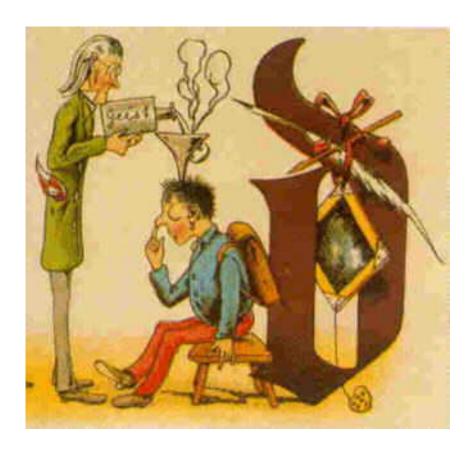


Machine Learning

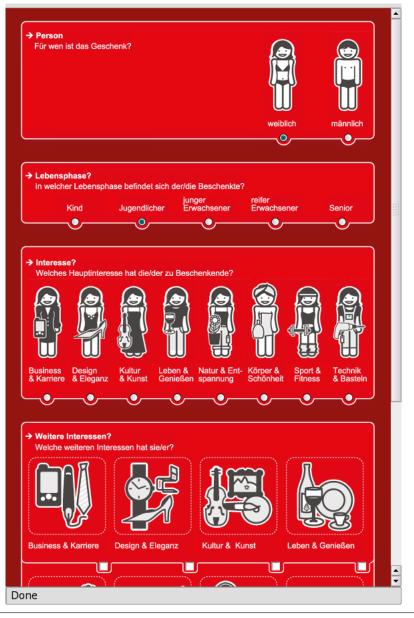
Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Business Economics and Information Systems
& Institute for Computer Science
University of Hildesheim
http://www.ismll.uni-hildesheim.de

- 1. What is Machine Learning?
- 2. Overview
- 3. Organizational stuff



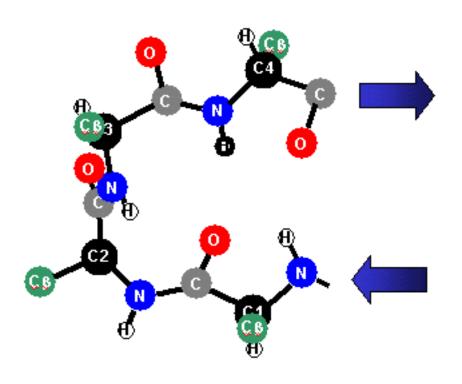
1. Information Systems: predict what customers will buy.



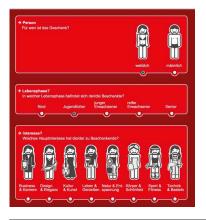
2. Robotics: Build a map of the environment based on sensor signals.



3. Bioinformatics: predict the 3d structure of a molecule based on its sequence.

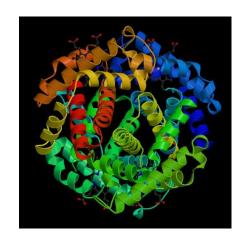


Information Systems



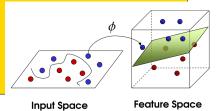
Robotics

Bioinformatics

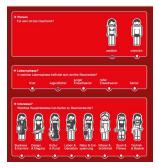


Many **Further Applications!**

MACHINE LEARNING

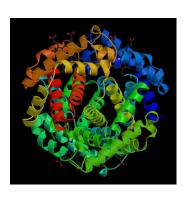


Information Systems



Robotics

Bioinformatics



Many Further Applications!

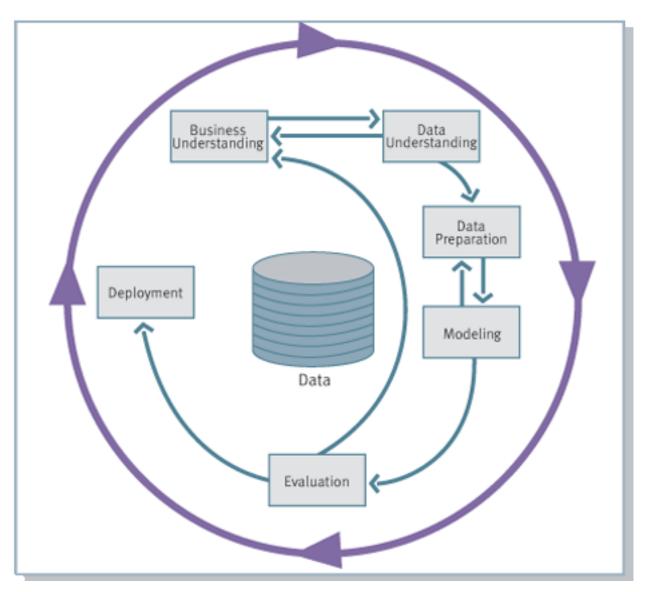
MACHINE LEARNING

OPTIMIZATION

NUMERICS

ALGORITHMICS

Process models



Cross Industry Standard Process for Data Mining (CRISP-DM)

One area of research, many names (and aspects)

machine learning

historically, stresses learning logical or rule-based models (vs. probabilistic models).

data mining

stresses the aspect of large datasets and complicated tasks.

knowledge discovery in databases (KDD)

stresses the embedding of machine learning tasks in applications, i.e., preprocessing & deployment; data mining is considered the core process step.

data analysis

historically, stresses multivariate regression methods and many unsupervised tasks.

pattern recognition

name preferred by engineers, stresses cognitive applications such as image and speech analysis.

applied statistics

stresses underlying statistical models, testing and methodical rigor.

- 1. What is Machine Learning?
- 2. Overview
- 3. Organizational stuff

Machine Learning Problems

- 1. Density Estimation
- 2. Regression / Supervised Learning
- 3. Classification / Supervised Learning
- 4. Optimal Control / Reinforcement Learning
- 5. Clustering / Unsupervised Learning
- 6. Dimensionality Reduction
- 7. Association Analysis

Machine Learning Problems

- 1. Density Estimation
- 2. Regression
- 3. Classification
- 4. Optimal Control
- 5. Clustering
- 6. Dimensionality Reduction
- 7. Association Analysis

Supervised Learning

Reinforcement Learning

Unsupervised Learning

Example 1: duration and waiting times for erruptions of the "Old Faithful" geyser in Yellowstone National Park, Wyoming (Azzalini and Bowman 1990).

continuous measurement from August 1 to August 15, 1985:

- duration (in min.),
- waiting time (in min.)

duration:

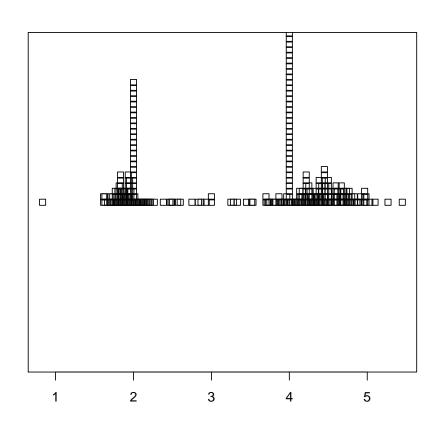
4.016667, 2.15, 4.0, 4.0, 4.0, 2.0,

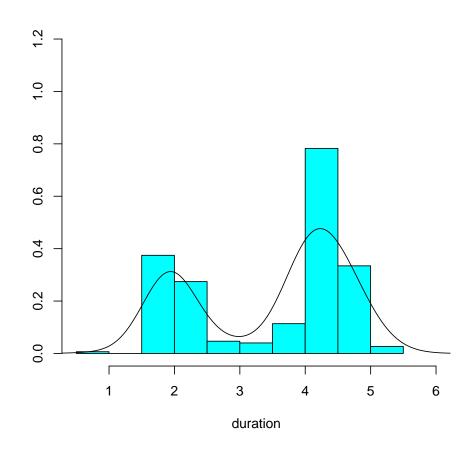
4.383333, 4.283333, 2.033333,

4.833333, . . .

What is a typical duration? waiting time?

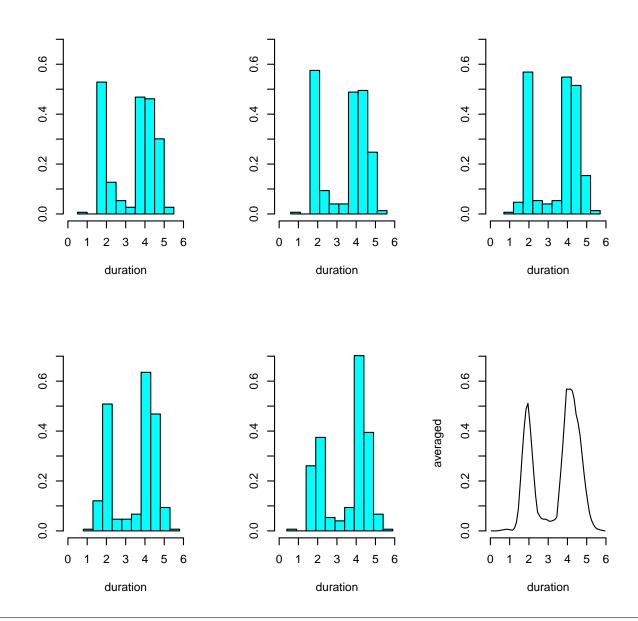
durations: 4.016667, 2.15, 4.0, 4.0, 4.0, 2.0, 4.383333, 4.283333, ...

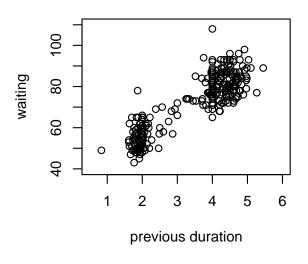


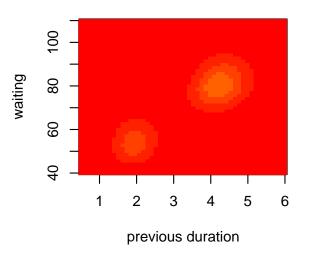


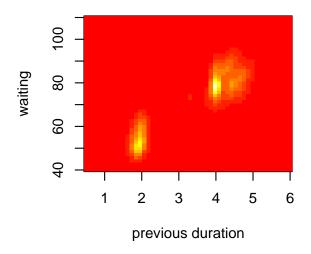
strip chart

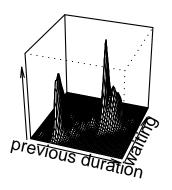
histogram











2. Regression

Example 2: how does gas consumption depend on external temperature? (Whiteside, 1960s).

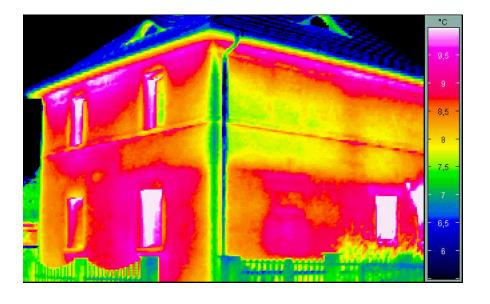
weekly measurements of

- average external temperature
- total gas consumption (in 1000 cubic feets)

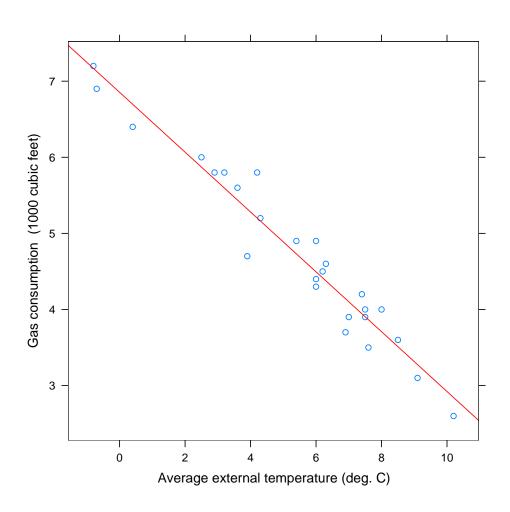
A third variable encodes two heating seasons, before and after wall insulation.

How does gas consumption depend on external temperature?

How much gas is needed for a given temperature?

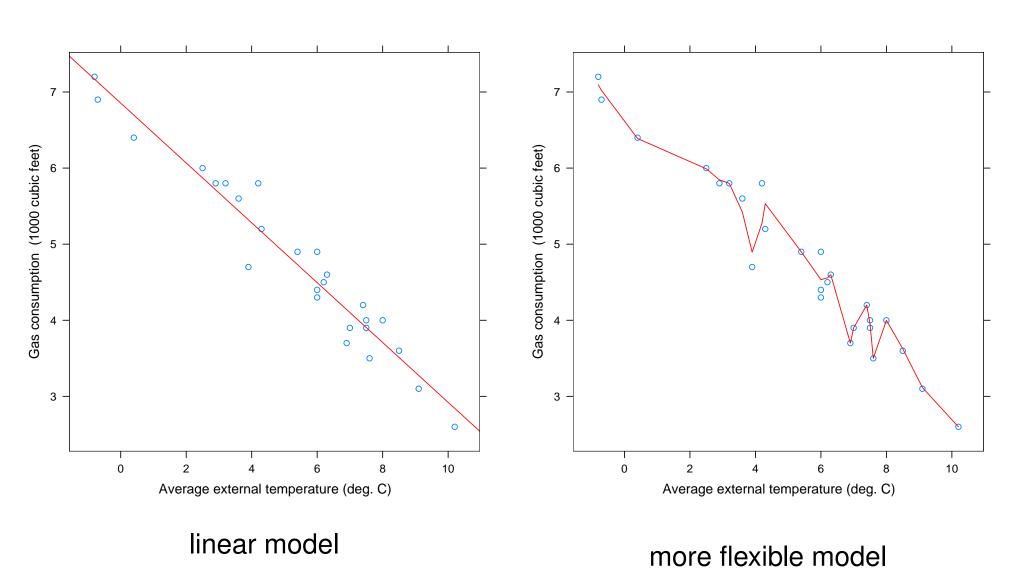


2. Regression



linear model

2. Regression



7) Suntilities Parisition 2003

3. Classification / Supervised Learning

Example 3: classifying iris plants (Anderson 1935).

150 iris plants (50 of each species):

- species: setosa, versicolor, virginica
- length and width of sepals (in cm)
- length and width of petals (in cm)

iris setosa

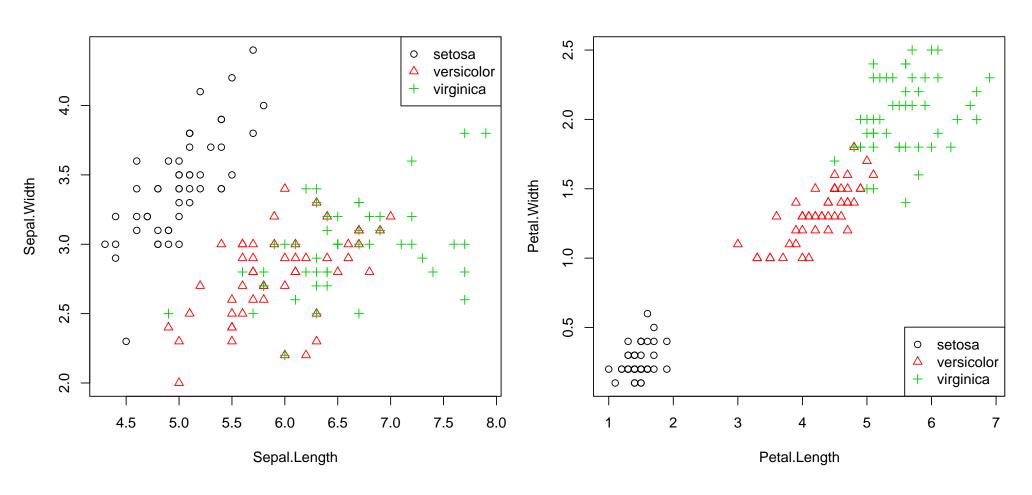
iris versicolor

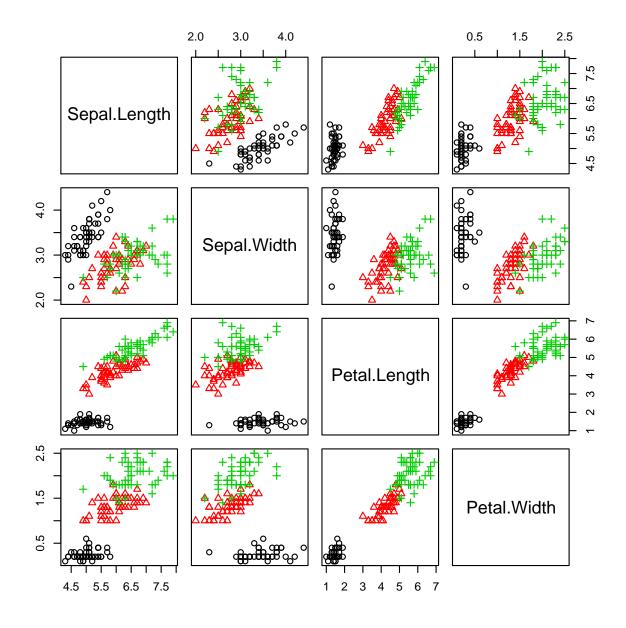
iris virginica

See iris species database (http://www.badbear.com/signa).

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.10	3.50	1.40	0.20	setosa
2	4.90	3.00	1.40	0.20	setosa
3	4.70	3.20	1.30	0.20	setosa
4	4.60	3.10	1.50	0.20	setosa
5	5.00	3.60	1.40	0.20	setosa
i	:	:	:	:	
51	7.00	3.20	4.70	1.40	versicolor
52	6.40	3.20	4.50	1.50	versicolor
53	6.90	3.10	4.90	1.50	versicolor
54	5.50	2.30	4.00	1.30	versicolor
ŧ		:	:	:	
101	6.30	3.30	6.00	2.50	virginica
102	5.80	2.70	5.10	1.90	virginica
103	7.10	3.00	5.90	2.10	virginica
104	6.30	2.90	5.60	1.80	virginica
105	6.50	3.00	5.80	2.20	virginica
÷	:	:	:	1	
150	5.90	3.00	5.10	1.80	virginica

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Machine Learning, winter term 2011/12





Example 4: classifying email (lingspam corpus)

Subject: query: melcuk (melchuk)

does anybody know a working email (or other) address for igor melcuk (melchuk)?

legitimate email ("ham")

Subject: '

hello! come see our naughty little city made especially for adults http://208.26.207.98/freeweek/enter.html once you get here, you won't want to leave!

spam

How to classify email messages as spam or ham?

Subject: query: melcuk (melchuk)

does anybody know a working email (or other) address for igor melcuk (melchuk)?

 \Rightarrow

′ a	1
address	1
anybody	1
does	1
email	1
for	1
igor	1
know	1
melcuk	2
melchuk	2
or	1
other	1
query	1
working	1 /

lingspam corpus:

- email messages from a linguistics mailing list.
- 2414 ham messages.
- 481 spam messages.
- 54742 different words.
- an example for an early, but very small spam corpus.

All words that occur at least in each second spam or ham message on average (counting multiplicities):

	!	your	will	we	all	mail	from	do	our	email
spam	14.18	7.45	4.36	3.42	2.88	2.77	2.69	2.66	2.46	2.24
ham	0.38	0.46	1.93	0.94	0.83	0.79	1.60	0.57	0.30	0.39

	out	report	order	as	free	language	university
spam	2.19	2.14	2.09	2.07	2.04	0.04	0.05
ham	0.34	0.05	0.27	2.38	0.97	2.67	2.61

example rule:

if freq("!")≥ 7 and freq("language")=0 and freq("university")=0 then spam, else ham

Should we better normalize for message length?

4. Reinforcement Learning

A class of learning problems where the correct / optimal action never is shown, but only positive or negative feedback for an action actually taken is given.

Example 5: steering the mountain car.

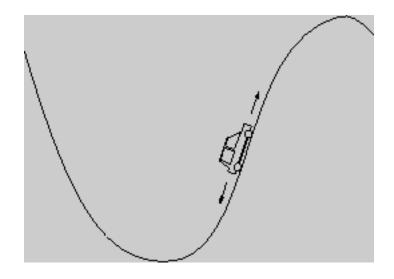
Observed are

- x-position of the car,
- velocity of the car

Possible actions are

- accelerate left,
- accelerate right,
- do nothing

The goal is to steer the car on top of the right hill.



4. Reinforcement Learning / TD-Gammon

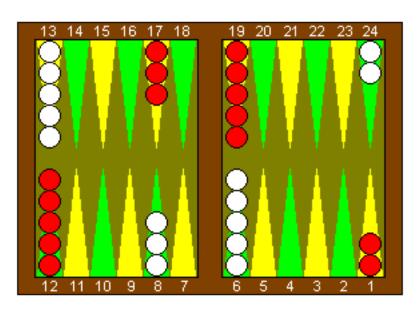


Figure 2. An illustration of the normal opening position in backgammon. TD-Gammon has sparked a near-universal conversion in the way experts play certain opening rolls. For example, with an opening roll of 4-1, most players have now switched from the traditional move of 13-9, 6-5, to TD-Gammon's preference, 13-9, 24-23. TD-Gammon's analysis is given in Table 2.

Program	Hidden Units	Training Games	Opponents	Results
TD-Gam 0.0	40	300,000	Other Programs	Tied for Best
TD-Gam 1.0	80	300,000	Robertie, Magriel,	-13 pts / 51 games
TD-Gam 2.0	40	800,000	Var. Grandmasters	-7 pts / 38 games
TD-Gam 2.1	80	1,500,000	Robertie	-1 pts / 40 games
TD-Gam 3.0	80	1,500,000	Kazaros	+6 pts / 20 games

5. Cluster Analysis

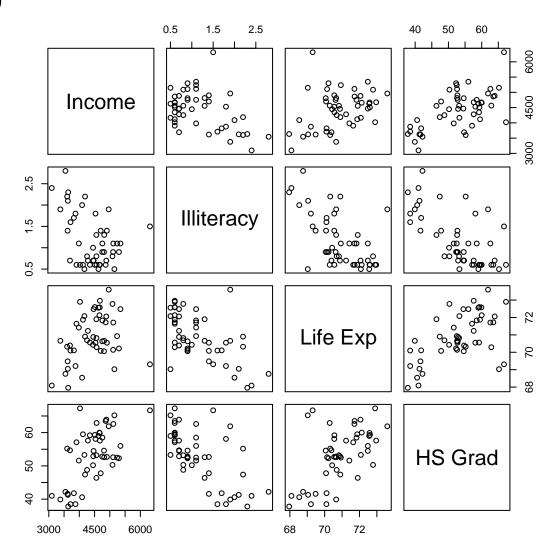
Finding groups of similar objects.

Example 6: sociographic data of the 50 US states in 1977.

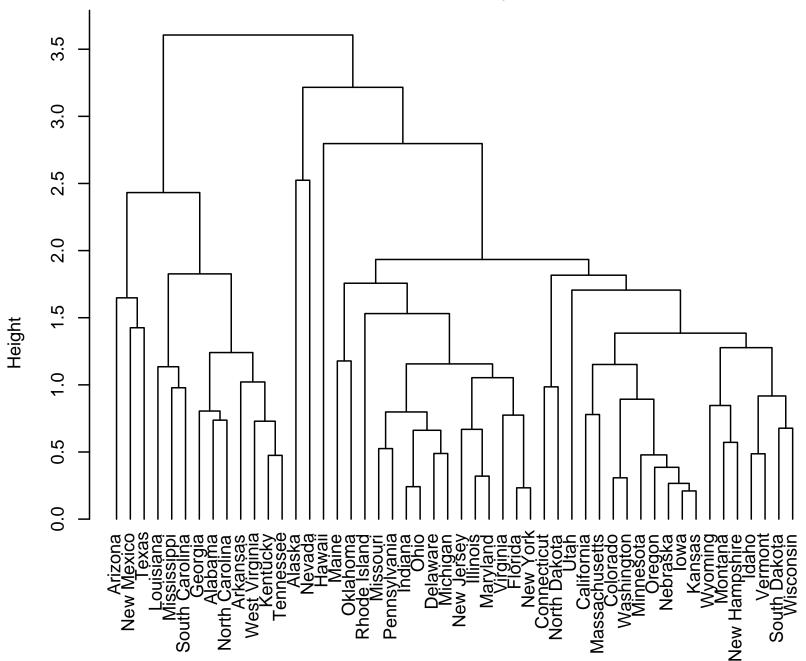
state dataset:

- income (per capita, 1974),
- illiteracy (percent of population, 1970),
- life expectancy (in years, 1969–71),
- percent high-school graduates (1970).

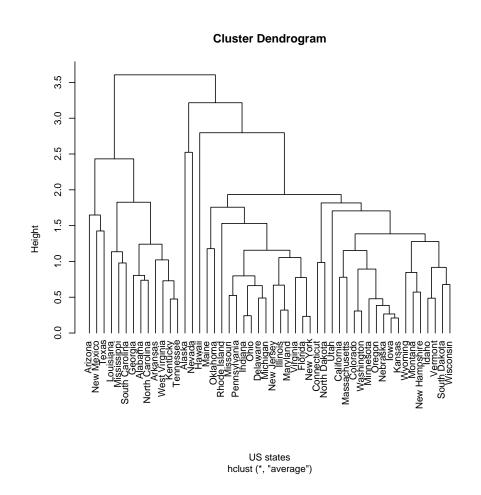
and some others not used here.

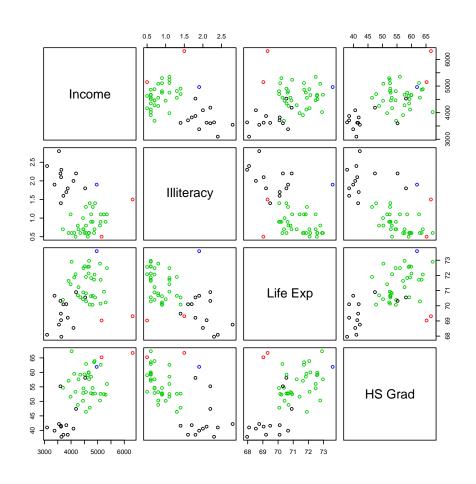


5. Cluster Analysis



5. Cluster Analysis





black: Arizona et al., red: Alaska & Nevada, green: Californa et al., blue: Hawaii.

7. Association Analysis

Association rules in large transaction datasets:

- look for products frequently bought together (frequent itemsets).
- look for rules in buying behavior (association rules)

Examples:

If beer and pampers, then pizza
 If bread, then milk

(confidence= 0.75) (confidence=0.75)

cid	beer	bread	icecream	milk	pampers	pizza
1	+	_	_	+	+	+
2	+	+	_	_	+	+
3	+	_	+	_	+	+
4	_	+	_	+	_	+
5	_	+	+	+	_	_
6	+	+	_	+	+	_

- 1. What is Machine Learning?
- 2. Overview
- 3. Organizational stuff

Exercises and tutorials

- There will be a weekly sheet with two exercises handed out each Tuesday in the lecture.
 1st sheet will be handed out next Tue. 1.11.
- Solutions to the exercises can be submitted until next Tuesday before the lecture 1st sheet is due Wed. 8.11.
- Exercises will be corrected.
- Tutorials each Monday 14–16,
 1st tutorial at Mon. 31.10.
- Successfull participation in the tutorial gives up to 10% bonus points for the exam.

Exam and credit points

- There will be a written exam at end of term (2h, 4 problems).
- The course gives 8 ECTS (3+2 SWS).
- The course can be used in
 - Wirtschaftsinformatik MSc / Informatik / Gebiet KI & ML
 - IMIT MSc. (neu) / Informatik / Gebiet KI & ML
 - IMIT MSc. (alt) / IT Machine Learning,
 - IMIT MSc. (alt) / BW Business Intelligence,
 - as well as in any BSc program.

Some books

- Richard O. Duda, Peter E. Hart, David G. Stork (2001): Pattern Classification, Springer.
- Trevor Hastie, Robert Tibshirani, Jerome Friedman (2009): *The Elements of Statistical Learning*, Springer.

Also available online as PDF at http://www-stat.stanford.edu/~tibs/ElemStatLearn/

- Christopher M. Bishop (2007):
 Pattern Recognition and Machine Learning, Springer.
- W. N. Venables, B. D. Ripley (2002):
 Modern Applied Statistics with S, Springer.
- Tom Mitchell (1997):
 Machine Learning, McGraw-Hill.
- Christopher M. Bishop (1996):
 Neural Networks for Pattern Recognition, Oxford University Press.

Some First Machine Learning / Data Mining Software

- R (v2.13.2, 30.9.2011; http://www.r-project.org).
- Weka (v3.6.5, 7.12.2010; http://www.cs.waikato.ac.nz/~ml/).
- SAS Enterprise Miner (commercially).

Public data sets:

• UCI Machine Learning Repository (http://www.ics.uci.edu/~mlearn/)

 UCI Knowledge Discovery in Databases Archive (http://kdd.ics.uci.edu/)