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Machine Learning / 1. What is a Decision Tree?

Decision Tree

A decision tree is a tree that

1. at each inner node has a decision
rule that assigns instances uniquely
to child nodes of the actual node, and

2. at each leaf node has a class label.
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Machine Learning / 1. What is a Decision Tree?

Using a Decision Tree

The class of a given case x ∈ X is pre-
dicted by

1. starting at the root node,

2. at each interior node

– evaluate the decision rule for x and

– branch to the child node picked by
the decision rule,
(default: left = “true”, right = “false”)

3. once a leaf node is reached,

– predict the class assigned to that
node as class of the case x.
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Example:

x: Petal.Length = 6, Petal.Width = 1.6
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Machine Learning / 1. What is a Decision Tree?

Decision Tree as Set of Rules

Each branch of a decision tree can be formulated as a single
conjunctive rule

if condition1(x) and condition2(x) and . . . and conditionk(x),
then y = class label at the leaf of the branch.

A decision tree is equivalent to a set of such rules,
one for each branch.
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Machine Learning / 1. What is a Decision Tree?

Decision Tree as Set of Rules
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set of rules:
Petal.Length < 2.45→ class=setosa
Petal.Length ≥ 2.45 and Petal.Width < 1.75 and Petal.Length < 4.95→ class=versicolor
Petal.Length ≥ 2.45 and Petal.Width < 1.75 and Petal.Length ≥ 4.95 and Petal.Width ≥ 1.55→ class=versicolor
Petal.Length ≥ 2.45 and Petal.Width < 1.75 and Petal.Length ≥ 4.95 and Petal.Width < 1.55→ class=virginica
Petal.Length ≥ 2.45 and Petal.Width ≥ 1.75→ class=virginica
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Machine Learning / 1. What is a Decision Tree?

Decision Tree as Set of Rules

Petal.Length< 2.45

Petal.Width< 1.75

Petal.Length< 4.95

Petal.Width>=1.55

setosa    

versicolor

versicolor virginica 

virginica 

set of rules:
Petal.Length < 2.45 → class=setosa
Petal.Length ∈ [2.45, 4.95[ and Petal.Width < 1.75 → class=versicolor
Petal.Length ≥ 4.95 and Petal.Width ∈ [1.55, 1.75[ → class=versicolor
Petal.Length ≥ 4.95 and Petal.Width < 1.55 → class=virginica
Petal.Length ≥ 2.45 and Petal.Width ≥ 1.75 → class=virginica
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Machine Learning / 1. What is a Decision Tree?

Decision Boundaries

Decision boundaries are rectangular.
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Machine Learning / 1. What is a Decision Tree?

Regression Tree

A regression tree is a tree that

1. at each inner node has a decision rule that assigns
instances uniquely to child nodes of the actual node, and

2. at each leaf node has a target value.
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Machine Learning / 1. What is a Decision Tree?

Probability Trees

A probability tree is a tree that

1. at each inner node has a decision rule that assigns
instances uniquely to child nodes of the actual node, and

2. at each leaf node has a class probability distribution.
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Machine Learning / 2. Splits

An alternative Decision Tree?
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Machine Learning / 2. Splits

An alternative Decision Tree?
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Machine Learning / 2. Splits

Simple Splits

To allow all kinds of decision rules at the interior nodes (also
called splits) does not make much sense. The very idea of
decision trees is that

• the splits at each node are rather simple and

• more complex structures are captured by chaining several
simple decisions in a tree structure.

Therefore, the set of possible splits is kept small by opposing
several types of restrictions on possible splits:

• by restricting the number of variables used per split
(univariate vs. multivariate decision tree),

• by restricting the number of children per node
(binary vs. n-ary decision tree),

• by allowing only some special types of splits
(e.g., complete splits, interval splits, etc.).
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Machine Learning / 2. Splits

Types of Splits: Univarite vs. Multivariate

A split is called univariate if it uses only a single variable,
otherwise multivariate.

Example:
“Petal.Width < 1.75” is univariate,
“Petal.Width < 1.75 and Petal.Length < 4.95” is bivariate.

Multivariate splits that are mere conjunctions of univariate splits
better would be represented in the tree structure.

But there are also multivariate splits than cannot be represented
by a conjunction of univariate splits, e.g.,
“Petal.Width / Petal.Length < 1”
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Machine Learning / 2. Splits

Types of Splits: n-ary

A split is called n-ary if it has n children.
(Binary is used for 2-ary, ternary for 3-ary.)

Example:
“Petal.Length < 1.75” is binary,

Home.University =

Hildesheim Göttingen {Hannover, Braunschweig}

is ternary.

All n-ary splits can be also represented as a tree of binary splits,
e.g.,

Home.University =

Hildesheim {Göttingen,Hannover,Braunschweig}

Göttingen {Hannover, Braunschweig}

Home.University =

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
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Machine Learning / 2. Splits

Types of Splits: Complete Splits

A univariate split on a nominal variable is called complete
if each value is mapped to a child of its own,
i.e., the mapping between values and children is bijective.

Home.University =

Hildesheim Göttingen Hannover Braunschweig

A complete split is n-ary
(where n is the number of different values for the nominal
variable).
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Machine Learning / 2. Splits

Types of Splits: Interval Splits

A univariate split on an at least ordinal variable is called interval
split if for each child all the values assigned to that child are an
interval.

Example:
“Petal.Width < 1.75” is an interval split,
“(i) Petal.Width < 1.45,
(ii) Petal.Width ≥ 1.45 and Petal.Width < 1.75,
(iii) Petal.Width ≥ 1.75” also is an interval split.

“Petal.Width < 1.75 or Petal.Width ≥ 2.4” is not an interval split.
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Machine Learning / 2. Splits

Types of Decision Trees

A decision tree is called
univariate,
n-ary,
with complete splits or
with interval splits,

if all its splits have the corresponding property.
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Machine Learning / 2. Splits

Binary Univariate Interval Splits

There are partitions (sets of rules)
that cannot be created by binary univariate splits.
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Machine Learning / 2. Splits

Binary Univariate Interval Splits

There are partitions (sets of rules)
that cannot be created by binary univariate splits.

But all partitions can be refined
s.t. they can be created by binary univariate splits.
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Machine Learning / 3. Regularization

Learning Regression Trees (1/2)

Imagine, the tree structure is already given,
thus the partition

Rj, j = 1, . . . , k

of the predictor space is already given.

Then the remaining problem is to assign a predicted value

ŷj, j = 1, . . . k

to each cell.
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Machine Learning / 3. Regularization

Learning Regression Trees (2/2)

Fit criteria such as the smallest residual sum of squares can be
decomposed in partial criteria for cases falling in each cell:

n∑

i=1

(yi − ŷ(xi))2 =
k∑

j=1

n∑

i=1,xi∈Rj
(yi − ŷj)2

and this sum is minimal if the partial sum for each cell is minimal.

This is the same as fitting a constant model to the points in each
cell and thus the ŷj with smallest RSS are just the means:

ŷj := average{yi | i = 1, . . . , n;xi ∈ Rj}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
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Machine Learning / 3. Regularization

Learning Decision Trees

The same argument shows that
for a probability tree with given structure
the class probabilities with maximum likelihood are just
the relative frequencies of the classes of the points in that region:

p̂(Y = y |x ∈ Rj) =
|{i | i = 1, . . . , n;xi ∈ Rj, yi = y}|
|{i | i = 1, . . . , n;xi ∈ Rj}|

And for a decision tree with given structure, that
the class label with smallest misclassification rate is just
the majority class label of the points in that region:

ŷ(x ∈ Rj) = argmaxy |{i | i = 1, . . . , n;xi ∈ Rj, yi = y}|
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Machine Learning / 3. Regularization

Possible Tree Structures

Even when possible splits are restricted,
e.g., only binary univariate interval splits are allowed,
then tree structures can be build that separate all cases in tiny
cells that contain just a single point
(if there are no points with same predictors).

For such a very fine-grained partition,
the fit criteria would be optimal
(RSS=0, misclassification rate=0, likelihood maximal).

Thus, decision trees need some sort of regularization to make
sense.
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Machine Learning / 3. Regularization

Regularization Methods

There are several simple regularization methods:

minimum number of points per cell:
require that each cell (i.e., each leaf node) covers a given
minimum number of training points.

maximum number of cells:
limit the maximum number of cells of the partition (i.e., leaf
nodes).

maximum depth:
limit the maximum depth of the tree.

The number of points per cell, the number of cells, etc. can be
seen as a hyperparameter of the decision tree learning method.
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Machine Learning / 4. Learning Decision Trees

Decision Tree Learning Problem

The decision tree learning problem could be described as follows:
Given a dataset

(x1, y1), (x2, y2), . . . , (xn, yn)

find a decision tree ŷ : X → Y that

• is binary, univariate, and with interval splits,
• contains at each leaf a given minimum number m of examples,
• and has minimal misclassification rate

1

n

n∑

i=1

I(yi 6= ŷ(xi))

among all those trees.

Unfortunately, this problem is not feasible as
there are too many tree structures / partitions to check
and no suitable optimization algorithms to sift efficiently through
them.
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Machine Learning / 4. Learning Decision Trees

Greedy Search

Therefore, a greedy search is conducted that

• builds the tree recursively starting from the root

• by selecting the locally optimal decision in each step.
(or alternatively, even just some locally good decision).
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Machine Learning / 4. Learning Decision Trees

Greedy Search / Possible Splits (1/2)

At each node one tries all possible splits.
For an univariate binary tree with interval splits
at the actual node let there still be the data

(x1, y1), (x2, y2), . . . , (xn, yn)

Then check for each predictor variable X with domain X :

if X is a nominal variable:
all 2m−1 − 1 possible splits in two subsets X1∪̇X2.

E.g., for X = {Hi,Gö,H} the splits

{Hi} vs. {Gö,H}
{Hi,Gö} vs. {H}
{Hi,H} vs. {Gö}
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Machine Learning / 4. Learning Decision Trees

Greedy Search / Possible Splits (2/2)

if X is an ordinal or interval-scaled variable:
sort the xi as

x′1 < x′2 < . . . < x′n′, n′ ≤ n

and then test all n′ − 1 possible splits at

x′i + x′i+1

2
, i = 1, . . . , n′ − 1

E.g.,

(x1, x2, . . . , x8) = (15, 10, 5, 15, 10, 10, 5, 5), n = 8

are sorted as

x′1 := 5 < x′2 := 10 < x′3 := 15, n′ = 3

and then split at 7.5 and 12.5.
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Machine Learning / 4. Learning Decision Trees

Greedy Search / Original Fit Criterion

All possible splits – often called candidate splits – are assessed
by a quality criterion.

For all kinds of trees the original fit criterion can be used, i.e.,

for regression trees:
the residual sum of squares.

for decision trees:
the misclassification rate.

for probability trees:
the likelihood.

The split that gives the best improvement is chosen.
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Machine Learning / 4. Learning Decision Trees

Example

Artificial data about visitors of an online shop:

referrer num.visits duration buyer
1 search engine several 15 yes
2 search engine once 10 yes
3 other several 5 yes
4 ad once 15 yes
5 ad once 10 no
6 other once 10 no
7 other once 5 no
8 ad once 5 no

Build a decision tree that tries to predict if a visitor will buy.
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Machine Learning / 4. Learning Decision Trees

Example / Root Split

Step 1 (root node): The root covers all 8 visitors.
There are the following splits:

buyer
variable values yes no errors
referrer {s} 2 0 2

{a, o} 2 4
referrer {s, a} 3 2 3

{o} 1 2
referrer {s, o} 3 2 3

{a} 1 2
num.visits once 2 4 2

several 2 0
duration <7.5 1 2 3

≥7.5 3 2
duration <12.5 2 4 2

≥ 12.5 2 0
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Machine Learning / 4. Learning Decision Trees

Example / Root Split

The splits

– referrer = search engine ?
– num.visits = once ?
– duration < 12.5 ?

are locally optimal at the root.

We choose “duration < 12.5”:

4/4

2/4 2/0

duration < 12.5 ?
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Machine Learning / 4. Learning Decision Trees

Example / Node 2 Split

4/4

2/4 2/0

duration < 12.5 ?

The right node is pure and thus a leaf.

Step 2 (node 2): The left node (called ”node 2”) covers the
following cases:

referrer num.visits duration buyer
2 search engine once 10 yes
3 other several 5 yes
5 ad once 10 no
6 other once 10 no
7 other once 5 no
8 ad once 5 no

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
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Machine Learning / 4. Learning Decision Trees

Example / Node 2 Split

At node 2 are the following splits:
buyer

variable values yes no errors
referrer {s} 1 0 1

{a, o} 1 4
referrer {s, a} 1 2 2

{o} 1 2
referrer {s, o} 2 2 2

{a} 0 2
num.visits once 1 4 1

several 1 0
duration <7.5 1 2 2

≥ 7.5 1 2

Again, the splits

– referrer = search engine ?
– num.visits = once ?

are locally optimal at node 2.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
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Machine Learning / 4. Learning Decision Trees

Example / Node 5 Split

We choose the split “referrer = search engine”:

4/4

2/4 2/0

1/0 1/4

duration < 12.5 ?

referrer = search engine ?

The left node is pure and thus a leaf.

The right node (called ”node 5”) allows further splits.
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Machine Learning / 4. Learning Decision Trees

Example / Node 5 Split

Step 3 (node 5): The right node (called ”node 5”) covers the
following cases:

referrer num.visits duration buyer
3 other several 5 yes
5 ad once 10 no
6 other once 10 no
7 other once 5 no
8 ad once 5 no

It allows the following splits:
buyer

variable values yes no errors
referrer {a} 0 2 1

{o} 1 2
num.visits once 1 0 0

several 0 4
duration <7.5 1 2 1

≥ 7.5 0 2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
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Machine Learning / 4. Learning Decision Trees

Example / Node 5 Split

The split “num.visits = once” is locally optimal.

4/4

2/4 2/0

1/0 1/4

1/0 0/4

duration < 12.5 ?

referrer = search engine ?

num.visits = once ?

Both child nodes are pure thus leaf nodes.
The algorithm stops.
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Machine Learning / 4. Learning Decision Trees

Decision Tree Learning Algorithm

(1) expand-decision-tree(node T, training data X) :
(2) if stopping-criterion(X)
(3) T.class = argmaxy′ |{(x, y) ∈ X | y = y′}|
(4) return
(5) fi
(6) s := argmaxsplit s quality-criterion(s)
(7) if s does not improve
(8) T.class = argmaxy′ |{(x, y) ∈ X | y = y′}|
(9) return

(10) fi
(11) T.split := s
(12) for z ∈ Im(s) do
(13) create new node T ′

(14) T.child[z] := T ′

(15) expand-decision-tree(T ′, {(x, y) ∈ X | s(x) = z})
(16) od
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Machine Learning / 4. Learning Decision Trees

Decision Tree Learning Algorithm / Remarks (1/2)

stopping-criterion(X):
e.g., all cases in X belong to the same class,
all cases in X have the same predictor values (for all variables),
there are less than the minimum number of cases per node to
split.

split s:
all possible splits, e.g., all binary univariate interval splits.

quality-criterion(s):
e.g., misclassification rate in X after the split (i.e., if in each child
node suggested by the split the majority class is predicted).

s does not improve:
e.g., if the misclassification rate is the same as in the actual node
(without the split s).
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Machine Learning / 4. Learning Decision Trees

Decision Tree Learning Algorithm / Remarks (2/2)

Im(s):
all the possible outcomes of the split,
e.g., { 0, 1 } for a binary split.

T.child(z) := T ′:
keep an array that maps all the possible outcomes of the split to
the corresponding child node.
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Machine Learning / 4. Learning Decision Trees

Why Misclassification Rate is a Bad Split Quality Criterion

Although it is possible to use misclassification rate as quality
criterion, it usually is not a good idea.

Imagine a dataset with a binary target variable (zero/one) and
400 cases per class (400/400).
Assume there are two splits:

400/400

300/100 100/300

400/400

200/400 200/0

Both have 200 errors / misclassification rate 0.25.

But the right split may be preferred as it contains a pure node.
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Machine Learning / 4. Learning Decision Trees

Split Contingency Tables

The effects of a split on training data can be described by a
contingency table (Cj,k)j∈J,k∈K), i.e., a matrix

• with rows indexed by the different child nodes j ∈ J ,

• with columns indexed by the different target classes k ∈ K,

• and cells Cj,k containing the number of points in class k that
the split assigns to child j:

Cj,k := |{(x, y) ∈ X | s(x) = j and y = k}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute of Computer Science, University of Hildesheim
Course on Machine Learning, winter term 2013/14 39/69



Machine Learning / 4. Learning Decision Trees

Entropy

Let
Pn := {(p1, p2, . . . , pn) ∈ [0, 1]n |

∑

i

pi = 1}

be the set of multinomial probability distributions on the values
1, . . . , n.

An entropy function q : Pn → R+
0 has the properties

• q is maximal for uniform p = (1n,
1
n, . . . ,

1
n).

• q is 0 iff p is deterministic
(one of the pi = 1 and all the others equal 0).
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Machine Learning / 4. Learning Decision Trees

Entropy

Examples:
Cross-Entropy / Deviance:

H(p1, . . . , pn) := −
n∑

i=1

pi log(pi)

Shannons Entropy:

H(p1, . . . , pn) := −
n∑

i=1

pi log2(pi)

Quadratic Entropy:

H(p1, . . . , pn) :=
n∑

i=1

pi(1− pi) = 1−
n∑

i=1

p2i

Entropy measures can be extended to R+
0 via

q(x1, . . . , xn) := q(
x1∑
i xi

,
x2∑
i xi

, . . . ,
xn∑
i xi

)
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Machine Learning / 4. Learning Decision Trees

Entropy for Contingency Tables

For a contingency table Cj,k we use the following abbreviations:

Cj,. :=
∑

k∈K
Cj,k sum of row j

C.,k :=
∑

j∈J
Cj,k sum of column k

C.,. :=
∑

j∈J

∑

k∈K
Cj,k sum of matrix

and define the following entropies:

row entropy:
HJ(C) := H(Cj,. | j ∈ J)

column entropy:

HK(C) := H(C.,k | k ∈ K)

conditional column entropy:

HK|J(C) :=
∑

j∈J

Cj,.
C.,.

H(Cj,k | k ∈ K)
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Machine Learning / 4. Learning Decision Trees

Entropy for Contingency Tables

Suitable split quality criteria are

entropy gain:
HG(C) := HK(C)−HK|J(C)

entropy gain ratio:

HG(C) :=
HK(C)−HK|J(C)

HJ(C)

Shannon entropy gain is also called information gain:

IG(C) := −
∑

k

C.,k
C.,.

log2
C.,k
C.,.

+
∑

j

Cj,.
C.,.

∑

k

Cj,k
Cj,.

log2
Cj,k
Cj,.

Quadratic entropy gain is also called Gini index:

Gini(C) := −
∑

k

(
C.,k
C.,.

)2 +
∑

j

Cj,.
C.,.

∑

k

(
Cj,k
Cj,.

)2
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Machine Learning / 4. Learning Decision Trees

Entropy Measures as Split Quality Criterion

400/400

300/100 100/300

400/400

200/400 200/0

Both have 200 errors / misclassification rate 0.25.

But the right split may be preferred as it contains a pure node.

Gini-Impurity

=
1

2
((
3

4
)2 + (

1

4
)2) +

1

2
((
3

4
)2 + (

1

4
)2)

= 0.625

Gini-Impurity

=
3

4
((
1

3
)2 + (

2

3
)2) +

1

4
(12 + 02)

≈ 0.667
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Machine Learning
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Machine Learning / 5. Digression: Incomplete Data

Complete and incomplete cases

If for some cases a variable is not observed, i.e., the
value of the variable is not known, we say

the case is incomplete and
has a missing value w.r.t. that variable.

Variables with missing values cannot be used directly in
models.

case F L B D H
1 0 0 0 0 0
2 0 0 0 0 0
3 1 1 1 1 0
4 0 0 1 1 1
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 1 1
8 0 0 0 0 0
9 0 0 1 1 1

10 1 1 0 1 1

Complete data.

case F L B D H
1 0 0 0 0 0
2 . 0 0 0 0
3 1 1 1 1 0
4 0 0 . 1 1
5 0 0 0 0 0
6 0 0 0 0 0
7 0 . 0 . 1
8 0 0 0 0 0
9 0 0 1 1 1

10 1 1 . 1 1

Incomplete data. Missing values are
marked by a dot.
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Machine Learning / 5. Digression: Incomplete Data

Missing value indicators

For each variable v, we can interpret its
missing of values as new random
variable Mv,

Mv :=

{
1, if vobs = .,

0, otherwise

called missing value indicator of v.

case F MF L ML B MB D MD H MH

1 0 0 0 0 0 0 0 0 0 0
2 . 1 0 0 0 0 0 0 0 0
3 1 0 1 0 1 0 1 0 0 0
4 0 0 0 0 . 1 1 0 1 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 . 1 0 0 . 1 1 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 1 0 1 0 1 0

10 1 0 1 0 . 1 1 0 1 0

Incomplete data and missing value
indicators.
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Machine Learning / 5. Digression: Incomplete Data

Types of missingness / MCAR

A variable v is called missing completely at random
(MCAR), if the probability of a missing value is
(unconditionally) independent of the (true, unobserved)
value of v, i.e, if

I(Mv, vtrue)

(MCAR is also called missing unconditionally at
random).

Example: think of an apparatus measuring the velocity v
of wind that has a loose contact c. When the contact is
closed, the measurement is recorded, otherwise it is
skipped. If the contact c being closed does not depend
on the velocity v of wind, v is MCAR.
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Machine Learning / 5. Digression: Incomplete Data

Types of missingness / MCAR / Imputation

If a variable is MCAR, for each value the
probability of missing is the same, and,
e.g., the sample mean of vobs is an
unbiased estimator for the expectation
of vtrue; here

µ̂(vobs) =
1

10
(2 · 1 + 4 · 2 + 2 · 3 + 2 · 4)

=
1

15
(3 · 1 + 6 · 2 + 3 · 3 + 3 · 4) = µ̂(vtrue)

Replacing the missing values by the
sample mean is called imputing.
Afterwards, the data is complete and
can be used by all models.

case vtrue vobserved

1 /1 .
2 2 2
3 /2 .
4 4 4
5 3 3
6 2 2
7 1 1
8 /4 .
9 3 3

10 /2 .
11 1 1
12 /3 .
13 4 4
14 2 2
15 2 2

Data with a variable v MCAR. Missing
values are stroken through.
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Machine Learning / 5. Digression: Incomplete Data

Types of missingness / MAR

A variable v is called missing at
random (MAR), if the probability of a
missing value is conditionally
independent of the (true, unobserved)
value of v, i.e, if

I(Mv, vtrue |W )

for some set of variables W ⊆ V \ {v}
(MAR is also called missing
conditionally at random).

Example: think of an apparatus
measuring the velocity v of wind. If we
measure wind velocities at three
different heights h = 0, 1, 2 and say the
apparatus has problems with height not
recording

1/3 of cases at height 0,
1/2 of cases at height 1,
2/3 of cases at height 2,

case v t
ru

e
v o

bs
er

ve
d

h
1 /1 . 0
2 2 2 0
3 /3 . 0
4 3 3 0
5 1 1 0
6 3 3 0
7 1 1 0
8 /2 . 0
9 2 2 0

case v t
ru

e
v o

bs
er

ve
d

h
10 /3 . 1
11 4 4 1
12 /4 . 1
13 3 3 1

case v t
ru

e
v o

bs
er

ve
d

h
14 /3 . 2
15 4 4 2
16 /4 . 2
17 5 5 2
18 /3 . 2
19 /5 . 2
20 3 3 2
21 /4 . 2
22 /5 . 2

Figure 28: Data with a variable v MAR
(conditionally on h).

then v is missing at random
(conditionally on h).
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Machine Learning / 5. Digression: Incomplete Data

Types of missingness / MAR

If v depends on variables in W , then,
e.g., the sample mean is not an
unbiased estimator, but the weighted
mean w.r.t. W has to be used; here:

2∑

h=0

µ̂(v|H = h)p(H = h)

=2 · 9
22

+ 3.5 · 4
22

+ 4 · 9
22

6= 1

11

∑

i=1,...,22
vi 6=.

vi

=2 · 6
11

+ 3.5 · 2
11

+ 4 · 3
11

case v t
ru

e
v o

bs
er

ve
d

h
1 /1 . 0
2 2 2 0
3 /3 . 0
4 3 3 0
5 1 1 0
6 3 3 0
7 1 1 0
8 /2 . 0
9 2 2 0

case v t
ru

e
v o

bs
er

ve
d

h
10 /3 . 1
11 4 4 1
12 /4 . 1
13 3 3 1

case v t
ru

e
v o

bs
er

ve
d

h
14 /3 . 2
15 4 4 2
16 /4 . 2
17 5 5 2
18 /3 . 2
19 /5 . 2
20 3 3 2
21 /4 . 2
22 /5 . 2

Figure 28: Data with a variable v MAR
(conditionally on h).
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Machine Learning / 5. Digression: Incomplete Data

Types of missingness / missing systematically

A variable v is called missing
systematically (or not at random), if the
probability of a missing value does
depend on its (unobserved, true) value.

Example: if the apparatus has
problems measuring high velocities and
say, e.g., misses

1/3 of all measurements of v = 1,
1/2 of all measurements of v = 2,
2/3 of all measurements of v = 3,

i.e., the probability of a missing value
does depend on the velocity, v is
missing systematically.

case v t
ru

e
v o

bs
er

ve
d

1 /1 .
2 1 1
3 /2 .
4 /3 .
5 3 3
6 2 2
7 1 1
8 /2 .
9 /3 .

10 2 2

Figure 29: Data with a variable v missing
systematically.

Again, the sample mean is not
unbiased; expectation can only be
estimated if we have background
knowledge about the probabilities of a
missing value dependend on its true
value.
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Machine Learning / 5. Digression: Incomplete Data

Types of missingness / hidden variables

A variable v is called hidden, if the
probability of a missing value is 1, i.e., it
is missing in all cases.

Example: say we want to measure
intelligence I of probands but cannot do
this directly. We measure their level of
education E and their income C
instead. Then I is hidden.

case Itrue Iobs E C

1 /1 . 0 0
2 /2 . 1 2
3 /2 . 2 1
4 /2 . 2 2
5 /1 . 0 2
6 /2 . 2 0
7 /1 . 1 2
8 /0 . 2 1
9 /1 . 2 2

10 /2 . 2 1

Figure 30: Data with a hidden variable I.

intelligence

education income

Figure 32: Suggested dependency of variables
I, E, and C.
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Machine Learning / 5. Digression: Incomplete Data

types of missingness

variable X

missing at random (MAR)
I(MX , X | Z)

missing systematically

missing completely
at random (MCAR)

I(MX , X)

hidden
p(MX = 1) = 1

Figure 34: Types of missingness.

MAR/MCAR terminology stems from Little and Rubin 1987.
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Machine Learning / 5. Digression: Incomplete Data

complete case analysis

The simplest scheme to learn from
incomplete data D, e.g., the vertex
potentials (pv)v∈V of a Bayesian
network, is complete case analysis
(also called casewise deletion): use
only complete cases

Dcompl := {d ∈ D | d is complete}

case F L B D H
1 0 0 0 0 0
2 . 0 0 0 0
3 1 1 1 1 0
4 0 0 . 1 1
5 0 0 0 0 0
6 0 0 0 0 0
7 0 . 0 . 1
8 0 0 0 0 0
9 0 0 1 1 1

10 1 1 . 1 1

Figure 35: Incomplete data and data used in
complete case analysis (highlighted).

If D is MCAR, estimations based on the subsample
Dcompl are unbiased for Dtrue.
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Machine Learning / 5. Digression: Incomplete Data

complete case analysis (2/2)

But for higher-dimensional data (i.e., with a larger
number of variables), complete cases might become
rare.

Let each variable have a probability for missing values of
0.05, then for 20 variables the probability of a case to be
complete is

(1− 0.05)20 ≈ 0.36

for 50 variables it is ≈ 0.08, i.e., most cases are deleted.
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Machine Learning / 5. Digression: Incomplete Data

available case analysis

A higher case rate can be achieved by
available case analysis. If a quantity
has to be estimated based on a subset
W ⊆ V of variables, e.g., the vertext
potential pv of a specific vertex v ∈ V of
a Bayesian network (W = fam(v)), use
only complete cases of D|W
(D|W )compl = {d ∈ D|W | d is complete}

case F L B D H
1 0 0 0 0 0
2 . 0 0 0 0
3 1 1 1 1 0
4 0 0 . 1 1
5 0 0 0 0 0
6 0 0 0 0 0
7 0 . 0 . 1
8 0 0 0 0 0
9 0 0 1 1 1

10 1 1 . 1 1

Figure 36: Incomplete data and data used in
available case analysis for estimating the
potential pL(L |F ) (highlighted).

If D is MCAR, estimations based on the subsample
(DW )compl are unbiased for (DW )true.
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Machine Learning
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Machine Learning / 6. Properties of Decision Trees

Missing Values / Surrogate Splits

Decision trees can handle missing values intrinsically, i.e.,
without imputation, by using surrogate splits.

For this, one stores not only the best split (called primary split),
but also several other splits

• on variables different from the one used in the primary split

• but that result in a similar assingment of training cases to child
nodes as the primary split,

called surrogate splits.

If a case with a missing variable used in a primary split has to be
predicted, a surrogate split is used instead.
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Machine Learning / 6. Properties of Decision Trees

Missing Values / Surrogate Splits / Example

Predict buying behavior of the following
customer:

referrer num.visits duration buyer
9 search engine once . ?

4/4

2/4 2/0

1/0 1/4

1/0 0/4

duration < 12.5 ?

referrer = search engine ?

num.visits = once ?
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Machine Learning / 6. Properties of Decision Trees

Missing Values / Surrogate Splits / Example

The primary split at node 1 is

duration < 12.5

sending only cases 1 and 4 to the right.

A surrogate split mimicks this split as closely as possible,
i.e., is the best split for the surrogate target “duration <
12.5”.

referrer num.visits duration buyer surrogate target
1 search engine several 15 yes true
2 search engine once 10 yes false
3 other several 5 yes false
4 ad once 15 yes true
5 ad once 10 no false
6 other once 10 no false
7 other once 5 no false
8 ad once 5 no false
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Machine Learning / 6. Properties of Decision Trees

Missing Values / Surrogate Splits / Example

At node 1 are the following surrogate splits:
surrogate target gini

variable values true false errors impurity
referrer {s} 1 1 2 0.667

{a, o} 5 1
referrer {s, a} 3 2 2 0.7

{o} 3 0
referrer {s, o} 3 1 2 0.625

{a} 3 1
num.visits once 5 1 2 0.667

several 1 1

In principle, referrer ∈ {s,a} is the best surrogate split.
But as the majority class in both rows is “true”, a missing
value always is sent down to the left.
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Machine Learning / 6. Properties of Decision Trees

Instability

Decision trees often are used to visually explain models.

Nevertheless, usually there are many candidates for the primary
split with very similar values of the quality criterion. So the choice
of the primary split shown in the tree is somewhat arbitrary: the
split may change, if the data changes a bit. The tree is said to be
instable.
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Machine Learning / 6. Properties of Decision Trees

Instability / Example / Iris (50/50)
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Machine Learning / 7. Pruning Decision Trees

Subtree Selection (Pruning)

If a decision tree has been overgrown, i.e., overfits,
it can be regularized by selecting the best subtree (pruning).
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Machine Learning / 7. Pruning Decision Trees

Subtrees

Let nodes(ŷ) denote the set of nodes of a decision tree ŷ.

A subset T ⊆ nodes(ŷ) of its nodes is called a subtree, if it is
closed under parents (i.e., it contains for each node T ∈ T also
its parent node).

A subtree T can be interpreted as decision tree, if for leaf nodes
T ∈ T that have been interior nodes in the original tree ŷ, the split
is replaced by a prediction:

T.class := argmaxy′ |{(x, y) ∈ X | y = y′}|
where X denotes the subset of the training data that is passed
down to node T .
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Machine Learning / 7. Pruning Decision Trees

Model Selection Measures

Cost Complexity Criterion: (minimize)

CCC(ŷ) := RSS(ŷ) + λ · |nodes(ŷ)|
where

ŷ is a regression tree,
λ ≥ 0 the complexity parameter / regularization parameter, and

nodes(ŷ) denotes the set of nodes of tree ŷ.

λ is a hyperparameter that needs to be estimated by
cross-validation.

Note: many texts on decision trees use the symbol α instead of λ to denote the regularization parameter.
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Machine Learning / 7. Pruning Decision Trees

Pruning Algorithm

To find the subtree with the smallest CCC, it is sufficient to
iteratively cut the preterminal node with highest error:

• decrease complexity by 1,
CCC by λ,

• increase error by at most λ,
i.e., stop once error increases more than λ.

Preterminal node = node with only terminal nodes / leaves as
children.
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Machine Learning / 7. Pruning Decision Trees

Example

20 / 20

10 / 5 10 / 15

8 / 2 2 / 3 4 / 1 6 / 14

3 / 2 3 / 12
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Machine Learning / 7. Pruning Decision Trees

Example

node errors leaves CCC(λ=2)
∅ 10 5 20
1 11 4 19
2 11 4 19
2 12 3 18
3 15 2 19
4 20 1 22

20 / 20

10 / 5 10 / 15

8 / 2 2 / 3 4 / 1 6 / 14

3 / 2 3 / 12

1

2

3

4
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Machine Learning / 7. Pruning Decision Trees

Popular Decision Tree Configurations

name ChAID CART ID3 C4.5
author Kass 1980 Breiman et al. 1984 Quinlan 1986 Quinlan 1993
selection χ2 Gini index, information gain information gain ratio
measure twoing index
splits all binary nominal, complete complete,

binary quantitative, binary nominal,
binary bivariate quantitative binary quantitative

stopping χ2 independence minimum number χ2 independence lower bound on
criterion test of cases/node test selection measure
pruning none error complexity pruning pessimistic error pruning pessimistic error pruning,
technique error based pruning
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