Machine Learning Exercise Sheet 4

Prof. Dr. Dr. Lars Schmidt-Thieme, Osman Akcatepe Information Systems and Machine Learning Lab (ISMLL) University of Hildesheim

> 29. November 2011 Deadline 5. December, 14.15

Section 1: IRLS (5 Points)

Given the following data:

у	X	y	X
0	9.5	1	11.1
0	9.6	1	11.1
0	9.7	1	11.1
0	9.8	1	11.5
0	9.9	1	11.8
0	10.5	1	11.9
0	11.0	1	12.1
0	11.2	1	12.2
0	11.5	1	12.5
0	11.7	1	12.6
0	12.1	1	12.6

a)

Use the linear regression (in R) for the target variable y. Calculate the mean squared error of the model for the given data.

b)

Calculate a logistic regression model for the target variable y. Use the algorithm *iteratively reweighted least squares* (on the paper, you can solve the occurring equation system with calculator). Stop it after the second iteration. Calculate the mean squared error of the model for the given data.

c)

Plot the data and the estimated functions from (a) and (b). Discusss the results.

Exercise 2: Statistical models in R (3 Points)

Read the capital 11 from "An Introduction to R".

a)

With which formula a linear regression would be stated without intercept? Write a formula for a (non-trivial) polynomial regression.

b)

How does one make predictions with a model calculated by means of lm()?

Exercise 3: Linear and logistic regression in Weka (2 Points)

Carry out a linear and a logistic regression with a regression and a classification dataset of your choice in Weka.

a)

Which of the indicated error measures are meaningful in order to assess a regression and classification model? Name respectively a measure and give reasons shortly.

b)

Tinker in both cases with the parameter ridge and check out, whether this leads to better results.