Machine Learning

3. Nearest Neighbor and Kernel Methods

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Business Economics and Information Systems
\& Institute for Computer Science
University of Hildesheim
http://www.ismll.uni-hildesheim.de

1. Distance Measures

2. k-Nearest Neighbor Method

3. Parzen Windows

So far, regression and classification methods covered in the lecture can be used for

- numerical variables,
- binary variables (re-interpreted as numerical), and
- nominal variables (coded as set of binary indicator variables).

Often one is also interested in more complex variables such as

- set-valued variables,
- sequence-valued variables (e.g., strings),
-...

There are two kinds of approaches to deal with such variables:

feature extraction:

try to derive binary or numerical variables, then use standard methods on the feature vectors.
kernel methods:
try to establish a distance measure between two variables, then use methods that use only distances between objects (but no feature vectors).

Let d be a distance measure (also called metric) on a set \mathcal{X}, i.e.,

$$
d: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{0}^{+}
$$

with

1. d is positiv definite: $d(x, y) \geq 0$ and $d(x, y)=0 \Leftrightarrow x=y$
2. d is symmetric: $d(x, y)=d(y, x)$
3. d is subadditive: $d(x, z) \leq d(x, y)+d(y, z)$
(triangle inequality)
(for all $x, y, z \in \mathcal{X}$.)
Example: Euclidean metric on $\mathcal{X}:=\mathbb{R}^{n}$:

$$
d(x, y):=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{\frac{1}{2}}
$$

Minkowski Metric / L_{p} metric on $\mathcal{X}:=\mathbb{R}^{n}$:

$$
d(x, y):=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

with $p \in \mathbb{R}, p \geq 1$.
$p=1$ (taxicab distance; Manhattan distance):

$$
d(x, y):=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|
$$

$p=2$ (euclidean distance):

$$
d(x, y):=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{\frac{1}{2}}
$$

$p=\infty$ (maximum distance; Chebyshev distance):

$$
d(x, y):=\max _{i=1}^{n}\left|x_{i}-y_{i}\right|
$$

Example:

$$
x:=\left(\begin{array}{l}
1 \\
3 \\
4
\end{array}\right), \quad y:=\left(\begin{array}{l}
2 \\
4 \\
1
\end{array}\right)
$$

$$
d_{L_{1}}(x, y)=|1-2|+|3-4|+|4-1|=1+1+3=5
$$

$$
d_{L_{2}}(x, y)=\sqrt{(1-2)^{2}+(3-4)^{2}+(4-1)^{2}}=\sqrt{1+1+9}=\sqrt{11} \approx 3.32
$$

$$
d_{L_{\infty}}(x, y)=\max \{|1-2|,|3-4|,|4-1|\}=\max \{1,1,3\}=3
$$

Instead of a distance measure sometimes similarity measures are used, i.e.,

$$
\operatorname{sim}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{0}^{+}
$$

with

- sim is symmetric: $\operatorname{sim}(x, y)=\operatorname{sim}(y, x)$.

Some similarity measures have stronger properties:

- sim is discerning: $\operatorname{sim}(x, y) \leq 1$ and $\operatorname{sim}(x, y)=1 \Leftrightarrow x=y$
- $\operatorname{sim}(x, z) \geq \operatorname{sim}(x, y)+\operatorname{sim}(y, z)-1$.

Some similarity measures have values in $[-1,1]$ or even \mathbb{R} where negative values denote "dissimilarity".

A discerning similarity measure can be turned into a semi-metric (pos. def. \& symmetric, but not necessarily subadditive) via

$$
d(x, y):=1-\operatorname{sim}(x, y)
$$

In the same way, a metric can be turned into a discerning similarity measure (with values eventually in] $-\infty, 1$]).

Cosine Similarity

The angle between two vectors in \mathbb{R}^{n} can be used as distance measure

$$
d(x, y):=\operatorname{angle}(x, y):=\arccos \left(\frac{\langle x, y\rangle}{\|x\|_{2}\|y\|_{2}}\right)
$$

To avoid the arccos, often the cosine of the angle is used as similarity measure (cosine similarity):

$$
\operatorname{sim}(x, y):=\cos \operatorname{angle}(x, y):=\frac{\langle x, y\rangle}{\|x\|_{2}\|y\|_{2}}
$$

Example:

$$
\begin{gathered}
x:=\left(\begin{array}{l}
1 \\
3 \\
4
\end{array}\right), \quad y:=\left(\begin{array}{l}
2 \\
4 \\
1
\end{array}\right) \\
\operatorname{sim}(x, y)=\frac{1 \cdot 2+3 \cdot 4+4 \cdot 1}{\sqrt{1+9+16} \sqrt{4+16+1}}=\frac{18}{\sqrt{26} \sqrt{21}} \approx 0.77
\end{gathered}
$$

cosine similarity is not discerning as vectors with the same direction but of arbitrary length have angle 0 and thus similarity 1.

Distances for Nominal Variables

2003

For binary variables there is only one reasonable distance measure:

$$
d(x, y):=1-I(x=y) \quad \text { with } I(x=y):=\left\{\begin{array}{l}
1 \text { if } x=y \\
0 \text { otherwise }
\end{array}\right.
$$

This coincides with the L_{∞} distance for the indicator/dummy variables.

The same distance measure is useful for nominal variables with more than two possible values.

For hierarchical variables, i.e., a nominal variable with levels arranged in a hierarchy, there are more advanced distance measures (not covered here).

For set-valued variables (which values are subsets of a set A) the Hamming distance often is used:

$$
d(x, y):=|(x \backslash y) \cup(y \backslash x)|=|\{a \in A \mid I(a \in x) \neq I(a \in y)\}|
$$

(the number of elements contained in only one of the two sets).
Example:

$$
d(\{a, e, p, l\},\{a, b, n\})=5, \quad d(\{a, e, p, l\},\{a, e, g, n, o, r\})=6
$$

Also often used is the similarity measure Jaccard coefficient:

$$
\operatorname{sim}(x, y):=\frac{|x \cap y|}{|x \cup y|}
$$

Example:

$$
\operatorname{sim}(\{a, e, p, l\},\{a, b, n\})=\frac{1}{6}, \quad \operatorname{sim}(\{a, e, p, l\},\{a, e, g, n, o, r\})=\frac{2}{8}
$$

Distances for Strings / Sequences

edit distance / Levenshtein distance:

$d(x, y):=$ minimal number of deletions, insertions or substitutions to transform x in y

Examples:

$$
\begin{aligned}
d(\text { man }, \text { men }) & =1 \\
d(\text { house }, \text { spouse }) & =2
\end{aligned}
$$

$d($ order, express order $)=8$

Distances for Strings / Sequences

2003

The edit distance is computed recursively. With

$$
x_{1: i}:=\left(x_{i^{\prime}}\right)_{i^{\prime}=1, \ldots, i}=\left(x_{1}, x_{2}, \ldots, x_{i}\right), \quad i \in \mathbb{N}
$$

we compute the number of operations to transform $x_{1: i}$ into $y_{1: j}$ as

$$
\begin{array}{rll}
c\left(x_{1: i}, y_{1: j}\right):=\min \left\{\begin{array}{cl}
c\left(x_{1: i-1}, y_{1: j}\right)+1, & \\
c\left(x_{1: i}, y_{1: j-1}\right)+1, & \\
\left.c\left(x_{1: i-1}, y_{1: j-1}\right)+I\left(x_{i} \neq y_{j}\right)\right\} & \\
& / / x_{1: i} \rightsquigarrow x_{1:-} \rightsquigarrow y_{1: j-1}, x_{1: i-1} \rightsquigarrow y_{1: j-1}, \text { insert } y_{j} \\
\text { substitute } y_{j} \text { for } x_{i}
\end{array}\right.
\end{array}
$$

starting from

$$
\begin{aligned}
& c\left(x_{1: 0}, y_{1: j}\right)=c\left(\emptyset, y_{1: j}\right):=j / / \text { insert } y_{1}, \ldots, y_{j} \\
& c\left(x_{1: i}, y_{1: 0}\right)=c\left(x_{1: i}, \emptyset\right):=i / / \text { delete } x_{1}, \ldots, x_{i}
\end{aligned}
$$

Such a recursive computing scheme is called dynamic programming.

Distances for Strings / Sequences

Example: compute d (excused, exhausted).

d	9							
e	8							
t	7							
s		6						
u	5							
a	4							
h	3							
x	2							
e	1							
	0	1	2	3	4	5	6	7
$y[j] / x[i]$	e	x	c	u	s	e	d	

Distances for Strings / Sequences

Example: compute d (excused, exhausted).

d	9	8	7	7	6	5	4	3
e	8	7	6	6	5	4	3	4
t	7	6	5	5	4	3	3	4
s	6	5	4	4	3	2	3	4
u	5	4	3	3	2	3	4	5
a	4	3	2	2	2	3	4	5
h	3	2	1	1	2	3	4	5
x	2	1	0	1	2	3	4	5
e	1	0	1	2	3	4	5	6
	0	1	2	3	4	5	6	7
$y[j] / x[i]$		e	x	c	u	s	e	d

Distances for Strings / Sequences

Example: compute d (excused, exhausted).

d	9	8	7	7	6	5	4	$\mathbf{3}$
e	8	7	6	6	5	4	$\mathbf{3}$	4
t	7	6	5	5	4	3	3	4
s	6	5	4	4	3	$\mathbf{2}$	3	4
u	5	4	3	3	$\mathbf{2}$	3	4	5
a	4	3	2	$\mathbf{2}$	2	3	4	5
h	3	2	1	$\mathbf{1}$	2	3	4	5
x	2	1	$\mathbf{0}$	1	2	3	4	5
e	1	$\mathbf{0}$	1	2	3	4	5	6
	$\mathbf{0}$	1	2	3	4	5	6	7
$y[j] / x[i]$		e	x	c	u	s	e	d

1. Distance Measures

2. k-Nearest Neighbor Method

3. Parzen Windows

Let d be a distance measure.
For a dataset

$$
D \subseteq X \times Y
$$

and $x \in \mathcal{X}$ let

$$
D=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

be an enumeration with increasing distance to x, i.e., $d\left(x, x_{i}\right) \leq d\left(x, x_{i+1}\right)$ (ties broken arbitrarily).
The first $k \in \mathbb{N}$ points of such an enumeration, i.e.,

$$
N_{k}(x):=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{k}, y_{k}\right)\right\}
$$

are called a k-neighborhood of x (in D).

The k-nearest neighbor regressor

$$
\hat{Y}(x):=\frac{1}{k} \sum_{\left(x^{\prime}, y^{\prime}\right) \in N_{k}(x)} y^{\prime}
$$

The k-nearest neighbor classifier

$$
\hat{p}(Y=y \mid x):=\frac{1}{k} \sum_{\left(x^{\prime}, y^{\prime}\right) \in N_{k}(x)} I\left(y=y^{\prime}\right)
$$

and then predict the class with maximal predicted probability

$$
\hat{Y}(x):=\operatorname{argmax}_{y \in \mathcal{Y}} \hat{p}(Y=y \mid x)
$$

i.e., the majority class w.r.t. the classes of the neighbors.

Decision Boundaries

2003

For 1-nearest neighbor, the predictor space is partitioned in regions of points that are closest to a given data point:

$$
\operatorname{region}_{D}\left(x_{1}\right), \text { region }_{D}\left(x_{2}\right), \ldots, \text { region }_{D}\left(x_{n}\right)
$$

with

$$
\operatorname{region}_{D}(x):=\left\{x^{\prime} \in \mathcal{X} \mid d\left(x^{\prime}, x\right) \leq d\left(x^{\prime}, x^{\prime \prime}\right) \quad \forall\left(x^{\prime \prime}, y^{\prime \prime}\right) \in D\right\}
$$

These regions often are called cells, the whole partition a Voronoi tesselation.

Machine Learning / 2. k-Nearest Neighbor Method

Decision Boundaries

Machine Learning / 2. k-Nearest Neighbor Method

Decision Boundaries

Expected error

To assess the quality of a classifier $\hat{y}(x)$, one can use the expected error, i.e., the probability to predict the wrong class if cases are picked at random:

$$
p(\text { error })=E(I(y \neq \hat{y}))=\int_{\mathcal{X}} I(y \neq \hat{y}) d x=\int_{\mathcal{X}}(1-p(Y=\hat{y}(x) \mid x)) p(x) d x
$$

The minimal expected error can be achieved, if for each point x the class y with the largest conditional probability $p(y \mid x)$ is predicted, i.e.,

$$
y^{*}(x):=\operatorname{argmax}_{y \in \mathcal{Y}} p(y \mid x)
$$

This classifier is called Bayes classifier y^{*}, its error Bayes error p^{*} (error).

The Bayes classifier assumes the ideal case that the conditional class probabilities $p(Y \mid X)$ are known.

In the case of a deterministic dependency of y on x, i.e., for each x there is an y with $p(y \mid x)=1$, the Bayes error is

$$
p^{*}(\text { error })=0
$$

In the case that for each x there is a uniform distribution of the classes y,
i.e., for k classes $p(y \mid x)=1 / k$ for all y, the Bayes error is maximal

$$
p^{*}(\text { error })=\frac{k-1}{k}
$$

If we have unlimited data, the error rate of the nearest neighbor classifier is bound as follows:

$$
p^{*}(\text { error }) \leq \lim _{n \rightarrow \infty} p_{n}(\text { error }) \leq p^{*}(\text { error })\left(2-\frac{k}{k-1} p^{*}(\text { error })\right)
$$

where p_{n} (error) denotes the error rate for the nearest neighbor classifier in a sample of n points.

Roughly spoken "at least half of the classification information in an infite data set resides in the nearest neighbor" (Duda et al. 2001).

A strict proof of the error bounds is not so easy. A more informal argument is as follows (cf. Duda et al. 2001, p. 179-182): For x_{0} denote by x_{n}^{\prime} the nearest neighbor of x_{0} in a sample of n points.

$$
p_{n}\left(\operatorname{error} \mid x_{0}, x_{n}^{\prime}\right)=1-\sum_{y} p\left(y_{0}=y, y_{n}^{\prime}=y \mid x_{0}, x_{n}^{\prime}\right)=1-\sum_{y} p\left(y_{0}=y \mid x_{0}\right) p\left(y_{n}^{\prime}=y \mid x_{n}^{\prime}\right)
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} p_{n}\left(\operatorname{error} \mid x_{0}\right) & =\lim _{n \rightarrow \infty} \int p_{n}\left(\operatorname{error} \mid x_{0}, x_{n}^{\prime}\right) p\left(x_{n}^{\prime} \mid x_{0}\right) d x_{n}^{\prime} \\
& =\lim _{n \rightarrow \infty} \int\left(1-\sum_{y} p\left(y_{0}=y \mid x_{0}\right) p\left(y_{n}^{\prime}=y \mid x_{n}^{\prime}\right)\right) p\left(x_{n}^{\prime} \mid x_{0}\right) d x_{n}^{\prime} \\
& =\int\left(1-\sum_{y} p\left(y_{0}=y \mid x_{0}\right) p\left(y_{n}^{\prime}=y \mid x_{n}^{\prime}\right)\right) \delta\left(x_{n}^{\prime}-x_{0}\right) d x_{n}^{\prime} \\
& =1-\sum_{y} p\left(y_{0}=y \mid x_{0}\right)^{2}
\end{aligned}
$$

Now let $y^{*}(x):=\operatorname{argmax}_{y} p(y \mid x)$ the Bayes classifier:

$$
\begin{aligned}
\sum_{y} p\left(y_{0}=y \mid x_{0}\right)^{2} & =p\left(y_{0}=y^{*}\left(x_{0}\right) \mid x_{0}\right)^{2}+\sum_{y \neq y^{*}\left(x_{0}\right)} p\left(y_{0}=y \mid x_{0}\right)^{2} \\
& \geq\left(1-p^{*}\left(\operatorname{error} \mid x_{0}\right)\right)^{2}+\frac{1}{k-1} p^{*}\left(\text { error } \mid x_{0}\right)^{2} \\
& =1-2 p^{*}\left(\text { error } \mid x_{0}\right)+\frac{k}{k-1} p^{*}\left(\text { error } \mid x_{0}\right)^{2}
\end{aligned}
$$

because the sum is minimal if all $p\left(y_{0}=y \mid x_{0}\right)$ are equal, and thus

$$
p\left(y_{0}=y \mid x_{0}\right)=\frac{1}{k-1}\left(1-p\left(y_{0}=y^{*}\left(x_{0}\right) \mid x_{0}\right)\right)=\frac{1}{k-1} p^{*}\left(\operatorname{error} \mid x_{0}\right)
$$

Then we continue

$$
\lim _{n \rightarrow \infty} p_{n}\left(\operatorname{error} \mid x_{0}\right)=1-\sum_{y} p\left(y_{0}=y \mid x_{0}\right)^{2} \leq 2 p^{*}\left(\text { error } \mid x_{0}\right)-\frac{k}{k-1} p^{*}\left(\operatorname{error} \mid x_{0}\right)^{2}
$$

Now

$$
\begin{aligned}
\lim _{n \rightarrow \infty} p_{n}(\text { error }) & =\lim _{n \rightarrow \infty} \int p_{n}\left(\text { error } \mid x_{0}\right) p\left(x_{0}\right) d x_{0} \\
& \leq \int\left(2 p^{*}\left(\text { error } \mid x_{0}\right)-\frac{k}{k-1} p^{*}\left(\text { error } \mid x_{0}\right)^{2}\right) p\left(x_{0}\right) d x_{0} \\
& =2 p^{*}(\text { error })-\frac{k}{k-1} \int p^{*}\left(\text { error } \mid x_{0}\right)^{2} p\left(x_{0}\right) d x_{0}
\end{aligned}
$$

And finally as

$$
\begin{aligned}
& \qquad \begin{aligned}
V\left(p^{*}(\text { error })\right) & =\int\left(p^{*}\left(\text { error } \mid x_{0}\right)-p^{*}(\text { error })\right)^{2} p\left(x_{0}\right) d x_{0} \\
& =\int p^{*}\left(\text { error } \mid x_{0}\right)^{2} p\left(x_{0}\right) d x_{0}-p^{*}(\text { error })^{2} \geq 0
\end{aligned} \\
& \Rightarrow \int p^{*}\left(\text { error } \mid x_{0}\right)^{2} p\left(x_{0}\right) d x_{0} \geq p^{*}(\text { error })^{2} \\
& \text { we get }
\end{aligned}
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} p_{n}(\text { error }) & \leq 2 p^{*}(\text { error })-\frac{k}{k-1} \int p^{*}\left(\text { error } \mid x_{0}\right)^{2} p\left(x_{0}\right) d x_{0} \\
& \leq 2 p^{*}(\text { error })-\frac{k}{k-1} p^{*}(\text { error })^{2}
\end{aligned}
$$

The k-Nearest Neighbor classifier does not need any learning algorithm as it just stores all the training examples.

On the other hand, predicting using a k-nearest neighbor classifier is slow:

- To predict the class of a new point x, the distance $d\left(x, x_{i}\right)$ from x to each of the n training examples $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ has to be computed.
- If the predictor space is $\mathcal{X}:=\mathbb{R}^{p}$, for one such computation we need $O(p)$ operations.
- We then keep track of the k points with the smallest distance.

So in total one needs $O(n p k)$ operations.

In practice, nearest neighbor classifiers often can be accelerated by several methods.

Partial distances:

Compute the distance to each training point x^{\prime} only partially, e.g.,

$$
d_{r}\left(x, x^{\prime}\right):=\left(\sum_{i=1}^{r}\left(x_{i}-x_{i}^{\prime}\right)^{2}\right)^{\frac{1}{2}}, \quad r \leq p
$$

As d_{r} is non-decreasing in r, once $d_{r}\left(x, x^{\prime}\right)$ exceeds the k-th smallest distance computed so far, the training point x^{\prime} can be dropped.

This is a heuristic:
it may accelerate computations, but it also may slow it down (as there are additional comparisions of the partial distances with the k smallest distance).

Accelerations: search trees

2003

Search trees:

Do not compute the distance of a new point x to all training examples, but

1. organize the training examples as a tree (or a DAG) with

- sets of training examples at the leaves and
- a prototype (e.g., the mean of the training examples at all descendent leaves) at each intermediate node.

2. starting at the root, recursively

- compute the distance to all children of the actual node and
- branch to the child with the smallest distance,

3. compute distances only to training examples in the leaf finally found.

This is an approximation.

Machine Learning / 2. k-Nearest Neighbor Method

Accelerations: search trees

Machine Learning / 2. k-Nearest Neighbor Method

Accelerations: search trees

Editing / Pruning / Condensing:

shrink the set of training data points, e.g., select a subset of the original training data points.

Example: remove all points with cells that are surrounded by cells of points of the same class.

$$
X_{\text {edited }}:=\left\{(x, y) \in X \mid \exists\left(x^{\prime}, y^{\prime}\right) \in X, R\left(x^{\prime}\right) \cap R(x) \neq \emptyset \text { and } y^{\prime} \neq y\right\}
$$

This basic editing algorithm

- retains the decision function,
- has complexity $O\left(d^{3} n^{\left\lfloor\frac{d}{2}\right\rfloor} \log n\right)$

$$
\text { (with }\lfloor x\rfloor:=\max \{n \in \mathbb{N} \mid n \leq x\} \text {; Duda et al. 2001, p. 186). }
$$

See e.g., Ottmann/Widmayer 2002, p. 501-515 for computing Voronoi diagrams in two dimensions.

```
knn-edit-training-data(training data \(X\) ) :
compute Voronoi cells \(R(x) \quad \forall(x, y) \in X\),
esp. Voronoi neighbors \(N(x):=\left\{\left(x^{\prime}, y^{\prime}\right) \in X \| R\left(x^{\prime}\right) \cap R(x) \neq \emptyset\right\}\)
\(E:=\emptyset\)
\(\underline{\text { for }}(x, y) \in X\) do
    hasNeighborOfOtherClass := false
    \(\underline{\text { for }}\left(x^{\prime}, y^{\prime}\right) \in N(x) \underline{\text { do }}\)
            if \(y \neq y^{\prime}\)
                hasNeighborOfOtherClass \(:=\) true
            fi
        od
        if not hasNeighborOfOtherClass
            \(E:=E \cup\{(x, y)\}\)
        fi
    od
    \(\underline{\text { for }}(x, y) \in E\) do
        \(X:=X \backslash\{(x, y)\}\)
    od
```


2003

1. Distance Measures

2. k-Nearest Neighbor Method

3. Parzen Windows

Machine Learning / 3. Parzen Windows

Example

Figure 8: Points generated by the model $y=\sin (4 x)+\mathcal{N}(0,1 / 3)$ with $x \sim \operatorname{unif}(0,1)$.

Machine Learning / 3. Parzen Windows

Example / k-Nearest-Neighbor

Figure 9: Points generated by the model $y=\sin (4 x)+\mathcal{N}(0,1 / 3)$ with $x \sim \operatorname{unif}(0,1)$. 30-nearest-neighbor regressor.

2003
k-nearest neighbor models are

- based on discrete decisions if a point is a k-nearest neighbor or not,
- in effect, locally constant,
- and thus not continuous.

Discrete decisions can be captured by binary window functions,
i.e.,

$$
\begin{aligned}
K\left(x, x_{0}\right) & := \begin{cases}1, & \text { if }(x, y) \in N_{k}\left(x_{0}\right) \\
0, & \text { otherwise }\end{cases} \\
\hat{y}\left(x_{0}\right) & =\frac{\sum_{(x, y) \in X} K\left(x, x_{0}\right) y}{\sum_{(x, y) \in X} K\left(x, x_{0}\right)}
\end{aligned}
$$ instead of

In k-nearest neighbor the size of the window varies from point to point: it depends on the density of the data:
in dense parts
the effective window size is small,

in sparse parts

the effective window size is large.

Alternatively, it is also possible to set the size of the windows to a constant λ, e.g.,

$$
K_{\lambda}\left(x, x_{0}\right):= \begin{cases}1, & \text { if }\left|x-x_{0}\right| \leq \lambda \\ 0, & \text { otherwise }\end{cases}
$$

Instead of discrete windows, one typically uses continuous windows, i.e., continuous weights

$$
K\left(x, x_{0}\right)
$$

that reflect the distance of a training point x to a prediction point x_{0}, called kernel or Parzen window, e.g.,

$$
K\left(x, x_{0}\right):= \begin{cases}1-\frac{\left|x-x_{0}\right|}{\lambda}, & \text { if }\left|x-x_{0}\right| \leq \lambda \\ 0, & \text { otherwise }\end{cases}
$$

Instead of a binary neighbor/not-neighbor decision, a continuous kernel captures a "degree of neighborship".

Kernels can be used for prediction via kernel regression, esp. Nadaraya-Watson kernel-weighted average:

$$
\hat{y}\left(x_{0}\right):=\frac{\sum_{(x, y) \in X} K\left(x, x_{0}\right) y}{\sum_{(x, y) \in X} K\left(x, x_{0}\right)}
$$

Kernels are similarity measures: the closer two points, the larger the kernel value.

Epanechnikov kernel

$$
K_{\lambda}(x, y):=D\left(\frac{|x-y|}{\lambda}\right)
$$

with

$$
D(t):= \begin{cases}\frac{3}{4}\left(1-t^{2}\right), & t<1 \\ 0, & \text { otherwise }\end{cases}
$$

The constant $\lambda \in \mathbb{R}^{+}$is called bandwidth.

More kernels

Tri-cube kernel

$$
D(t):= \begin{cases}\left(1-t^{3}\right)^{3}, & t<1 \\ 0, & \text { otherwise }\end{cases}
$$

Gaussian kernel

$$
D(t):=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} t^{2}}
$$

The Epanechnikov and Tri-cube kernel have compact support $\left[x_{0}-\lambda, x_{0}+\lambda\right]$.

The Gaussian kernel has noncompact support, λ acts as standard deviation.

Machine Learning / 3. Parzen Windows

Kernels

Machine Learning / 3. Parzen Windows

Example / Epanechnikov Kernel, $\lambda=0.2$

If the bandwidth λ is small

larger variance - as averaged over fewer points smaller bias - as closer instances are used \Rightarrow risks to be too bumpy

If the bandwidth λ is large

smaller variance - as averaged over more points larger bias - as instances further apart are used \Rightarrow risks to be too rigid / over-smoothed

The bandwidth λ is a parameter (sometimes called a hyperparameter) of the model that needs to be optimized / estimated by data.

Machine Learning / 3. Parzen Windows

Example / Epanechnikov Kernel, various bandwidths

Space-averaged Estimates

The probability that an instance x is within a given region $R \subseteq \mathcal{X}$:

$$
p(x \in R)=\int_{R} p(x) d x
$$

For a sample

$$
x_{1}, x_{2}, \ldots, x_{n} \sim p
$$

it is

$$
\left(x_{i} \in P\right) \sim \operatorname{binom}(p(x \in R))
$$

Let k be the number of x_{i} that are in region R :

$$
k:=\left|\left\{x_{i} \mid x_{i} \in R, i=1, \ldots, n\right\}\right|
$$

then we can estimate

$$
\hat{p}(x \in R):=\frac{k}{n}
$$

If p is continuous and R is very small, $p(x)$ is almost constant in R :

$$
p(x \in R)=\int_{R} p(x) d x \approx p(x) \operatorname{vol}(R), \quad \text { for any } x \in R
$$

where $\operatorname{vol}(R)$ denotes the volume of region R.

$$
p(x) \approx \frac{k / n}{\operatorname{vol}(R)}
$$

2003
For unlimited data, i.e., $n \rightarrow \infty$, we can estimate p more and more accurately:

$$
\hat{p}_{n}(x)=\frac{k_{n} / n}{V_{n}}, \quad \text { with } V_{n}:=\operatorname{vol}\left(R_{n}\right)
$$

It must be assured that

$$
\begin{aligned}
V_{n} & \rightarrow 0 \\
k_{n} & \rightarrow \infty \\
k_{n} / n & \rightarrow 0
\end{aligned}
$$

There are two methods to accomplish this:

1. nearest-neighbor method:

$$
k_{n}:=\sqrt{n}, \quad V_{n} \text { is set adaptive to the data }
$$

2. Parzen windows:

$$
V_{n}:=\frac{1}{\sqrt{n}}, \quad k_{n} \text { is set adaptive to the data }
$$

Machine Learning / 3. Parzen Windows

Space-averaged Estimates

$$
n=1 \quad n=4 \quad n=9 \quad n=16 \quad n=100
$$

$$
V_{n}=1 / \sqrt{n}
$$

$$
k_{n}=\sqrt{n}
$$

- Simple classification and regression models can be built by
- averaging over target values (regression)
- counting the occurrences of the target class (classification) of training instances close by (measured in some distance measure).
- If always a fixed number of nearest points is taken into account, \Rightarrow the model is called nearest neighbor, if points are weighted with some similarity measure (called kernel or Parzen window),
\Rightarrow the model is called kernel regression and kernel classification.
- There are no learning tasks for these models, as simply all training instances are stored ("memory-based methods").
- Therefore, to compute predictions is more costly than for say linear models. - There are several acceleration techniques (partial distances, search trees, editing).
- The error rate of the 1 -nearest-neighbor classifier is bound by twice the Bayes error rate.

