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Machine Learning / 1. The Classification Problem

Classification / Supervised Learning

Example: classifying iris plants
(Anderson 1935).

150 iris plants (50 of each species):

• species: setosa, versicolor, virginica

• length and width of sepals (in cm)

• length and width of petals (in cm)

iris setosa iris versicolor

iris virginica

See iris species database
(http://www.badbear.com/signa).
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Machine Learning / 1. The Classification Problem

Classification / Supervised Learning

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.10 3.50 1.40 0.20 setosa
2 4.90 3.00 1.40 0.20 setosa
3 4.70 3.20 1.30 0.20 setosa
4 4.60 3.10 1.50 0.20 setosa
5 5.00 3.60 1.40 0.20 setosa
... ... ... ... ...

51 7.00 3.20 4.70 1.40 versicolor
52 6.40 3.20 4.50 1.50 versicolor
53 6.90 3.10 4.90 1.50 versicolor
54 5.50 2.30 4.00 1.30 versicolor

... ... ... ... ...
101 6.30 3.30 6.00 2.50 virginica
102 5.80 2.70 5.10 1.90 virginica
103 7.10 3.00 5.90 2.10 virginica
104 6.30 2.90 5.60 1.80 virginica
105 6.50 3.00 5.80 2.20 virginica

... ... ... ... ...
150 5.90 3.00 5.10 1.80 virginica
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Machine Learning / 1. The Classification Problem

Classification / Supervised Learning
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Machine Learning / 1. The Classification Problem

Classification / Supervised Learning
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Machine Learning / 2. Logistic Regression

The Logistic Function

Logistic function:

logistic(x) :=
ex

1 + ex
=

1

1 + e−x

The logistic function is a function that

• has values between 0 and 1,

• converges to 1 when approaching
+∞,

• converges to 0 when approaching
−∞,

• is smooth and symmetric at (0, 0.5).
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Machine Learning / 2. Logistic Regression

The Logit Function

Logit function:

logit(x) := log(
x

1− x)

The logit function is a function that

• is defined between 0 and 1,

• converges to +∞ when approaching
1,

• converges to −∞ when approaching
0,

• is smooth and symmetric at (0.5, 0).

• is the inverse of the logistic function.
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Machine Learning / 2. Logistic Regression

Logistic Regression Model

Make it simple:

• target Y is binary: Y := {0, 1}.

The linear regression model

Y = 〈X, β〉 + ε

is not suited for predicting y as it can assume all kinds of
intermediate values.

Instead of predicting Y directly, we predict

p(Y = 1|X), the probability of Y being 1 knowing X.
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Machine Learning / 2. Logistic Regression

Logistic Regression Model

But linear regression is also not suited for predicting probabilities,
as its predicted values are principially unbounded.

Use a trick and transform the unbounded target by a function that
forces it into the unit interval [0, 1], e.g., the logistic function.

Logistic regression model:

p(Y = 1 |X) = logistic(〈X, β〉) + ε =
e
∑n
i=1 βiXi

1 + e
∑n
i=1 βiXi

+ ε
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Machine Learning / 2. Logistic Regression

A Naive Estimator

A naive estimator could fit the linear regression model to Y
(treated as continuous target) directly, i.e.,

Y = 〈X, β〉 + ε

and then post-process the linear prediction via

p̂(Y = 1 |X) = logistic(Ŷ ) = logistic(〈X, β̂〉) =
e
∑n
i=1 β̂iXi

1 + e
∑n
i=1 β̂iXi

But

• β̂ have the property to give minimal RSS for Ŷ ,
but what properties do the p̂(Y = 1 |X) have?

• A probabilistic interpretation requires normal errors for Y ,
which is not adequate as Y is bounded to [0, 1].
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Machine Learning / 2. Logistic Regression

Maximum Likelihood Estimator

As fit criterium, again the likelihood is used.

As Y is binary, it has a Bernoulli distribution:

Y |X = Bernoulli(p(Y = 1 |X))

Thus, the conditional likelihood function is:

Lcond
D (β̂) =

n∏

i=1

p(Y = yi |X = xi; β̂)

=

n∏

i=1

p(Y = 1 |X = xi; β̂)yi(1− p(Y = 1 |X = xi; β̂))1−yi
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Machine Learning / 2. Logistic Regression

Background: Gradient Descent

Given a function f : Rn → R, find x with minimal f (x).

Idea: start from a random x0 and then improve step by step, i.e.,
choose xn+1 with

f (xn+1) ≤ f (xn)

Choose the negative gradient −∂f
∂x(xn) as direction for descent,

i.e.,

xn+1 − xn = −αn ·
∂f

∂x
(xn)

with a suitable step length αn > 0.
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Machine Learning / 2. Logistic Regression

Background: Gradient Descent / Example

Example:

f (x) := x2,
∂f

∂x
(x) = 2x, x0 := 2, αn :≡ 0.25

Then we compute iteratively:

n xn
∂f
∂x(xn) xn+1

0 2 4 1
1 1 2 0.5
2 0.5 1 0.25
3 0.25 ... ...
... ... ... ...

using

xn+1 = xn − αn ·
∂f

∂x
(xn)
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Machine Learning / 2. Logistic Regression

Background: Gradient Descent / Step Length

Why do we need a step length? Can we set αn ≡ 1?

The negative gradient gives a direction of descent only in an
infinitesimal neighborhood of xn.

Thus, the step length may be too large, and the function value of
the next point does not decrease.
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Machine Learning / 2. Logistic Regression

Background: Gradient Descent / Step Length

There are many different strategies to adapt the step length s.t.

1. the function value actually decreases and

2. the step length becomes not too small
(and thus convergence slow)

Armijo-Principle:

αn := max{α ∈{2−j | j ∈ N0} |
f (xn − α

∂f

∂x
(xn)) ≤ f (xn)− αδ〈∂f

∂x
(xn),

∂f

∂x
(xn)〉 }

with δ ∈ (0, 1).
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Machine Learning / 2. Logistic Regression

Background: Newton Algorithm

Given a function f : Rn → R, find x with minimal f (x).

The Newton algorithm is based on a quadratic Taylor expansion
of f around xn:

Fn(x) := f (xn) + 〈∂f
∂x

(xn), x− xn〉 +
1

2
〈x− xn,

∂2f

∂x∂xT
(xn)(x− xn)〉

and minimizes this approximation in each step, i.e.,
∂Fn
∂x

(xn+1)
!

= 0

with
∂Fn
∂x

(x) =
∂f

∂x
(xn) +

∂2f

∂x∂xT
(xn)(x− xn)

which leads to the Newton algorithm:

∂2f

∂x∂xT
(xn)(xn+1 − xn) = −∂f

∂x
(xn)

starting with a random x0 and applying some control of the step
length.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2012/13 15/40



Machine Learning / 2. Logistic Regression

Newton Algorithm for the Loglikelihood

Lcond
D (β̂) =

n∏

i=1

p(Y = 1 |X = xi; β̂)yi(1− p(Y = 1 |X = xi; β̂))1−yi

logLcond
D (β̂) =

n∑

i=1

yi log p(Y = 1 |X = xi; β̂) + (1− yi) log(1− p(Y = 1 |X = xi; β̂))

=

n∑

i=1

yi log(
e〈xi,β̂〉

1 + e〈xi,β̂〉
) + (1− yi) log(1− e〈xi,β̂〉

1 + e〈xi,β̂〉
)

=

n∑

i=1

yi(〈xi, β̂〉 − log(1 + e〈xi,β̂〉)) + (1− yi) log(
1

1 + e〈xi,β̂〉
)

=

n∑

i=1

yi(〈xi, β̂〉 − log(1 + e〈xi,β̂〉)) + (1− yi)(− log(1 + e〈xi,β̂〉))

=

n∑

i=1

yi〈xi, β̂〉 − log(1 + e〈xi,β̂〉)
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Machine Learning / 2. Logistic Regression

Newton Algorithm for the Loglikelihood

logLcond
D (β̂) =

n∑

i=1

yi〈xi, β̂〉 − log(1 + e〈xi,β̂〉)

∂Lcond
D (β̂)

∂β̂
=

n∑

i=1

yixi −
1

1 + e〈xi,β̂〉
e〈xi,β̂〉xi

=

n∑

i=1

xi(yi − p(Y = 1 |X = xi; β̂))

=XT (y − p)

with

p :=



p(Y = 1 |X = x1; β̂))

...
p(Y = 1 |X = xn; β̂))
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Machine Learning / 2. Logistic Regression

Newton Algorithm for the Loglikelihood

∂Lcond
D (β̂)

∂β̂
=XT (y − p)

∂2Lcond
D (β̂)

∂β̂∂β̂T
=

n∑

i=1

−xip(Y = 1 |X = xi; β̂)(1− p(Y = 1 |X = xi; β̂))xTi

=−
n∑

i=1

xix
T
i p(Y = 1 |X = xi; β̂)(1− p(Y = 1 |X = xi; β̂))

=−XTWX

with

W :=




q(x1; β̂)(1− q(x1; β̂)) 0 . . . 0
0 . . . 0
... . . . ...
0 . . . . . . q(xn; β̂)(1− q(xn; β̂))




and q(x; β̂) := P (Y = 1 |X = x; β̂).
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Machine Learning / 2. Logistic Regression

Newton Algorithm for the Loglikelihood

Newton algorithm:

∂2 logL

∂β̂∂β̂T
(β̂n)(β̂n+1 − β̂n) =− ∂ logL

∂β̂
(β̂n)

−XTWX(β̂n+1 − β̂n) =−XT (y − p)

XTWXβ̂n+1 =XTW(Xβ̂n + W−1(y − p))

Equivalent to a weighted least squares of the “adjusted response”

z := Xβ̂n + W−1(y − p)

on X known as iteratively reweighted least squares (IRLS).

IRLS typically is started at β̂(0) := 0
and uses constant step length 1.
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Machine Learning / 2. Logistic Regression

Example

Learn a classification function for the following data:

x1 x2 y
1 1 +
3 2 +
2 2 -
0 3 -

●

●

0.0 1.0 2.0 3.0
1.

0
1.

5
2.

0
2.

5
3.

0

x1

x2

● class +
class −
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Machine Learning / 2. Logistic Regression

Example

x1 x2 y
1 1 +
3 2 +
2 2 −
0 3 −

, X :=




1 1 1
1 3 2
1 2 2
1 0 3


 , y :=




1
1
0
0


 , β̂(0) :=




0
0
0




p(0) := (
e〈β,xi〉

1 + e〈β,xi〉
)i =




0.5
0.5
0.5
0.5


 , w(0) := p(0)(1− p(0)) =




0.25
0.25
0.25
0.25


 ,

z(0) := Xβ̂(0) + W(0)−1
(y − p(0)) =




2
2
−2
−2
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Machine Learning / 2. Logistic Regression

Visualization Logistic Regression Models

To visualize a logistic regression model, we can plot the decision
boundary

p̂(Y = 1 |X) =
1

2
and more detailed some level lines

p̂(Y = 1 |X) = p0

e.g., for p0 = 0.25 and p0 = 0.75:

〈β̂, X〉 = log(
p0

1− p0
)

●

●

0.0 1.0 2.0 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

x1

x2

● class +
class −
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Example
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Machine Learning / 2. Logistic Regression

Example
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Linear separable vs. linear non-separable

Example 1: Linear separable.
x1 x2 y
1 1 +
3 2 +
2 2 -
0 3 -
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Machine Learning

1. The Classification Problem

2. Logistic Regression

3. Multi-category Targets

4. Linear Discriminant Analysis
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Binary vs. Multi-category Targets

Binary Targets / Binary Classification:
prediction of a nominal target variable with 2 levels/values.

Example: spam vs. non-spam.

Multi-category Targets / Multi-class Targets / Polychotomous
Classification:
prediction of a nominal target variable with more than 2
levels/values.

Example: three iris species; 10 digits; 26 letters etc.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2012/13 26/40

Machine Learning / 3. Multi-category Targets

Compound vs. Monolithic Classifiers

Compound models
• built from binary submodels,

• different types of compound models employ different sets of
submodels:
1-vs-rest (aka 1-vs-all)
1-vs-last

1-vs-1 (Dietterich and Bakiri 1995; aka pairwise classification)
DAG

• using error-correcting codes to combine component models.

• also ensembles of compound models are used
(Frank and Kramer 2004).

Monolithic models (aka "‘one machine"’ (Rifkin and Klautau 2004))
• trying to solve the multi-class target problem intrinsically

• examples: decision trees, special SVMs, etc.
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Types of Compound Models

1-vs-rest: one binary classifier per class:

fy : X → [0, 1], y ∈ Y

f (x) := (
f1(x)∑
y∈Y fy(x)

, . . . ,
fk(x)∑
y∈Y fy(x)

)

1-vs-last: one binary classifier per class (but last yk):

fy : X → [0, 1], y ∈ Y, y 6= yk

f (x) := (
f1(x)

1 +
∑

y∈Y fy(x)
, . . . ,

fk−1(x)

1 +
∑

y∈Y fy(x)
,

1

1 +
∑

y∈Y fy(x)
)
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Polychotomous Discrimination, k target categories

1-vs-rest construction:

class 1

class 2

class 3

class 4

class 1

class 2

class 3

class 4

class 2

class 3

class 4

class 1

2−vs−rest

...

3−vs−rest

...

1−vs−rest

...

...

k classifiers trained on N cases

kN cases in total

1-vs-last construction:

class 2

class 1

class k class k class k

class k−1

2−vs−k1−vs−k (k−1)−vs−k...

k − 1 classifiers trained on approx. 2 N/k
on average.

N + (k − 2)Nk cases in total
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Example / Iris data / Logistic Regression
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4. Linear Discriminant Analysis
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Machine Learning / 4. Linear Discriminant Analysis

Assumptions

In discriminant analysis, it is assumed that

• cases of a each class k are generated according to some
probabilities

πk = p(Y = k)

and

• its predictor variables are generated by a class-specific
multivariate normal distribution

X|Y = k ∼ N (µk,Σk)

i.e.
pk(x) :=

1

(2π)
d
2 |Σk|12

e−
1
2〈x−µk,Σ−1

k (x−µk)〉
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Decision Rule

Discriminant analysis predicts as follows:

Ŷ |X = x := argmaxk πkpk(x) = argmaxk δk(x)

with the discriminant functions

δk(x) := −1

2
log |Σk| −

1

2
〈x− µk,Σ−1

k (x− µk)〉 + log πk

Here,
〈x− µk,Σ−1

k (x− µk)〉
is called the Mahalanobis distance of x and µk.

Thus, discriminant analysis can be described as prototype
method, where

• each class k is represented by a prototype µk and

• cases are assigned the class with the nearest prototype.
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Maximum Likelihood Parameter Estimates

The maximum likelihood parameter estimates are as follows:

n̂k :=

n∑

i=1

I(yi = k), with I(x = y) :=

{
1, if x = y
0, else

π̂k :=
n̂k
n

µ̂k :=
1

n̂k

∑

i:yi=k

xi

Σ̂k :=
1

n̂k

∑

i:yi=k

(xi − µ̂k)(xi − µ̂k)T
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QDA vs. LDA

In the general case, decision boundaries are quadratic due to the
quadratic occurrence of x in the Mahalanobis distance. This is
called quadratic discriminant analysis (QDA).

If we assume that all classes share the same covariance matrix,
i.e.,

Σk = Σk′ ∀k, k′
then this quadratic term is canceled and the decision boundaries
become linear. This model is called linear discriminant
analysis (LDA).

The maximum likelihood estimator for the common covariance
matrix in LDA is

Σ̂ :=
∑

k

n̂k
n

Σ̂k
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Example / Iris data / LDA
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Machine Learning / 4. Linear Discriminant Analysis

LDA coordinates

The variance matrix estimated by LDA can be used to
linearly transform the data s.t. the Mahalanobis distance

〈x, Σ̂−1y〉 = xT Σ̂−1y

becomes the standard euclidean distance in the
transformed coordinates

〈x′, y′〉 = xTy

This is accomplished by decomposing Σ̂ as

Σ̂ = UDUT

with an orthonormal matrix U (i.e., UT = U−1) and a
diagonal matrix D and setting

x′ := D−
1
2UTx
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Example / Iris data / LDA coordinates
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LDA vs. Logistic Regression

LDA and logistic regression use the same underlying linear
model.

For LDA:

log(
P (Y = 1|X = x)

P (Y = 0|X = x)
) = log(

π1

π0
)− 1

2
〈µ0 + µ1,Σ

−1(µ1 − µ0)〉 + 〈x,Σ−1(µ1 − µ0)〉

=α0 + 〈α, x〉

For logistic regression by definition we have:

log(
P (Y = 1|X = x)

P (Y = 0|X = x)
) =β0 + 〈β, x〉
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LDA vs. Logistic Regression

Both models differ in the way they estimate the parameters.

LDA maximizes the complete likelihood:
∏

i

p(xi, yi) =
∏

i

p(xi | yi)
︸ ︷︷ ︸

∏

i

p(yi)

︸ ︷︷ ︸
normal pk bernoulli πk

While logistic regression maximizes the conditional likelihood
only: ∏

i

p(xi, yi) =
∏

i

p(yi |xi)
︸ ︷︷ ︸

∏

i

f (xi)

︸ ︷︷ ︸
logistic ignored
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Machine Learning / 4. Linear Discriminant Analysis

Summary

• For classification, logistic regression models of type Y = e〈X,β〉
1+e〈X,β〉

+ ε

can be used to predict a binary Y based on several (quantitative) X.

• The maximum likelihood estimates (MLE) have to be computed
using Newton’s algorithm on the loglikelihood. The resulting procedure
can be reinterpreted as iteratively reweighted least squares (IRLS).

• Another simple classification model is linear discriminant analysis
(LDA) that assumes that the cases of each class have been generated
by a multivariate normal distribution with class-specific means µk (the
class prototype) and a common covariance matrix Σ.

• The maximum likelihood parameter estimates π̂k, µ̂k, Σ̂ for LDA are just
the sample estimates.

• Logistic regression and LDA share the same underlying linear model,
but logistic regression optimizes the conditional likelihood, LDA the
complete likelihood.
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