

Octave Tutorial
Machine Learning – WS 12/13

Umer Khan

Information Systems and Machine Learning Lab (ISMLL)

University of Hildesheim, Germany

1

Basic Commands
• Try Elementary arithmetic operations: 5+6, 3-2, 5*8, 1/2, 2^6 etc …

• Logical Operations: 1==2 % false, 1 ~= 2, 1 && 0 % AND, 1 || 0 % OR, xor(1,0)

• To change your octave prompt: PS1(‘>> ’);

• Octave Variables: >> a=3;

 >> b = ‘hi’;

 >> b % print the value of b

 >> disp(b); % will print ‘hi’

 >> a=pi;

 >> disp(sprintf(‘2 decimals: %0.2f’, a)) % 2 decimals: 3.14

• Matrices and Vectors

 >> A = [1 2; 3 4; 5 6] % prints a 3x2 matrix

 1 2

 3 4

 5 6 % ; marks the next row

 >> v = [1 2 3] % a 1x3 row vector

 >> v = [1; 2; 3] % a 3x1 column vector

 >> v = 1:0.1:2 % assigns ‘v’ a row vector with values starting from

 1, incrementing by 0.1 up-till 2

 >> v = 1:6 % v = 1 2 3 4 5 6

 >> ones(2,3) % generates a 2x3 matrix of 1

 >> C = 2*ones(2,3)

 >> w = zeros(1,3)

 >> w = rand(1,3) % generates 1x3 matrix of random numbers from uniform

 distribution between 0 and 1. Use ‘randn’ to get random numbers from

 Gaussian distribution.

 >> w = -6 + sqrt(10)*(randn(1,10000));

 >> hist(w) % octave creates a histogram and show in a new window.

 >> hist (w, 50) % increase the number of bins to 50

 >> I = eye (4) % generates a 4x4 identity matrix.

 >> help % for getting help on any command

Moving Data Around
>> size (A) % gives you size of a matrix like 3 2
>> b = size (A) % creates a 1x2 matrix with values 3 2
>> size(A, 1) % size of dimension 1 i.e. 3
>> length(A) % returns size of longest dimension. length is usually applied to vectors
% Go to desired directory, where your data file is present.
>> load [filename]
>> who % shows what variables are there in out octave workspace
% data filename is also a variable. Just type that variable, to see whole data on octave terminal
>> size(filename) % returns the rows x cols of data.
>> whos % shows you detail view of variables in workspace
>> clear [variable] % will remove the variable from workspace
>>v = datafilename(1:10) % saves first 10 elements of datafilename
>> save hello.mat v; // saves data in binary format
>> load hello.mat
>> who % you can see variable ‘v’ back in your workspace
>> save hello.txt v –ascii % save as text (ASCII)
>> A(3,2) % accessing an index in matrix A, at 3rd row and 2nd col.
>> A(2, :) % “:” means every element along that row/column
>> A([1 3], :) % get all the elements of A from 1st and 3rd row, and every column.
>> A(: , 2) = [10; 11; 12] % Assigning every element in 2nd col of A, to the new values 10, 11 & 12
>> A = [A, [100; 101; 102]] % adds another column vector to A with values …..
>> A(:) % put all elements of A into a single column vector.
>> C = [A B] % concatenating matrix A and B into C. [A B] is same as [A, B]
>> C = [A; B] % putting matrices on top of each other. Try size(C)

>> A=[1 2; 3 4; 5 6]
>> B=[11 12; 13 14; 15 16]
>> C = [1 1; 2 2]
>> V = [1; 2; 3]
>> A*C; % Multiply
>> A .*B % Element-wise Multiply
>> A . ^2 % Element-wise squaring ex. A2
>> 1 ./ C % Element-wise reciprocal of C

>> log(C) % Element wise logarithm
>> exp(C) % base e exponentiation of C
>> abs([-1; 2; -3]) % gives the element-wise absolute value
>> -V % gives -1*V
>> V + ones(length(V),1) % just as V+1
>> A’ % A transpose
>> val = max (A) % gives column-wise max
>> [val, ind] = max(A) % gives max value and its index
>> V < 3; % returns element-wise comparison truth value
>> find(V<3) % returns elements < 3
>> A = magic (3) % try it to find what is interesting ??
>> [r,c]=find(A >= 7) % gives index of an element which is >= 7
>> % useful functions sum(A) , prod(A) , floor(A), ceil(A), rand(3), max(rand(3), rand(3))
>> max(A, [], 1) % takes column-wise max and max(A, [], 2) takes row-wise max : default is col-wise
>>max(max(A)) % gives the maximum value in whole matrix
>>sum(A,1) % column-wise sum And sum(A,2) gives row-wise sum
>> A= magic(9); % then do like  A .* eye(9)  b= sum(A .* eye(9))  sum(b)
>> flipud(eye(9)); % flip up-side down the matrix
>> pinv(A) % gives the inverse of matrix try  pinv(A) *A

Computing on Data

>> t=[0:0.01:0.98];

>> y1=sin(2*pi*4*t);

>>plot(t,y1);

>>y2=cos(2*pi*4*t);

>>plot(t,y2);

>>plot(t,y1);

>>hold on; % plotting one function plot over another

>>plot(t,y2,’r’);

>>xlabel(‘time’); % giving a lable to x-axis

>>ylabel(‘value’); % giving a lable to Y-axis

>>legend(‘sin’, ‘cos’); % giving a legend

>>title(‘My Plot’); % giving title of your plot

>> print -dpng ‘myplot.png’; % saving the plot as png image file. For other file formats use help

>> figure(1); plot(t,y1); % also try  figure(2);plot(t,y2); % save two plots in your current dir.

>> subplot(1,2,1) % divides a plot into 1x2 grid, and access the first element

>> plot(t,y1);

>>subplot(1,2,2) % access 2nd element

>> plot(t,y2);

>> axis([0.5 1 -1 1]) % sets the scale of axis.

>> clf; % clears a figure

>> A = magic(5);

>> imagesc(A); % assigns each element of matrix a color. Also try  imagesc(A), colorbar, colormap gray;

>>a=1, b=2, c=3 % carries three commands and executes one after another. Comma chaining of commands

Plotting the Data

>> v = zeros(10,1);

>> for i=1:10, % a for loop iterating from i=1 to 10

 v(i)=2^I;

 end;

>>indices = 1:10

>> for i= indices ……. % using predefined indices

>> i = 1;

>> while i<5, % try this while loop and its output

 v(i) = 100;

 i=i+1;

 end;

>> i=1;

>> while true,

 v(i)= 999;

 i= i+1;

 if i == 6,

 break;

 end;

 end;

>> % also try using if, elseif and else. % use disp() function if you want to display some string.

Control Statements

>> addpath(‘C:/Users/Umer/Desktop’); % adds a search path for Octave to search for function/Data files

>> % Create Function files with .m extension and execute them. Just follow me on screen.

>> X = [1 1; 1 2; 1 3]

>> y= [1; 2; 3]

>> theta = [0;1];

>> create a costFunctionJ.m function file and code as following me on screen.

>> J = costFunctionJ(X, y, theta);

Defining Functions

