Machine Learning Exercise Sheet 2

Prof. Dr. Dr. Lars Schmidt-Thieme, Martin Wistuba
Information Systems and Machine Learning Lab
University of Hildesheim

November 5th, 2013
Submission until November 12th, 13.00 to wistuba@ismll.de

Exercise 3: Linear Regression (6 Points)

a)

Given are the data instances of the example from the lecture (gas consumption):

$$
\mathcal{D}=\{(2,6),(6,5),(8,4.5)\}
$$

Estimate the target \hat{y} for $x=10$ using the method of least squares. The true value is $y=2$. Estimate the error. Interprete the result. Create a plot of all distances and show for each data point the least square error.

b)

In the lecture was proven for the simple linear regression that

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
$$

minimizes the residual sums of squares (RSS).
Reconsider the proof and provide intermediate steps for the partial derivative.
Setting the derivative to zero is a necessary criterion for the existence of an extremum. Justify that the given solution is a global minimum.

Exercise 4: R (3 Points)

a)

Read Chapter 2 and 3 of, An Introduction to R". In R there are different possibilites to create vectors. Give an example for three of them. Explain in three sentences something about objects and classes in R.

b)

Create a linear regression model for the in R integrated data set cars. We want to find a predictor for the variable cars\$dist given cars\$speed. Get the coefficients, plot the data and add a regression line. Add the used R code to your solution.
Hint: The needed commands can be found in Appendix A.
c)

Are you satisfied with the linear model? How could you model the relationship between speed and breaking distance instead?

Exercise 5: Weka (1 Point)

Open the data set lymph.arff with Weka. Transform the nominal attributes of the data set using the unsupervised/attributes/NominalToBinary filter to binary variables and save the data as lymph-bin. arff. Compare both ARFF files. What happened?

