qerSilE
ol & ¢
¥ %

Machine Learning 5% %

Machine Learning

1. Linear Regression

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute of Computer Science
University of Hildesheim
http://www.ismll.uni-hildesheim.de

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Course on Machine Learning, winter term 2013/14 1/75
H H .\‘lefsile}'? ]
Machine Learning ;’)P&%
= i
el ¢
T &

2003

1. The Regression Problem
2. Simple Linear Regression
3. Multiple Regression

4. Variable Interactions
5. Model Selection

6. Case Weights

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 1/75



Machine Learning / 1. The Regression Problem

Example

Example: how does gas consumption
depend on external temperature?
(Whiteside, 1960s).

weekly measurements of
e average external temperature ¥
e total gas consumption 1 R ’

(in 1000 cubic feets) 7l 410 |l TR

A third variable encodes two heating
seasons, before and after wall
insulation.

How does gas consumption depend on
external temperature?

How much gas is needed for a given
temperature ?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Course on Machine Learning, winter term 2013/14
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Machine Learning / 1. The Regression Problem

Example

Gas consumption (1000 cubic feet)
Gas consumption (1000 cubic feet)
ol
1

0 2 4 6 8 10 0 2 4 6 8
Average external temperature (deg. C) Average external temperature (deg. C)
linear model

more flexible model
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Machine Learning / 1. The Regression Problem

Variable Types and Coding

The most common variable types:

numerical / interval-scaled / quantitative
where differences and quotients etc. are meaningful,
usually with domain X := R,
e.g., temperature, size, weight.

nominal / discrete / categorical / qualitative / factor
where differences and quotients are not defined,
usually with a finite, enumerated domain,
e.g., X := {red, green, blue}
or X :={a,b,c,...,y,z}.

ordinal / ordered categorical
where levels are ordered, but differences and quotients are not
defined,
usually with a finite, enumerated domain,
e.g., & := {small, medium, large}

3/75
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Machine Learning / 1. The Regression Problem

Variable Types and Coding

Nominals are usually encoded as binary dummy variables:

1, if X ==,
5"130(X> = { 0’ else 0

one for each xy € X (but one).

Example: X := {red, green, blue}

Replace
one variable X with 3 levels: red, green, blue
by

two variables dreq(X) and dgreen(X) With 2 levels each: 0, 1

X 5red<X> 5green(X>
red |1 0
green |0 1
blue |0 0
— 1 1
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Machine Learning / 1. The Regression Problem

The Regression Problem Formally

Let

X1, Xo, ..., X, be random variables called predictors (or inputs,
covariates, features).
Let X1, X9, ..., X, be their domains.

We write shortly
X = (Xl,XQ, NN ,Xp)

for the vector of random predictor variables and
X=X xXyx---x X,
for its domain.

Y be a random variable called target (or output, response).
Let ) be its domain.

D C X x ) be a (multi)set of instances of the unknown joint
distribution p(.X, Y') of predictors and target called data.
D is often written as enumeration

D = {(z1, 1), (X2, 42), - - -, (T, Yn) }

5/75
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Machine Learning / 1. The Regression Problem g‘p %
The Regression Problem Formally (v0) 6

The task of regression and classification is
to predict Y based on X,
l.e., to estimate

y(x):=r(z) =EY | X =x)= /yp(y|x)dy

based on data (called regression function).
If Y is numerical, the task is called regression.

If Y is nominal, the task is called classification.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Course on Machine Learning, winter term 2013/14 7/75
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Machine Learning / 1. The Regression Problem S %
The Regression Problem Formally (v1) 5 2008 ©

Let X be any set (called predictor space).
Given
—a set D" C x xR of data (called training set),
compute a regression function
y: X =R
s.t. for a set D' C X xR of data (called test set) not available
during training, the test error

(D) = e S (i)

o | Dtest‘
(a:,y) E'DteSt

iS minimal.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Course on Machine Learning, winter term 2013/14 8/75



Machine Learning / 1. The Regression Problem R
The Regression Problem Formally (v2)

G){,‘\\U“Qr
&
\°

Q’-@?qsa("

Let X be any set (called predictor space).

Given
—a set D" C X xR of data (called training set),
—aloss function /7 : R x R — R that measures how bad it is to
predict value y if the true value is v,
compute a regression function
j: X >R
s.t. for a set D' C X xR of data (called test set) not available
during training, the test error
> Uy

err(g; DY) =

| Dtest|
Z y GDtest
is minimal.
Examples:
AN AN\ 2
Uy, 9) =y —9)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 9/75
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The Regression Problem Formally (v3)

Let X be any set (called predictor space), and
Y be any set (called target space).

Given
—aset D" C X x ) of data (called training set),
—aloss function 7 : Y x Y — R that measures how bad it is to
predict value y if the true value is y,
compute a prediction function
y: X =Y
s.t. for a set D' C X xR of data (called test set) not available
during training, the test error

err(y; D) = Dtest| Z y

Dtest

IS minimal.

Examples:
V=R, ly,9)=y—79)]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
10/75

Course on Machine Learning, winter term 2013/14




115
(-\\uefs Ja,‘&

Machine Learning / 1. The Regression Problem

The Regression Problem Formally (v4)
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Let X be any set (called predictor space),
Y be any set (called target space), e.g., and
p: X x)Y — R{ be a joint distribution / density.

Given
— a sample D" C x x ) (called training set), drawn from p,

—aloss function 7 : Y x ) — R that measures how bad it is to
predict value y if the true value is y,

compute a prediction function
y: X =Y

s.t. for another sample D" C X xR (called test set) drawn from
the same distribution p, not available during training, the test error

test)
ert(y; D) - ‘Dtest| Z y

Dtest

IS minimal.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14

Machine Learning / 1. The Regression Problem

The Regression Problem Formally (v5)

Let X be any set (called predictor space),
Y be any set (called target space), and
p: X xY — Ry be ajoint distribution / density.

Given
— a sample D" C X x ) (called training set), drawn from p,

—aloss function 7 : Y x Y — R that measures how bad it is to
predict value y if the true value is v,

compute a prediction function
G:X =Y

with minimal risk
risk(y; p) = /X y£<yaﬁ>p(xay) d(z,y)

Explanation: risk(y; p) can be estimated by the empirical risk

risk(g; DY) = Dtest| Z Uy, y(x

Dtest

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Course on Machine Learning, winter term 2013/14 12/75
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1. The Regression Problem
2. Simple Linear Regression
3. Multiple Regression
4. Variable Interactions
5. Model Selection
6. Case Weights
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Simple Examples: Single Predictor vs. Multiple Predictors ey
o . 57
~ o Q: o
e C
. o8 y
OﬂO OﬂZ Oﬂ4 Oﬂ6 Oﬂ8 lﬂO
single predictor: multiple predictors:
y=3x+95 Yy=x1+2x2+5

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 13/75
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Simple Examples: Regression Function ® a0 ¥
observations observations
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S -1 7 --- average truth [To) -~ o --- average truth
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
linear regression function: non-linear regression function:
= 2
y=3T+9 y=3z"+x+5
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 14/75
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Simple Examples: Size of Errors (1/2) ® a0ce ¥
observations errors
o _| °
© ’ [ts}
&L ™
e-ﬂ’/
0 | ool o
N~ K [32]
2 Q0
o ¥ o
o | o 5 i
N~ o 7o 0©
NPe >
> 3 - c:,z? %
°°°m,5o a] 0
& —
2 - £
°, S
o558 -
o 9//c°
0 e?’c 2
o °
@/ o o  observations
% - 7 - - - average truth g 00 00 ®® O ANO WOAWNOO CODDALO WD CWMHO OO OB WO WO
T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 -0.2 -0.1 0.0 0.1 0.2
X N =100 Bandwidth =0.037
Small errors vs. ...
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Simple Examples: Size of Errors (2/2) ® 20ce ¥
observations errors
o
o | ° ’ <
o R 7 o
0 | °
~ ° e
o @ ///D o
° , ™
° S ° ° o
o | .
~ ° L 9 . °
. L, ° 0 o >
0 Vo ¥
” © ,’Dl ° DD o °o g g
& /// ° o
o _| o / o °
© o , ©
/G o o o o ° o
’ —
) S
0 | .o e
0 S8 °
° o observations
e 3 --- average truth S o 0o cwommo womammommd com©n0 00 000®@ 00 ©
f T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 -2 -1 0 1 2
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...large errors.
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Simple Examples: Distribution of Errors (1/2) ® a0ce ¥
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Simple Examples: Distribution of Errors (2/2)

2003
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... uniformly distributed errors.
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Simple Examples: Homoscedastic vs. Heteroscedastic Errors (1/2) ™ e ©
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Errors do not depend on predictors (homoscedastic) vs. ...
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 17/75



¢

eisitE;
A

Machine Learning / 2. Simple Linear Regression g“/ %
e il ¢
Simple Examples: Homoscedastic vs. Heteroscedastic Errors (2/2) % a ©
observations errors
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...errors do depend on predictors (heteroscedastic).
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X1
Simple Examples: Distribution of Predictors (1/2) b o ¥
observations predictors
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Predictors are uniformly distributed vs.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Course on Machine Learning, winter term 2013/14
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Simple Examples: Distribution of Predictors (2/2)

2003
observations predictors
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... predictors are normally distributed.
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Simple Linear Regression Model a0 7

Make it simple:
e the predictor X is simple, i.e., one-dimensional (X = X;).

e r(x) is assumed to be linear:

r(z) = By + Bix

e assume that the variance does not depend on X:
Y =B+ 81X +e, ElX)=0,V(e|X) =0

e 3 parameters:
By intercept (sometimes also called bias)
B, slope
o’ variance

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 19/75
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Simple Linear Regression Model ® a0 ¥
parameter estimates
2 A A2
607 617 o
fitted line
F(z) = By + B
predicted / fitted values
Yi = ()
residuals
& =Y — Ui =y — (Bo + Pizi)
residual sums of squares (RSS) / square loss / L2 loss
n
~2
RSS = ¢
i=1
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 20/75
Machine Learning / 2. Simple Linear Regression giﬁ&%
How to estimate the parameters? ey
Example:
Given the data D := {(1,2), (2,3), (4,6)}, predict a value for = = 3.
o - o data
T T T T T I
0 1 2 3 4 5
X
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
21/75
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Machine Learning / 2. Simple Linear Regression N a
How to estimate the parameters? ® a0 ¥
Example:
Given the data D := {(1,2), (2,3), (4,6)}, predict a value for z = 3.
Line through first two points:
5 Y2 — Y “ 7
To2 — X1 0
Bo =y — przy =1 .
RSS: _ ) . |
iy Ui (i — i) ™
112 2 0 L
2 13 3 0 R
3 6 5 1 o T T T T \ﬁh m°d“9|
Z 1 0 1 2 3 4 5
#(3) = 4 '
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 22/75
Machine Learning / 2. Simple Linear Regression gi,d’s’%
How to estimate the parameters? ey

Example:
Given the data D .= {(1,2), (2,3), (4,6)}, predict a value for z = 3.

Line through first and last point:

Gy =BT 43 =1.333 |
T3 — I 0 -

Bo =y1 — Py = 2/3 = 0.667

RSS: S
v |y Ui (y; — 0:)* ~
1 2 2 0 o
2 |3 3.333 0.111 N o dua
316 6 0 T T
> 0.111 X

7#(3) = 4.667

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 23/75



Machine Learning / 2. Simple Linear Regression
Least Squares Estimates / Definition

In principle, there are many different methods to estimate the
parameters /3y, 31 and 6% from data — depending on the
properties the solution should have.

The least squares estimates are those parameters that
minimize

=1 1=1

n

> (Wi — (Bo+ b))’

1=1

They can be written in closed form as follows:

v (i — @) (Y — )
Pr= > i (i —x)?

~ ~
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Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14

Machine Learning / 2. Simple Linear Regression

Least Squares Estimates / Proof

Proof (1/2):
(yi — (Bo + 3133@‘))2

|

== 2y — (B + Brixi))(=1) = 0

24/75
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Machine Learning / 2. Simple Linear Regression 3 % %
Least Squares Estimates / Proof ey
Proof (2/2):
RSS = Z — (Bo + Pri))*
= Z (y — Biz) — Pri)?
= Z(yz- i — 1))’
i=1
ORSS N
— = 2 i =) (=1)(z;i — ) =
9 i=1
s 2 Wi — Y — )
— 51 — n —\2
Do (T — )
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 26/75
Machine Learning / 2. Simple Linear Regression gi,d’%
Least Squares Estimates / Example ey
Example:
Given the data D .= {(1,2), (2,3), (4,6)}, predict a value for z = 3.
Assume simple linear model.
T="17/3,y=11/3,
i =7 yi—y (v —2)° (23— 2)(yi — ) Y
1 —4/3 —5/3 16/9 20/9
2 —-1/3 —=2/3 1/9 2/9 ©
3 5/3  7/3  25/9 359 .|
> 42/9 57/9
ST 77 63 N
~ ~ 11 5 o data
—17 — r = — — —— — :05 o - —e— model
o=y =Pt = g 53 106

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 27175
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Least Squares Estimates / Example

Example:
Given the data D := {(1,2), (2,3), (4,6)}, predict a value for = = 3.
Assume simple linear model.

Bi :Z”? — )i —y) _ 57/42 = 1.357

i1 (T — T)? N
. A 11 57 7 63 o
- =———-=—=05
o=y = = 53 1o N
RSS: T
iy U (i — ) o
I |2 1.857 0.020 o
2 |3 3.214 0.046 o daw
3 16 5.929 0.005 1 w w w ‘ ‘
0 1 2 3 4 5
S 0.071 X
#(3) = 4.571
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 28/75
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A Generative Model B S

So far we assumed the model
Y =B+ 81X +e, ElX)=0V(e]X) =0

where we required some properties of the errors,
but not its exact distribution.

If we make assumptions about its distribution, e.g.,
€| X ~ N(0,07%)

and thus
Y|X =2~ N(B + Bz, 02)

we can sample from this model.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 29/75
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Machine Learning / 2. Simple Linear Regression 3 % %
Maximum Likelihood Estimates (MLE) B

Let p(X,Y | #) be a joint probability density function for X and Y
with parameters 6.

Likelihood:

n

Lp(0) = | [ p(xi,y:16)

1=1

The likelihood describes the probability of the data.

The maximum likelihood estimates (MLE) are those
parameters that maximize the likelihood.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 30/75

Machine Learning / 2. Simple Linear Regression ge’%
Least Squares Estimates and Maximum Likelihood Estimates %z ©
Likelihood:
n n n n
Lop(Bo, B1,6%) == | [ Bwiwi) = | [ Bwi | wp(w) = [ [ plwi | 2) | | (i)
i=1 i=1 i=1 i=1
Conditional likelihood:
d/ A A 9 i " 1 (yj_yi)Q 1 1 Zn (’l/ i )2
LCOH , ’OA' = 2 s = G_QT = —6—2[72 =1\
D <BO 61 ) Ep(yl ‘ 2) E \/%(3' \/%né—n

Conditional log-likelihood:

N ~ R A 1 n )
log L¥( 3y, 1, 6%) oc —nlog o — 553 Z(iyz — )
i=1

— if we assume normality, the maximum likelihood estimates
are just the least squares estimates.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 31/75




Machine Learning / 2. Simple Linear Regression Sapp%i
. . 4
Implementation Details

@ simple-regression(D) :
@ X:=0,sy:=0

@ fort=1,...,ndo

4 X=X+

®) Y=Y+

6) od

0 T:=X/n,y:=9y/n
® a:=0,b:=0

@ fort=1,...,ndo
w a=a+ (r; —2)(yi —Y)
1) b:=0b+ (z; — 1)
(12) od

@) [y :=a/b

) Bo:=y— AT

@s) return (S, 51)

=

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 32/75
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Machine Learning / 2. Simple Linear Regression P %
(71

\\\.lﬂq%

“Sysat

5

o
e

Implementation Details

2003

naive: single loop:
@ simple-regression(D) : 1 simple-regression(D) :
@ sX:=0,8y:=0 M _ — _ o
@ fori=1,...,ndo 2 ]?(;(r'.__o’lsy o O’jo(x =09y =0,5:=0
@ X=X+ , —ZS>(_—7S>(—|,—W:;:_
© =Sy + i _ ;
O s Y=Yty
_ _ 6 SXX 1= SXX + x;
M T :=SX/n,y:=sy/n _ 2
® a:=0,b:=0 ; y:zyiyl .
@ fori=1,...,ndo Y=Y+ Ll
(10) a:=a+(x; —7)(y; — ) lz;_d,_(n_sx — X - sy)/(n - XX — SX - X)
(11) b:=b+ (r; — )* L= y ¥

[
[N

Bo = (sy — p1-X)/n

12) od
v return (8o, 1)

@ [y :=a/b
1) Bo:=y— iz
(15) return (B, 1)

Ny
N

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 32/75



Machine Learning f % %

1. The Regression Problem
2. Simple Linear Regression
3. Multiple Regression

4. Variable Interactions
5. Model Selection

6. Case Weights

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Course on Machine Learning, winter term 2013/14 33/75
Machine Learning / 3. Multiple Regression gi’,’s’%
Several predictors 5 2008
Several predictor variables X, Xo, ..., X,;:
Y =0y + 51 X1 + o Xo+--- BpXp +e
p
=00 + Z BiXi+ e
=1
with p + 1 parameters gy, 51, . . ., 5,.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
33/75

Course on Machine Learning, winter term 2013/14



Machine Learning / 3. Multiple Regression 3 %
Linear form ® o0

Several predictor variables X, Xs, ..., X,:
p
Y :50+251X¢+€
=1
=(6,X) +¢€

where
Bo 1
B | X

By Xp

Thus, the intercept is handled like any other parameter, for the
artificial constant variable X, = 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
34/75

Course on Machine Learning, winter term 2013/14
Machine Learning / 3. Multiple Regression gi‘%@%
Simultaneous equations for the whole dataset B

For the whole dataset (x1,v1), ..., (Tn, yn):
Y=X[S+e¢

where

Y
Y = : X = : = : : : H ,

Yn In Tn1l Tp2 -« Tpp

I 11 12 -+ T1p €1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
35/75

Course on Machine Learning, winter term 2013/14
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Machine Learning / 3. Multiple Regression 3 % %
Least squares estimates et

Least squares estimates 3 minimize
Y =Y =Y - X3

The least squares estimates 3 are computed via
X'X3=X"Y

Proof: ) ) A
1Y — X[ = (Y = X3, Y — Xp3)

M) _gxy - X = XY - XX L0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
36/75

Course on Machine Learning, winter term 2013/14
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Machine Learning / 3. Multiple Regression %
How to compute least squares estimates 2008

G’\'\,‘\\u L)

Solve the p x p system of linear equations
X'X3=X"Y
i.e., Az = b (with 4 := XTX, b= XTY,z = B).

There are several numerical methods available:

1. Gaussian elimination
2. Cholesky decomposition

3. QR decomposition

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
37/75

Course on Machine Learning, winter term 2013/14
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Machine Learning / 3. Multiple Regression

How to compute least squares estimates 5 / Example ¥ 2
Given is the following data:
L1 L2 Y
1 23
2 3 2
4 17
5 5 1
Predict a y value for z; = 3,z = 4.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 38/75
Machine Learning / 3. Multiple Regression gi,’s’%
® a0 7

How to compute least squares estimates B/ Example

Y =0+ 51 X1+ € Y =05y + (o X2 + €
=2.9540.1X4 + € =6.943 — 1.343X5 + €
T dat ) ~ e
o ala o
© 1+ model o - mode
To) o -
™ ,T/ o o
AN — o AN — o
— — o - — o
\ \ \ \ \
1 2 3 4 5 1 2 3 4 5
x1 X2
y(xy = 3) =3.25 §(zo = 4) = 1.571

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 39/75
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Machine Learning / 3. Multiple Regression
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How to compute least squares estimates B/ Example

Now fit to the data:
ry T2y
Y =po+ 51X1+ foXo+ € 1 23
2 3 2
4 1 7
5 o 1
112 3
123 2
X = 141 |’ Y= 7
155 1
4 12 11 13
X'X=1124637 |, X'Y=| 40
11 37 39 24

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Course on Machine Learning, winter term 2013/14 40/75
Machine Learning / 3. Multiple Regression gi’%&%
How to compute least squares estimates 3 / Example RSN

412 1113 412 11] 13 412 11| 13
12 46 37/40 | ~[ 010 4 1|~ |010 4 1
11 37 39|24 0 16 35| —47 0 0 143 —243
4 12 11| 13 286 0 0] 1597
~[ 01430 0 1115 | ~ 0 1430 0 1115
0 0 143|—243 0 0 143 —243
i.e.,
1597 /286 5.583
A= 1115/1430 | ~ | 0.779
—243/143 —1.699

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 41/75
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Machine Learning / 3. Multiple Regression

¥ 200

How to compute least squares estimates B/ Example

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Course on Machine Learning, winter term 2013/14 42/75
Machine Learning / 3. Multiple Regression giﬁ’s’%
How to compute least squares estimates 5 / Example R
To visually assess the model fit, a plot
residuals ¢ = y — g vs. true values y
can be plotted:
AN
O_ —
o o
o
<> 9
| o o
>
<
o _
o
| [e]
\ \ \ \ \ \
1 2 3 4 5 6 7
y
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
43/75

Course on Machine Learning, winter term 2013/14
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Machine Learning / 3. Multiple Regression g% %
The Normal Distribution (also Gaussian) ey
<
written as: °
o™
X ~N(u,0%) S
with parameters: E 8-
[ mean,
o standard deviance. o
probability density function (pdf):
o
1 _(a=p)? SHE x x x I T \
._ o2
¢(x) T 27m€ ? -3 -2 -1 0 1 2 3
o X
cumulative distribution function -
(cdf): S
x
vo)i= [ oltyi =
e z
. . . <
d~!is called quantile function. S
N
. o
d and ®~! have no analytical form, but _
have to be computed numerically. c —
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Coﬁ‘%uter S@ence,‘llniverst of Hildesheir? 3
Course on Machine Learning, winter term 2013/14 44/75
Machine Learning / 3. Multiple Regression gi’%’s’%
The ¢ Distribution % S
S
— p=10
written as: o | P
X ~t, °
with parameter: .
p degrees of freedom. g ©
probability density function (pdf): g -
F(]il) 332 p+1
. 2 —55=
plz) = ﬁ(l +—)7 7 2
\/pﬂ- (5) p T T T T T
p—0
t, — N(0,1) 2 -
o E—
— p=10
g - p=50
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of GomputeuSciencez University of Hilelesheim4 6
Course on Machine Learning, winter term 2013/14 45/75
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Machine Learning / 3. Multiple Regression 3 %
The x~ Distribution ® a0 ¥
2 1 e
written as: P10
X ~ X]% )
with parameter: S
p degrees of freedom. £
probability density function (pdf): °
1 L_1 Z
=37 e >
P rpmpn™ ¢ 720 gl e

If X1,..., X, ~N(0,1), then

o ]
p o
. 2 2
Y = E X7~ X, o |
- o
=1 <
g
<
o
N
o
o |
o
I I I I I
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of gomputer Scignce, Univergity of Hildesheim 20
Course on Machine Learning, winter term 2013/14 46/75
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Machine Learning / 3. Multiple Regression g“v %
WA
Parameter Variance e

B = (XTX)'XTY is an unbiased estimator for 3 (i.e., E(3) = ).

Its variance is )
V(g) = (X'X)"o*

proof:
B =(XTX)"XTY = (XTX) X (XB +¢) = 5+ (XTX) ' XTe

As E(e)=0: E(B) = f

V(B) =E((8 - EB))(B - EB)")
—E(XTX) 1 XTeeX(XTX)™)
:(XTX)_10'2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 47/75
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Machine Learning / 3. Multiple Regression g‘v %
Parameter Variance ® a0 ¥
An unbiased estimator for o2 is
R 1 —
) -2 N2
n_p; ; n—p;@” i)
If e ~ N(0,0%), then
5 T~\—1_2
B~ N(B, (X X) 07
Furthermore
) 2.2
(n T p>0 ~ 0 anp
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 48/75
Machine Learning / 3. Multiple Regression gi%’s’%
Parameter Variance / Standardized coefficient B S
standardized coefficient (“z-score”):
o B Hh anZ/ A . : T~r\—122
zi = ———, With se”(3;) the i-th diagonal element of (X' X) "¢
se(f;)
z; would be z; ~ N(0, 1) if o is known (under H, : 3; = 0).
With estimated g it is z; ~ t,,_,.
The Wald test for H, : 5; = 0 with size « is:
) ) ; -~ Q0
reject Hy if |z;| = |—Aﬁﬂ | > Ftnf)(l — =)
se(3;) ! 2
l.e., its p-value is
el Il - b
p-value(Hy : 8 =0) =2(1 - F;,_(|zi]) =2(1 = F,_(I==-1))
se(f;)
and small p-values such as 0.01 and 0.05 are good.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
49/75

Course on Machine Learning, winter term 2013/14



Machine Learning / 3. Multiple Regression

Parameter Variance / Confidence interval

The 1 — a confidence interval for 3;:

Bt F,! (1 3)88(3)

tn—p

For large n, I}, , converges to the standard normal cdf ¢.

As d71(1 — 1) ~ 1.95996 ~ 2, the rule-of-thumb for a 5%

confidence interval is A
Bi £ 2se(p;)

£

G

G)“ﬁ\unq
=
g\

Ly5at"

. \‘,ef Sl %

=

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14

Machine Learning / 3. Multiple Regression

Parameter Variance / Example

We have already fitted to the data:

T T g e€=y—y)’

2.965 0.00122
2.045 0.00207

N . . 1 2
Y =By + 51.X1 + B2 Xo
=5.583 + 0.779.X7 — 1.699.X, 4 7.003 0.0000122

5 0.986 0.000196

Ut = W
— =J N we

RSS 0.00350

n

1 1
6% = D & =——0.00350 = 0.00350
n—p = 4—3

0.00520 —0.00075 —0.00076
(XT'X)'6? = [ —0.00075 0.00043 —0.00020
—0.00076 —0.00020  0.00049

covariate §, se(B;) z-score p-value
(intercept) 5.583 0.0721 77.5  0.0082
X 0.779 0.0207 37.7 0.0169
X5 —1.699 0.0221 —76.8 0.0083

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14
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Machine Learning / 3. Multiple Regression 3 %
Parameter Variance / Example 2 ® 20ce ¥
Example: sociographic data of the 50
US states in 1977. s 1;‘ 20 %0 e i
A N N 8 ool
state dataset: Income | 1~ ERCH IR O
e income (per capita, 1974), ° K o T
e illiteracy (percent of population, a1y,
1970), o]t llliteracy 8
e life expectancy (in years, 1969-71), . " o X,
e percent high-school graduates Cwee |l oo ot
(1970). Jies | i Life Exp oo
e population (July 1, 1975) e " i
e murder rate per 100,000 population - v R .
8 Loo% 4 o 8 .58
(1 976) P §»f»g« oa e :.. o HS Grad
e mean number of days with minimum _1 ... i
temperature below freezing T T
(1931-1960) in capital or large city
e land area in square miles
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 52/75
Machine Learning / 3. Multiple Regression ge’s’%
Parameter Variance / Example 2 ® a0ce ¥
Murder =g, + [5Population + SsIncome + gsllliteracy
+ ByLifeExp + psHSGrad + pgFrost + S;Area
n = 50 states, p = 8 parameters, n — p = 42 degrees of
freedom.
Least squares estimators:
Estimate Std. Error t value Pr(>|t])
(Intercept) 1.222e+02 1.789%e+01 6.831 2.54e-08 #*xx*
Population 1.880e-04 6.474e-05 2.905 0.00584 x=x
Income -1.592e-04 5.725e-04 -0.278 0.78232
Illiteracy 1.373e+00 8.322e-01 1.650 0.10641
‘Life Exp' -1.655e+00 2.562e-01 -6.459 8.68e—-08 *xx*
‘HS Grad® 3.234e-02 5.725e-02 0.565 0.57519
Frost -1.288e-02 7.392e-03 -1.743 0.08867
Area 5.967e-06 3.801e-06 1.570 0.12391
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 53/75
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Machine Learning ;BP %

1. The Regression Problem
2. Simple Linear Regression
3. Multiple Regression

4. Variable Interactions
5. Model Selection

6. Case Weights

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Course on Machine Learning, winter term 2013/14 54/75
Machine Learning / 4. Variable Interactions giﬁ’s’%
Need for higher orders ey
Assume a target variable does not
depend linearly on a predictor variable,
but say quadratic. .
Example: way length vs. duration of a a
moving object with constant 3
acceleration a. .
1
s(t) = —at® + € ~ 8- .
2
Can we catch such a dependency? 8 .
Can we catch it with a linear model? ] 0
T T T T T
0 2 4 6 8

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 54/75



Machine Learning / 4. Variable Interactions Sprs
Need for general transformations 5

To describe many phenomena, even more complex functions of
the input variables are needed.

Example: the number of cells n vs. duration of growth ¢:

n = Be +¢

n does not depend on ¢ directly, but on e (with a known «).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Course on Machine Learning, winter term 2013/14 55/75
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Machine Learning / 4. Variable Interactions 3 % %
Need for variable interactions Ly

In a linear model with two predictors
Y =By + 51X + o Xy + €
Y depends on both, X; and X.

But changes in X; will affect Y the same way, regardless of X,.

There are problems where X, mediates or influences the way X,
affects Y, e.g. : the way length s of a moving object vs. its
constant velocity v and duration ¢:

s=vt+e

Then an additional 1s duration will increase the way length not in
a uniform way (regardless of the velocity), but a little for small
velocities and a lot for large velocities.

v and t are said to interact: y does not depend only on each
predictor separately, but also on their product.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14
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Machine Learning / 4. Variable Interactions

Derived variables

All these cases can be handled by looking at derived variables,
l.e., instead of

Y =8y + Bi X7 +e

Y =8y + Bi1e®*! + €

Y:60+51X1'X2+6
one looks at

Y =5, + BlX{ + €
with
X =X?

X =1
X{ Z:X1 . X2

Derived variables are computed before the fitting process and
taken into account either additional to the original variables or
instead of.
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Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14

Machine Learning

1. The Regression Problem
2. Simple Linear Regression
3. Multiple Regression

4. Variable Interactions
5. Model Selection

6. Case Weights

57/75
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Machine Learning / 5. Model Selection 3 %
Underfitting % a0 ¥
o
o — o
N

50 100

0
I

If a model does not well explain the data,
e.g., if the true model is quadratic, but we try to fit a linear model,
one says, the model underfits.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Course on Machine Learning, winter term 2013/14 58/75
Machine Learning / 5. Model Selection giﬁ’s’%
Overfitting / Fitting Polynomials of High Degree ey

(o]
0 — o
@ p—
> < -, o
(o)

N o data

—A— model
o — )

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 59/75
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Machine Learning / 5. Model Selection 3 P%”
Overfitting / Fitting Polynomials of High Degree ey
o0
©
> <
(q\|
o
o 2 4 6 8
X
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 59/75
Machine Learning / 5. Model Selection giy’%
Overfitting / Fitting Polynomials of High Degree 0y
o0
O
> <
(q\
o
0o 2 4 6 8
X
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim so/75

Course on Machine Learning, winter term 2013/14
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Machine Learning / 5. Model Selection 3%%
Overfitting / Fitting Polynomials of High Degree ey

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Course on Machine Learning, winter term 2013/14 59/75
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Machine Learning / 5. Model Selection : %a
Overfitting / Fitting Polynomials of High Degree s S

g e,

i
Q”“’usa

o

If to data
<x17 yl); (x27 y?): ey <xn7 yn)
consisting of n points we fit
X = B0+ 5iXi 4+ BoXo+ -+ Bro1 X

i.e., a polynomial with degree n — 1, then this results in an
interpolation of the data points
(if there are no repeated measurements, i.e., points with the

same X;.)

As the polynomial

is of this type, and has minimal RSS = 0.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Course on Machine Learning, winter term 2013/14 59/75
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Machine Learning / 5. Model Selection
Model Selection Measures

c_}'\,\\uﬂy

Model selection means: we have a set of models, e.g.,
p—1

Y = Z BiXi
=0

indexed by p (i.e., one model for each value of p),
make a choice which model describes the data best.

If we just look at losses / fit measures such as RSS, then

the larger p, the better the fit

or equivalently
the larger p, the lower the loss

as the model with p parameters can be reparametrized in a
model with p’ > p parameters by setting
g {5 fori <p

i) o0, fori>p

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 60/75
o BTSilE :

Machine Learning / 5. Model Selection % %
Model Selection Measures poa

gy &,

5

o

One uses model selection measures of type
model selection measure = fit — complexity

or equivalently

model selection measure = loss + complexity

The smaller the loss (= lack of fit), the better the model.

The smaller the complexity, the simpler and thus better the
model.

The model selection measure tries to find a trade-off between
fit/loss and complexity.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 61/75



Machine Learning / 5. Model Selection g% %
Model Selection Measures T ”
Akaike Information Criterion (AIC): (maximize)
AlIC :=logL —p
or (minimize)
AIC := —2log L + 2p = —2nlog(RSS/n) + 2p
Bayes Information Criterion (BIC) /
Bayes-Schwarz Information Criterion: (maximize)
BIC :=log L — glogn
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 62/75
Machine Learning / 5. Model Selection giﬁ’s’%
Variable Backward Selection B S
{AF,H, ILJ,L,P}
AIC = 63.01
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
63/75

Course on Machine Learning, winter term 2013/14
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Machine Learning / 5. Model Selection 3 %

Variable Backward Selection 2008

{A,F,HILJ L P}

AIC = 63.01
{(KF.HLJLP} . {AFHXJLP} {A,F,H 1,J L K}
AIC = R K7 AlC =61 11 AlC =7017
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 63/75
Machine Learning / 5. Model Selection g“i,m{%
Variable Backward Selection B S
{AF,H, LJ L P}
AIC = 63.01
{(K.F.HLJLP} .. {AFHXJLP} {AF,H 1,J L K}
AIC = 63.87 AIC =61.11 AIC=70.17

{KFEHXJLLPY . {AFENXJLLP}Y . {AFHXJLK}
AIC = 61.88 AIC =59.40 AIC = 68.70

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 63/75
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Machine Learning / 5. Model Selection ;}‘v %
a@d;

Variable Backward Selection

{A,F,H ILJ L P}

AIC = 63.01
(XEH1LJLLP} e {AFHXJLP} (A FHIJ LK)
AIC = 63.87 AIC = 61.11 AIC = 70.17

e

{KFEHXJLLPY . {AFNXJLLP}Y . {AFHXJLK}
AIC = 61.88 AIC = 59.40 AIC = 68.70

[T

{KFEXRXJLLPY {AXXKAXJLP} {AF. WX J, LR}
AIC = 63.23 AIC = 61.50 AIC = 66.71

X  removed variable

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Course on Machine Learning, winter term 2013/14 63/75
Machine Learning / 5. Model Selection g“iﬁ’s’%
Variable Backward Selection e

full model:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 1.222e+02 1.789%9e+01 6.831 2.54e-08 *#*%*

Population 1.880e-04 6.474e-05 2.905 0.00584 xx
Income -1.592e-04 5.725e-04 -0.278 0.78232
ITlliteracy 1.373e+00 8.322e-01 1.650 0.10641
‘Life Exp' -1.655e+00 2.562e-01 -6.459 8.68e—-08 *xx*
‘HS Grad® 3.234e-02 5.725e-02 0.565 0.57519
Frost -1.288e-02 7.392e-03 -1.743 0.08867
Area 5.967e-06 3.801e-06 1.570 0.12391

AIC optimal model by backward selection:
Estimate Std. Error t wvalue Pr(>|t])

(Intercept) 1.202e+02 1.718e+01 6.994 1.17e-08 xx*x*
Population 1.780e-04 5.930e-05 3.001 0.00442 *x
Tlliteracy 1.173e+00 6.801e-01 1.725 0.09161 .
‘Life Exp' -1.608e+00 2.324e-01 -6.919 1.50e—-08 *xx*
Frost -1.373e-02 7.080e-03 -1.939 0.05888

Area ©6.804e-06 2.919e-06 2.331 0.02439 «

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 63/75




Machine Learning / 5. Model Selection 3 %
How to doitin R 5 2000

library (datasets);

library (MASS) ;
st = as.data.frame (state.x77);

mod.full = 1Im(Murder ~ ., data=st);
summary (mod.full) ;

mod.opt = stepAIC(mod.full);
summary (mod.opt) ;

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 64/75
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Machine Learning / 5. Model Selection 3 %
Shrinkage ® 2002 ¥

Model selection operates by

o fitting models for a set of models with varying complexity
and then picking the “best one” ex post,

e omitting some parameters completely (i.e., forcing them to be 0)

shrinkage operates by
e including a penalty term directly in the model equation and

e favoring small parameter values in general.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 65/75
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Machine Learning / 5. Model Selection g% %
Shrinkage / Ridge Regression [?] ey

Ridge regression: minimize

p
RSS,(6) =RSS(5) + A ) _ 52
j=1

p
=(y - XB,y = XB)+ 1> _p
j=1
= =(XTX + )Xy
with A > 0 a complexity parameter / regularization parameter.

As
e solutions of ridge regression are not equivariant under scaling of

the predictors, and as

e it does not make sense to include a constraint for the parameter of

the intercept
data is normalized before ridge regression:
;. _Zij =T
T T AN
o(x.;)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
66/75

Course on Machine Learning, winter term 2013/14
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Machine Learning / 5. Model Selection % %
Shrinkage / Ridge Regression (2/3) Py

X

G’g‘\\u My ¢y

Ridge regression is a combination of
n p

D =0+ 5
j=1

1=1
\ -~ 7 \ ,

=L2loss +\ L2 regularization

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
67/75

Course on Machine Learning, winter term 2013/14



ers iz
fo

Machine Learning / 5. Model Selection
Shrinkage / Ridge Regression (3/3) / Tikhonov Regularization (1/2)

§

L2 regularization / Tikhonov regularization can be derived for
linear regression as follows:
Treat the true parameters 6; as random variables ©; with the following
distribution (prior):

0, ~N(0,00), j=1,....p
Then the joint likelihood of the data and the parameters is

Lpe(f <Hp xz,yz9>Hp

and the conditional joint log likelihood of the data and the parameters

accordingly
p
log Lcond (Z log p(yi | i, 0 ) + Zlogp(@j = ;)
j=1
and
62
1 2 log(vFT00) 0;
1 O,=0;)=1lo e "0 = —log(V2mog) — —=
ng( J ]) g\/%()’@ g © 20_(29

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14

Machine Learning / 5. Model Selection S % %
Shrinkage / Ridge Regression (3/3) / Tikhonov Regularization (2/2) -

68/75

Dropping the terms that do not depend on 6, yields:

X p
lo gLCO"d(Q) = Z log p(y; | i, 0) | + Z log p(©,; =
i=1 '
oc | Y log plyi| =, > 5 Z 0;
i=1 09

This also gives a semantics to the complexity / regularization

parameter \: X

20,
but ¢4 is unknown. (We will see methods to estimate X later on.)

A:

The parameters 6 that maximize the joint likelihood of the data and
the parameters are called Maximum Aposteriori Estimators (MAP

estimators).

Putting a prior on the parameters is called Bayesian approach.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14
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How to compute ridge regression / Example

Fit to the data:
ry T2y
Y =fo+ 51X1+ o Xo+ € 1 23
2 3 2
417
5 51
Lo :
X — Y = : I=[010],
141 7 001
155 1
412 11 9 12 11 13
X'x=[124637 ), X'X+5I=|125137], XY =140
11 37 39 11 37 44 24

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Course on Machine Learning, winter term 2013/14 70/75
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1. The Regression Problem
2. Simple Linear Regression
3. Multiple Regression

4. Variable Interactions
5. Model Selection

6. Case Weights

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 71/75
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Machine Learning / 6. Case Weights Sprs
Cases of Different Importance ® 2008

Sometimes different cases are of different importance, e.g., if
their measurements are of different accurracy or reliability.

Example: assume the left most point is
known to be measured with lower
reliability.

Thus, the model does not need to fit to
this point equally as well as it needs to
do to the other points.

l.e., residuals of this point should get
lower weight than the others. ~ ]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Course on Machine Learning, winter term 2013/14 71/75
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Machine Learning / 6. Case Weights gP’S’%
Case Weights e

In such situations, each case (z;,y;) is assigned a case weight

e the higher the weight, the more important the case.

e cases with weight 0 should be treated as if they have been
discarded from the data set.

Case weights can be managed as an additional pseudo-variable
w in applications.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 72/75



Machine Learning / 6. Case Weights

Weighted Least Squares Estimates

Formally, one tries to minimize the weighted residual sum of

squares
n R l )
> wily = 4. =l[W2ly = 9)II°
=1
with
w1 0
W = 2
0 Wy,

The same argument as for the unweighted case results in the
weighted least squares estimates

X'"WX3 = X"Wy

1514,
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Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim

Course on Machine Learning, winter term 2013/14 73/75
Machine Learning / 6. Case Weights gi,d’%
Weighted Least Squares Estimates / Example ey
To downweight the left most point, we assign case weights as
follows:

w x Yy o -

1 5.65 3.4

1 3.37 1.75

1 1.97 0.04 ° ]

1 3.70 4.42

0.1 0.15 3.85 ~ L

1 &8.14 8.75

1 7.42 811

1 6.59 5.64 ]

1 177 018 o data _

1 7.74 8.30 o " odd (wo. weights)

0 : . ‘ 0
X

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 74/75
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Machine Learning / 6. Case Weights

Summary

e For regression, linear models of type Y = (X, 8) + ¢ can be used to
predict a quantitative Y based on several (quantitative) X.

e The ordinary least squares estimates (OLS) are the parameters with
minimal residual sum of squares (RSS). They coincide with the
maximum likelihood estimates (MLE).

e OLS estimates can be computed by solving the system of linear
equations X’X3 = X'Y.

e The variance of the OLS estimates can be computed likewise
(XTX)~'6?).

¢ For deciding about inclusion of predictors as well as of powers and
interactions of predictors in a model, model selection measures
(AIC, BIC) and different search strategies such as forward and

backward search are available.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
75175
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