Machine Learning Exercise Sheet 4

Prof. Dr. Dr. Lars Schmidt-Thieme, Martin Wistuba
Information Systems and Machine Learning Lab
University of Hildesheim

November 19th, 2013
Submission until November 26th, 13.00 to wistuba @ismll.de

Exercise 8: Gradient Descent (5 Points)

Apply gradient descent on the function $f(x)=\frac{1}{4} x^{4}+\frac{1}{3} x^{3}-\frac{1}{2} x^{2}$ with following configurations:
a)

Use step length $\alpha=0.3$ and starting point $x_{0}=-1$ and show the first four iterations. What is your minimum?

b)

Use step length $\alpha=2$ and starting point $x_{0}=-1$ and show the first four iterations. What has happened and why?

c)

Use step length $\alpha=0.3$ and starting point $x_{0}=0$ and show the first two iterations. What has happened and why?
Do the same again with $\alpha=0.8$ and starting point $x_{0}=0.5$ and show the first four iterations. Where is your minimum now?
What would be a possible solution to overcome the problem just identified?

Exercise 9: Statistic models in R (3 Points)

Read chapter 11 of „An Introduction to R".
a)

Using which formula can you express linear regression without intercept? Give a formula for a non-trivial polynomial regression.
b)

How do you predict with the model estimated by $\operatorname{lm}()$?

Exercise 10: Linear and Logistic Regression in Weka (2 Points)

Apply on a regression and classification data set of your choice with Weka linear respectively logistic regression.
a)

Which of the shown error metrics makes sense to evaluate a regression respectively a classification model? Choose one metric and explain briefly.
b)

Try in both cases different ridge parameters and test whether they lead to better results.

