{!}{=} 0$$

and

$$\frac{\partial L}{\partial \xi_i} = \gamma - \alpha_i - \mu_i \stackrel{!}{=} 0 \qquad \qquad \Rightarrow \alpha_i = \gamma - \mu_i$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 39/56

Input

$$\beta = \sum_{i=1}^{n} \alpha_i y_i x_i, \quad \sum_{i=1}^{n} \alpha_i y_i = 0, \quad \alpha_i = \gamma - \mu_i$$

into

$$L := \frac{1}{2} ||\beta||^2 + \gamma \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i (y_i(\beta_0 + \langle \beta, x_i \rangle) - (1-\xi)) - \sum_{i=1}^n \mu_i \xi_i$$

yields the dual problem

$$L = \frac{1}{2} \langle \sum_{i=1}^{n} \alpha_i y_i x_i, \sum_{j=1}^{n} \alpha_j y_j x_j \rangle - \sum_{i=1}^{n} \alpha_i (y_i (\beta_0 + \langle \sum_{j=1}^{n} \alpha_j y_j x_j, x_i \rangle) - (1 - \xi_i))$$
$$+ \gamma \sum_{i=1}^{n} \xi_i - \sum_{i=1}^{n} \mu_i \xi_i$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 40/56

Dual Problem

$$\begin{split} L = &\frac{1}{2} \langle \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}, \sum_{j=1}^{n} \alpha_{j} y_{j} x_{j} \rangle - \sum_{i=1}^{n} \alpha_{i} (y_{i} (\beta_{0} + \langle \sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}, x_{i} \rangle) - (1 - \xi_{i})) \\ &+ \gamma \sum_{i=1}^{n} \xi_{i} - \sum_{i=1}^{n} \mu_{i} \xi_{i} \\ = &\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle x_{i}, x_{j} \rangle + \sum_{i=1}^{n} \alpha_{i} - \sum_{i=1}^{n} \alpha_{i} y_{i} \beta_{0} - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle x_{i}, x_{j} \rangle \\ &- \sum_{i=1}^{n} \alpha_{i} \xi_{i} + \sum_{i=1}^{n} \alpha_{i} \xi_{i} \\ &= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle x_{i}, x_{j} \rangle + \sum_{i=1}^{n} \alpha_{i} \end{split}$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 41/56

The dual problem is maximize $L = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle + \sum_{i=1}^{n} \alpha_i$ w.r.t. $\sum_{i=1}^{n} \alpha_i y_i = 0$ $\alpha_i \leq \gamma$ $\alpha_i \geq 0$

with much simpler constraints.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 42

- **1. Separating Hyperplanes**
- 2. Perceptron
- 3. Maximum Margin Separating Hyperplanes
- 4. Digression: Quadratic Optimization
- 5. Non-separable Problems
- 6. Support Vectors and Kernels
- 7. Support Vector Regression

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 43/56

John Provide Alight

Support Vectors / Separable Case

For points on the right side of the hyperplane (i.e., if a constraint holds),

 $y_i(\beta_0 + \langle \beta, x_i \rangle) > 1$

then *L* is maximized by $\alpha_i = 0$: x_i is irrelevant.

For points on the wrong side of the hyperplane (i.e., if a constraint is violated),

$$y_i(\beta_0 + \langle \beta, x_i \rangle) < 1$$

then *L* is maximized for $\alpha_i \to \infty$.

For separable data, β and β_0 needs to be changed to make the constraint hold.

For points on the margin, i.e.,

$$y_i(\beta_0 + \langle \beta, x_i \rangle) = 1$$

 α_i is some finite value.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 43/56

Support Vectors / Inseparable Case

For points on the right side of the hyperplane,

$$y_i(\beta_0 + \langle \beta, x_i \rangle) > 1, \quad \xi_i = 0$$

then *L* is maximized by $\alpha_i = 0$: x_i is irrelevant.

For points in the margin as well as on the wrong side of the hyperplane,

$$y_i(\beta_0 + \langle \beta, x_i \rangle) = 1 - \xi_i, \quad \xi_i > 0$$

 α_i is some finite value.

For points on the margin, i.e.,

$$y_i(\beta_0 + \langle \beta, x_i \rangle) = 1, \quad \xi_i = 0$$

 α_i is some finite value.

The data points x_i with $\alpha_i > 0$ are called **support vectors**.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 44/56

Due to

$$\hat{\beta} = \sum_{i=1}^{n} \hat{\alpha}_i y_i x_i,$$

the decision function

$$\hat{y}(x) = \operatorname{sign} \hat{\beta}_0 + \langle \hat{\beta}, x \rangle$$

can be expressed using the training data:

$$\hat{y}(x) = \operatorname{sign} \hat{\beta}_0 + \sum_{i=1}^n \hat{\alpha}_i y_i \langle x_i, x \rangle$$

Only support vectors are required, as only for them $\hat{\alpha}_i \neq 0$.

Both, the learning problem and the decision function can be expressed using an inner product / a similarity measure / a kernel $\langle x, x' \rangle$.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 45/56

High-Dimensional Embeddings / The "kernel trick"

Example:

we map points from R^2 into the higher dimensional space \mathbb{R}^6 via

$$h: \begin{pmatrix} x_1\\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 1\\ \sqrt{2}x_1\\ \sqrt{2}x_2\\ x_1^2\\ x_2^2\\ \sqrt{2}x_1x_2 \end{pmatrix}$$

Then the inner product

$$\langle h\begin{pmatrix} x_1\\ x_2 \end{pmatrix} \rangle, h\begin{pmatrix} x'_1\\ x'_2 \end{pmatrix} \rangle \rangle = 1 + 2x_1x'_1 + 2x_2x'_2 + x_1^2{x'_1}^2 + x_2^2{x'_2}^2 + 2x_1x_2x'_1x'_2$$
$$= (1 + x_1x'_1 + x_2x'_2)^2$$

can be computed without having to compute h explicitly !

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 46/56

Some popular kernels are:

linear kernel:

$$K(x, x') := \langle x, x' \rangle := \sum_{i=1}^{n} x_i x'_i$$

 \mathbf{m}

polynomial kernel of degree d:

$$K(x, x') := (1 + \langle x, x' \rangle)^d$$

radial basis kernel / gaussian kernel :

$$K(x, x') := e^{-\frac{||x-x'||^2}{c}}$$

neural network kernel / sigmoid kernel :

$$K(x, x') := \tanh(a\langle x, x'\rangle + b)$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 47/56

- **1. Separating Hyperplanes**
- 2. Perceptron
- 3. Maximum Margin Separating Hyperplanes
- 4. Digression: Quadratic Optimization
- 5. Non-separable Problems
- 6. Support Vectors and Kernels

7. Support Vector Regression

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 48/56 **Optimal Hyperplanes as Regularization**

Optimal separating hyperplanes

$$\begin{array}{l} \text{minimize } \frac{1}{2} ||\beta||^2 + \gamma \sum_{i=1}^n \xi_i \\ \text{w.r.t. } y_i(\beta_0 + \langle \beta, x_i \rangle) \geq 1 - \xi_i, \quad i = 1, \dots, n \\ \xi \geq 0 \\ \beta \in \mathbb{R}^p \\ \beta_0 \in \mathbb{R} \end{array}$$

can also be understood as regularization "error + complexity":

$$\begin{array}{l} \text{minimize } \gamma \sum_{i=1}^{n} [1 - y_i(\beta_0 + \langle \beta, x_i \rangle)]_+ + \frac{1}{2} ||\beta||^2 \\ \text{w.r.t. } \beta \in \mathbb{R}^p \\ \beta_0 \in \mathbb{R} \end{array}$$

where the postitive part is defined as

$$[x]_{+} := \begin{cases} x, \text{ if } x \ge 0\\ 0, \text{ else} \end{cases}$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 48/56

2003

Optimal Hyperplanes as Regularization / Error functions

Specific for the SVM model then is the error function (also often called **loss function**).

model	error function		minimizing function
logistic regression	negative binomial loglikelihood	$\log(1 + e^{-yf(x)})$	$f(x) = \log \frac{p(y=+1 x)}{p(y=-1 x)}$
LDA	squared error	$(y - f(x))^2$	f(x) = p(y = +1 x) - p(y = -1 x)
SVM		$[1 - yf(x)]_+$	$f(x) = \begin{cases} 1, \text{ if } p(y = +1 x) \ge \frac{1}{2} \\ 0, \text{ else} \end{cases}$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 49/56

Optimal Hyperplanes as Regularization / Error functions

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 50/56

SVM Regression / Error functions

In regression, squared error sometimes is dominated by outliers, i.e., points with large residuum, due to the quadratic dependency:

$$\operatorname{err}(y,\hat{y}) := (y - \hat{y})^2$$

Therefore, robust error functions such as the **Huber error** have been developed that keep the quadratic form near zero, but are linear for larger values:

$$\operatorname{err}_{c}(y, \hat{y}) := \begin{cases} rac{(y-\hat{y})^{2}}{2}, & ext{if } |y - \hat{y}| < c \ c|y - \hat{y}| - rac{c^{2}}{2}, & ext{else} \end{cases}$$

SVM regression uses the ϵ -insensitive error:

$$\operatorname{err}_{c}(y,\hat{y}) := \begin{cases} 0, & \text{if } |y - \hat{y}| < \epsilon \\ |y - \hat{y}| - \epsilon, \text{ else} \end{cases}$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

SVM Regression / Error functions

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 52/56

Any of these error functions can be used to find optimal parameters for the linear regression model

$$f(X) := \beta_0 + \langle \beta, X \rangle + \epsilon$$

by solving the optimization problem

min.
$$\sum_{i=1}^{n} \operatorname{err}(y_i, \hat{\beta}_0 + \langle \hat{\beta}, x_i \rangle) + \frac{\lambda}{2} ||\hat{\beta}||^2$$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 53/56

i=1

SVM Regression

For the ϵ -insensitive error, the solution can be shown to have the form

$$\hat{\beta} = \sum_{i=1}^{n} (\hat{\alpha}_i^* - \hat{\alpha}_i) x_i$$
$$\hat{f}(x) = \beta_0 + \sum_{i=1}^{n} (\hat{\alpha}_i^* - \hat{\alpha}_i) \langle x_i, x \rangle$$

where $\hat{\alpha}_i^*$ and $\hat{\alpha}_i$ are the solutions of the quadratic problem

$$\min \epsilon \sum_{i=1}^{n} (\alpha_i^* - \alpha_i) - \sum_{i=1}^{n} y_i (\alpha_i^* - \alpha_i) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (\alpha_i^* - \alpha_i) (\alpha_j^* - \alpha_j) \langle x_i, x_j \rangle$$

s.t. $\alpha_i \ge 0$
 $\alpha_i^* \le \frac{1}{\lambda}$
 $\sum_{i=1}^{n} (\alpha_i^* - \alpha_i) = 0$
 $\alpha_i^* \alpha_i = 0$

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011 54/56

Summary (1/2)

- Binary classification problems with linear decision boundaries can be rephrased as finding a separating hyperplane.
- In the linear separable case, there are simple algorithms like perceptron learning to find such a separating hyperplane.
- If one requires the additional property that the hyperplane should have maximal margin, i.e., maximal distance to the closest points of both classes, then a quadratic optimization problem with inequality constraints arises.
- Quadratic optimization problems without constraints as well as with equality constraints can be solved by linear systems of equations. Quadratic optimization problems with inequality constraints require some more complex methods such as submanifold optimization (a sequence of linear systems of equations).

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011

Summary (2/2)

- Optimal hyperplanes can also be formulated for the inseparable case by allowing some points to be on the wrong side of the margin, but penalize for their distance from the margin. This also can be formulated as a quadratic optimization problem with inequality constraints.
- The final decision function can be computed in terms of inner products of the query points with some of the data points (called support vectors), which allows to bypass the explicit computation of high dimensional embeddings.

Steffen Rendle, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2010/2011