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Machine Learning / 1. Distance Measures Sprt
Motivation ® 2003 7

So far, regression and classification methods covered in the
lecture can be used for

e numerical variables,

e binary variables (re-interpreted as numerical), and

e nominal variables (coded as set of binary indicator variables).
Often one is also interested in more complex variables such as
¢ set-valued variables,

e sequence-valued variables (e.g., strings),

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
1/48

Course on Machine Learning, winter term 2011/12



Machine Learning / 1. Distance Measures Sprt
Motivation ® 2003 7

There are two kinds of approaches to deal with such variables:

feature extraction:
try to derive binary or numerical variables,
then use standard methods on the feature vectors.

kernel methods:
try to establish a distance measure between two variables,

then use methods that use only distances between objects
(but no feature vectors).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Machine Learning / 1. Distance Measures Sprt
Distance measures & 2005 ¥

Let d be a distance measure (also called metric) on a set X,

l.e.,
d:)('xX%RSr

with
1. d is positiv definite: d(xz,y) > 0and d(z,y) =0 & x =y

2. d is symmetric: d(z,y) = d(y, x)

3. d is subadditive: d(z, z) < d(x,y) + d(y, 2)
(triangle inequality)

(forall z,y,z € X.)

Example: Euclidean metric on X := R":

n

d(z,y) = (Z(ﬂfz — ;)%

1=1

D[ —

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2011/12 3/48



Machine Learning / 1. Distance Measures 3 % %
Minkowski Metric / L, metric b S

Minkowski Metric / L, metric on X := R":

n

d(z,y) = (3 |w; — yil?)s

1=1

withp e R, p > 1.

p = 1 (taxicab distance; Manhattan distance):
d(z,y) = Z z; — il
1=1

p = 2 (euclidean distance):

n

d(z,y) = (Z(% —v;)°)

1=1

p = oo (maximum distance; Chebyshev distance):

DO —

d(x,y) = mfalx |z — v

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
4/48
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Machine Learning / 1. Distance Measures g% %
Minkowski Metric / L, metric / Example Ky

Example:
1 2
r=\131], y=14
4 1

dr,(x,y)=[1=2|+[3—4|+[4—-1=14+1+3=5

d,(z,y) =/ (1 =22+ (3—42+(4—-12=v1+149 =11 ~ 3.32

dLOO<CC,y> :max{u R 2|7 |3 R 4|7 ‘4 o 1|} — max{l, 173} =3

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2011/12 5/48



Machine Learning / 1. Distance Measures Sprt
Similarity measures ® a0 °

Instead of a distance measure sometimes similarity measures

are used, i.e.,
sim: A x X — R(‘f

with
e Sim is symmetric: sim(z,y) = sim(y, ).

Some similarity measures have stronger properties:
e sim is discerning: sim(z,y) < land sim(z,y)=1<x =y

e SiM(z, z) > sim(x,y) + sim(y, z) — 1.

Some similarity measures have values in [—1, 1] or even R
where negative values denote “dissimilarity”.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
6/48

Course on Machine Learning, winter term 2011/12



Machine Learning / 1. Distance Measures Sprt
Distance vs. Similarity measures ® 200 ©

A discerning similarity measure can be turned into a semi-metric
(pos. def. & symmetric, but not necessarily subadditive) via

d(x,y) :=1—sim(z,y)

In the same way, a metric can be turned into a discerning

similarity measure
(with values eventually in | — oo, 1]).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
7/48

Course on Machine Learning, winter term 2011/12



Machine Learning / 1. Distance Measures Sprt
Cosine Similarity 5 2000

The angle between two vectors in R" is used as similarity
measure: cosine similarity:

- (@, y)
sim(z,y) = arccos(||x||2 Tl
Example:
1 2
=131, y=14
4 1
1-243-4+4-1 18

sim(x, y) = arccos = arccos
o) V1I+9+16v4+16+ 1 V26+/21

~ arccos 0.77 ~ 0.69

cosine similarity is not discerning as vectors with the same
direction but of arbitrary length have angle 0 and thus similarity 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
8/48

Course on Machine Learning, winter term 2011/12



Machine Learning / 1. Distance Measures 3 % %
Distances for Nominal Variables b S

For binary variables there is only one reasonable distance
measure:

. 1ifz=
dlx,y) =1—=Ix=y) withl(z=y) = { 0 othervgise

This coincides with the L., distance for the indicator/dummy
variables.

The same distance measure is useful for nominal variables with
more than two possible values.

For hierarchical variables, i.e., a nominal variable with levels
arranged in a hierarchy, there are more advanced distance
measures (not covered here).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2011/12 9/48
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Machine Learning / 1. Distance Measures

Distances for Set-valued Variables

wing
-..n"{,;;
Eat

3

%\3

For set-valued variables (which values are subsets of a set A) the
Hamming distance often is used:

dz,y) =@ \y) U y\z)| =[{ac AlI(a €x)# I(acy)}
(the number of elements contained in only one of the two sets).

Example:
d({a’7 67 p? Z}? {a’7 b7 n}) — 57 d({a’7 67p7 l}? {a’7 67 g? n? 07 T}) — 6

Also often used is the similarity measure Jaccard coefficient:

|z Nyl

sim(z,y) = TUy
Example:

. 1 : 2
SIm({a’ €, D, l}7 {CL, b7 TL}) — 67 Slm({aa ¢, D, l}7 {aa ¢, 49,10, T}) — g

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2011/12 10/48



Machine Learning / 1. Distance Measures Sprt
Distances for Strings / Sequences 5 2000

edit distance / Levenshtein distance:
d(x,y) := minimal number of deletions, insertions or substitions to transform z in y

Examples:
d(man, men) =1
d(house, spouse) =2

d(order, express order) =8

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
11/48

Course on Machine Learning, winter term 2011/12



Machine Learning / 1. Distance Measures Sprt
Distances for Strings / Sequences S oo

The edit distance is computed recursively. With
L1 = (Jiz")zle,...,z' = (z1,79,...,23), 1€N
we compute the number of operations to transform z,; into y;.; as

c(xy.4, yl:j) = min{ c(x1,_1, y1:j) + 1, // delete z;, x1.-1 ~ Y14
c(T14, y1:-1) + 1, /I 214 ~ y1.j-1, 1INS€rt y;
c(T1i-1,Y1:j—1) + L(x; # y;)} I 2121 ~ y1.5—1, SUbstitute y; for x;

starting from

c(x1.0,y1:5) = c(D,915) == 7 /insertyy, ...y,
C(ZELZ‘, ylz()) = C(l’l;i, @) = ¢ // delete Ti1y..., L

Such a recursive computing scheme is called dynamic
programming.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
12/48

Course on Machine Learning, winter term 2011/12
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Machine Learning / 1. Distance Measures Sprt
Distances for Strings / Sequences 5 2000

Example: compute d(excused, exhausted).

QO 8 T2 2 v +~ 0 &
— DN LW R Ol O =] 00 O

01234567
|| excused

Ny

<

\
S

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2011/12 13/48
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Machine Learning / 1. Distance Measures Sprt
Distances for Strings / Sequences 5 2000

Example: compute d(excused, exhausted).

d 98776543
e 87665H 434
t 76554334
S 60443234
U 54332345
a 43222345
h 32112345
x 21012345
e 10123456
01234567
yljl/xli]| e x cu sed

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2011/12 13/48
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Machine Learning / 1. Distance Measures Sprt
Distances for Strings / Sequences 5 2000

Example: compute d(excused, exhausted).

D 8 Q2 & »v» <+~ 0 &

O — N W Ut oY =1 00 ©
DL O~ DN Wk oty -3
LSO L O ) N W gt I
O W DN — = N W s Tt 3

Sk LWOMNDDMNDDMNDNWERE O
WO B W W W WN WK ot

DO TR R R W W W
Q. ~T D LU OO e W

7]

Ny

<

\
S

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2011/12 13/48
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3. Parzen Windows

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
14/48

Course on Machine Learning, winter term 2011/12



Machine Learning / 2. k-Nearest Neighbor Method 3 % %
Neighborhoods % S

Let d be a distance measure.

For a dataset
DCXxY

and r € X let
D = {(z1,51), (2,92), - -+ (T, Yn)}

be an enumeration with increasing distance to z, i.e.,
d(x,x;) < d(x,x;41) (ties broken arbitrarily).

The first k € N points of such an enumeration, i.e.,

Ni(z) = {(z1,11), (22, %2), - .. (T, Y) }
are called a k-neighborhood of = (in D).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2011/12 14/48



Machine Learning / 2. k-Nearest Neighbor Method Sprt
Nearest Neighbor Regression ® 200 ©

The k-nearest neighbor regressor

The k-nearest neighbor classifier
. 1
p(Y =ylz) =~ > Iy=y)
(z",y") €Ny ()
and then predict the class with maximal predicted probability
Y (z) = argmax, .y, p(Y =y | z)
l.e., the majority class w.r.t. the classes of the neighbors.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
15/48

Course on Machine Learning, winter term 2011/12



Machine Learning / 2. k-Nearest Neighbor Method Sprt
Decision Boundaries & 2008 ¥

For 1-nearest neighbor, the predictor space is partitioned in
regions of points that are closest to a given data point:

region ,(zy), region(xs), . .., region(x,)

with
region,(z) == {2’ € X |d(2',2) < d(2',2") V(2" y") € D}

These regions often are called cells, the whole partition a
Voronoi tesselation.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
16/48

Course on Machine Learning, winter term 2011/12



Machine Learning / 2. k-Nearest Neighbor Method

Decision Boundaries
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Machine Learning / 2. k-Nearest Neighbor Method
Decision Boundaries
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Machine Learning / 2. k-Nearest Neighbor Method
Expected error

epfwung
Q”é?qﬁw

To assess the quality of a classifier y(z), one can use the
expected error, i.e., the probability to predict the wrong class if

cases are picked at random:

plerror) = E(I(y # y)) = / I(y # y)dx = / (1=p(Y =g(x)|z))p(z)dz

X X

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2011/12 18/48



Machine Learning / 2. k-Nearest Neighbor Method Sp %
Bayes Classifier > 200 ¥

The minimal expected error can be achieved, if for each point x
the class y with the largest conditional probability p(y | =) is
predicted, i.e.,

Y (x) = argmax, p(y | x)

This classifier is called Bayes classifier y*,
its error Bayes error p*(error).

The Bayes classifier assumes the ideal case that the conditional
class probabilities p(Y | X') are known.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2011/12 19/48



Machine Learning / 2. k-Nearest Neighbor Method Sprt
Bayes error ® 2008 ¥

In the case of a deterministic dependency of y on z,
i.e., for each x there is an y with p(y | x) = 1,

the Bayes error is
p*(error) =0

In the case that for each z there is a uniform distribution of the

classes y,
l.e., for k classes p(y | z) = 1/k for all y,
the Bayes error is maximal

k—1

pr(error) = —

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
20/48
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Machine Learning / 2. k-Nearest Neighbor Method 3 %’5’%
Error rate for nearest-neighbor rule (Cover and Hart 1967) %o S

If we have unlimited data, the error rate of the nearest neighbor
classifier is bound as follows:
k
p*(error) < lim p,(error) < p*(error)(2 — —1p*(error))

n—,oo

where p,(error) denotes the error rate for the nearest neighbor
classifier in a sample of n points.

Roughly spoken “at least half of the classification information in
an infite data set resides in the nearest neighbor” (Duda et al.

2001).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2011/12 21/48
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Machine Learning / 2. k-Nearest Neighbor Method
Error rate for nearest-neighbor rule / proof

gy &,

3

%\3

A strict proof of the error bounds is not so easy. A more informal
argument is as follows (cf. Duda et al. 2001, p. 179-182):

For x, denote by 2/ the nearest neighbor of z, in a sample of n
points.

pu(error|azo, ) = 1= plyo =y, 4 = ylwo.2),) =1 = > _ p(yo = ylzo)p(y), = ylz})
Y Y

i, (errorlan) = lin [ p(errorlao, p(a ),

n—0o0
= lim / (1= pyo = ylzo)p(y), = ylz)) (@) |z0)dz),
Yy

n—oo

_ /(1 = plyo = ylzo)plyy, = ylay,))d(x;, — wo)dz,
=1 = plyo = ylzo)’

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2011/12 22/48
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Machine Learning / 2. k-Nearest Neighbor Method
Error rate for nearest-neighbor rule / proof

N &y,
é\.
\C
Lsat

Now let y*(z) := argmax, p(y|z) the Bayes classifier:
> oy = ylwo)” =plyo = ¥* (o) lzo)* + Y plyo = ylao)’
y y#y*(zo)

1
>(1 — p*(error|zg))® + mp*(error\xo)2

k
=1 — 2p*(error|zg) + ﬁp*(errodxof

because the sum is minimal if all p(yy = y|x() are equal, and thus

1 E S 1 *
p(yo = ylzo) = m(l — p(Yo =y (2o)|20)) = 1P (error|x)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
23/48
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TSI
BTSN

%,ﬁ

&%

epfwung
Q”é?qﬁw

Machine Learning / 2. k-Nearest Neighbor Method
Error rate for nearest-neighbor rule / proof

Then we continue
lim py(error|ag) = 1— = * < 2p*(error|zg)———
im py( kN Zp(yo ylzo)™ < 2p*( |z0) L _1

n—00
Y

*(error|azg)*

Now

lim py(error) = lim /pn(error\xo)p(xo)dxo

n—oo n—oo

k
< 2p*(error S
< [ 2w (errorian) -
p*(error\xo)Qp(xo)dxo

p*(err0r|$0)2>p<$o>d$o

* k

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
24/48
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Machine Learning / 2. k-Nearest Neighbor Method
Error rate for nearest-neighbor rule / proof

And finally as

V (p*(error)) (p*(error|zg) — p*(error))*p(xg)dwo

p*(error|zy)*p(xg)dzy — p*(error)? > 0

|
——

= /p*(error\xo)zp(xo)dafo >p’(error)*

we get

k

lim p,(error) <2p*(error) — p— p*(error|zy)*p(zo)dxg
n—oo —

<2p*(error) — ﬁp*(error)2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
25/48

Course on Machine Learning, winter term 2011/12



aefsitdy

VA ;

2003

&%

Machine Learning / 2. k-Nearest Neighbor Method
Complexity of k-Nearest Neighbor Classifier

Eat

%g‘f'x'-l ng

The k-Nearest Neighbor classifier does not need any learning
algorithm as it just stores all the training examples.

On the other hand, predicting using a k-nearest neighbor
classifier is slow:

e To predict the class of a new point z, the distance d(z, z;) from
x to each of the n training examples (z1, 1), ..., (z,, y,) has to
be computed.

e If the predictor space is X := R?, for one such computation we
need O(p) operations.

e We then keep track of the k£ points with the smallest distance.

S0 in total one needs O(npk) operations.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2011/12 26/48



Machine Learning / 2. k-Nearest Neighbor Method g“p
Accelerations: partial distances & 2000

In practice, nearest neighbor classifiers often can be accelerated
by several methods.

Partial distances:
Compute the distance to each training point ' only partially, e.g.,

As d, is non-decreasing in r, once d,(x, x’') exceeds the k-th
smallest distance computed so far, the training point 2’ can be
dropped.

This is a heuristic:

it may accelerate computations, but it also may slow it down

(as there are additional comparisions of the partial distances with
the k smallest distance).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2011/12 27/48



Machine Learning / 2. k-Nearest Neighbor Method Sprt
Accelerations: search trees 5 20 ¥

Search trees:
Do not compute the distance of a new point x to all training

examples, but

1. organize the training examples as a tree (or a DAG) with
e sets of training examples at the leaves and

e a prototype (e.g., the mean of the training examples at all
descendent leaves) at each intermediate node.

2. starting at the root, recursively
e compute the distance to all children of the actual node and

e branch to the child with the smallest distance,

3. compute distances only to training examples in the leaf finally
found.

This is an approximation.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2011/12 28/48
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Machine Learning / 2. k-Nearest Neighbor Method
Accelerations: search trees
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Machine Learning / 2. k-Nearest Neighbor Method
Accelerations: search trees
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Editing / Pruning / Condensing:
shrink the set of training data points,

e.g., select a subset of the original training data points.

Example: remove all points with cells that are surrounded by cells
of points of the same class.

Xedited .= {(z,y) € X |3(2,¢y) € X, R(z') N R(z) # 0 and ¢ # y}

This basic editing algorithm

e retains the decision function,

e has complexity O(d?’nL%J logn)
(with |z]| := max{n € N|n < z}; Duda et al. 2001, p. 186).

See e.g., Ottmann/Widmayer 2002, p. 501-515 for computing
Voronoi diagrams in two dimensions.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2011/12

30/48



TSI
BTSN

Machine Learning / 2. k-Nearest Neighbor Method Sprt
Accelerations: editing ® 200 ©

1 knn-edit-training-data(training data X ) :
2 compute Voronoi cells R(x) V(z,y) € X,
3 esp. Voronoi neighbors N(z) := {(2/,y') € X || R(z") N R(x) # 0}

4 F =1

5 for (z,y) € X do

6 hasNeighborOfOtherClass := false
7 for (2/,y') € N(x) do

8 if y#y

9 hasNeighborOfOtherClass := true
10 fi

11 od

12 if not hasNeighborOfOtherClass

13 E:=FEU{(z,y)}

14 fi

15 0od

16 for (x,y) € £ do

7 X=X \{(z,y)}
18 od

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2011/12 31/48
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Accelerations: editing
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Machine Learning / 2. k-Nearest Neighbor Method

Accelerations: editing
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1. Distance Measures

2. k-Nearest Neighbor Method

3. Parzen Windows
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Machine Learning / 3. Parzen Windows Seppi
Example ® a0 ¥
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Figure 8: Points generated by the model y = sin(4x) + N (0, 1/3) with
x ~ unif(0, 1).
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Machine Learning / 3. Parzen Windows

Example / k-Nearest-Neighbor
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Figure 9: Points generated by the model y = sin(4x) + N (0, 1/3) with
x ~ unif(0, 1). 30-nearest-neighbor regressor.
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Machine Learning / 3. Parzen Windows Sprt
k-Nearest Neighbor is locally constant ® 200 ©

k-nearest neighbor models are

e based on discrete decisions if a point is a k-nearest
neighbor or not,

e in effect, locally constant,

e and thus not continuous.

Discrete decisions can be captured by binary window

functions,
e, instead of
| 9y Zﬂ? No(za) Y
K(x, ) = L, it (z,y) € Ni(zo) i(z0) = <,y>2 (o)
10, otherwise
Z(l’,y)eX K<5U> 330>y

() —
y< O> Z(w,y)eX K(SC,QZ‘()>
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Machine Learning / 3. Parzen Windows Sprt
k-Nearest Neighbor is locally constant 5 2003

In k-nearest neighbor the size of the window varies from
point to point: it depends on the density of the data:

in dense parts
the effective window size is small,

In sparse parts
the effective window size is large.

Alternatively, it is also possible to set the size of the
windows to a constant A, e.qg.,

L 1, If |CE — ZC()‘ < A
(@, @) = { 0, otherwise
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Machine Learning / 3. Parzen Windows S
Kernel Regression 5

Instead of discrete windows, one typically uses

continuous windows, i.e., continuous weights
K(z,x)

that reflect the distance of a training point = to a

prediction point z(, called kernel or Parzen window,

e.g.,

_ Jz=ao] TR
K(x,xo)::{l o = <A

0, otherwise

Instead of a binary neighbor/not-neighbor decision, a
continuous kernel captures a “degree of neighborship”.

Kernels can be used for prediction via kernel
regression, esp. Nadaraya-Watson kernel-weighted
average:

Z(x,y)eX K('CE? 330)9
Z(az,y)eX K(‘CE? 1’0)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
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Machine Learning / 3. Parzen Windows Seppi
Epanechnikov Kernel ® 2005

Kernels are similarity measures:
the closer two points, the larger the kernel value.

Epanechnikov kernel
Ki(z,y) =D (@)

with

(1—1%), t<1
0, otherwise

The constant A € R* is called bandwidth.
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Machine Learning / 3. Parzen Windows

More kernels

Tri-cube kernel

D(t) = { 8 — %),

Gaussian kernel
1

D(t) ::m

The Epanechnikov and Tri-cube kernel have compact

support [xg — A\, xp + Al

The Gaussian kernel has noncompact support, A acts as

standard deviation.

otherwise

A
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Kernels % oo S
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Machine Learning / 3. Parzen Windows Sprt
Example / Epanechnikov Kernel, A = 0.2 ® a0 ¥
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Machine Learning / 3. Parzen Windows Swp%
Choosing the Bandwidth ® a0 °

If the bandwidth ) is small
larger variance — as averaged over fewer points
smaller bias — as closer instances are used
= risks to be too bumpy

If the bandwidth ) is large
smaller variance — as averaged over more points
larger bias — as instances further apart are used
= risks to be too rigid / over-smoothed

The bandwidth X is a parameter (sometimes called a
hyperparameter) of the model that needs to be
optimized / estimated by data.
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Machine Learning / 3. Parzen Windows 3% %
Example / Epanechnikov Kernel, various bandwidths Ky

- ° o —— lambda=1
° ° ° —— lambda=0.8
° —— lambda=0.6
lambda=0.4
3 — lambda=0.2
lambda=0.1
lambda=0.05
L0
L -
>
o
S -
Lo
o‘ —
|
=
- [ [ [ [ [ [
0.0 0.2 0.4 0.6 0.8 1.0
X

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2011/12 43/48



.q.aTSiIéilp&

%,ﬁ

&

epfwung
Q”é?qﬁw

Machine Learning / 3. Parzen Windows
Space-averaged Estimates

The probability that an instance z is within a given region

R C X:
pla € R) = | pla)ds
R
For a sample
L1, L2y...y Ly~ P
itis

(x; € P) ~ binom(p(z € R))

Let £ be the number of z; that are in region R:
k=Hx |z, € Ryi=1,...,n}

then we can estimate
k
(x € R) = —
p(z € R) -
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Machine Learning / 3. Parzen Windows
Space-averaged Estimates

If p is continuous and R is very small, p(x) is almost
constant in R:

p(z € R) = / pl(x)dz ~ p(z) Vol(R),

where vol(R) denotes the volume of region R.

forany z € R

_ k/n
ple) ~ vol(R)
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Machine Learning / 3. Parzen Windows Seppi
Space-averaged Estimates & 200

For unlimited data, i1.e., n — oo, we can estimate p more
and more accurately:

k,, ,
Pn(x) = V/n, with V,, := vol(R,,).
It must be assured that
Vi, — 0
K, — 00
kn/n— 0

There are two methods to accomplish this:

1. nearest-neighbor method:
k. :=+/n, 'V, is set adaptive to the data

2. Parzen windows:
1 . :
V, = —, k,is set adaptive to the data

T )
Jn
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. 1)
Space-averaged Estimates S a0
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2 0

Summary T
e Simple classification and regression models can be built by

— averaging over target values (regression)

— counting the occurrences of the target class (classification)
of training instances close by (measured in some distance measure).

e |f always a fixed number of nearest points is taken into account,
= the model is called nearest neighbor,
if points are weighted with some similarity measure
(called kernel or Parzen window),
=- the model is called kernel regression and kernel classification.

e There are no learning tasks for these models, as simply all training
instances are stored (“memory-based methods”).

e Therefore, to compute predictions is more costly than for say linear
models. — There are several acceleration techniques (partial
distances, search trees, editing).

e The error rate of the 1-nearest-neighbor classifier is bound by twice

the Baves error rate
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