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Machine Learning 1. Linear Regression via Normal Equations
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Machine Learning 1. Linear Regression via Normal Equations

The Simple Linear Regression Problem

Given

I a set Dtrain := {(x1, y1), (x2, y2), . . . , (xN , yN)} ⊆ R× R called
training data,

compute the parameters (β̂0, β̂1) of a linear regression function

ŷ(x) := β̂0 + β̂1x

s.t. for a set Dtest ⊆ R× R called test set the test error

err(ŷ ;Dtest) :=
1

|Dtest|
∑

(x ,y)∈Dtest

(y − ŷ(x))2

is minimal.
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Note: Dtest has (i) to be from the same data generating process and (ii) not to be available
during training.



Machine Learning 1. Linear Regression via Normal Equations

The (Multiple) Linear Regression Problem

Given

I a set Dtrain := {(x1, y1), (x2, y2), . . . , (xN , yN)} ⊆ RM × R called
training data,

compute the parameters (β̂0, β̂1, . . . , β̂M) of a linear regression function

ŷ(x) := β̂0 + β̂1x1+ . . .+ β̂MxM

s.t. for a set Dtest ⊆ RM × R called test set the test error

err(ŷ ;Dtest) :=
1

|Dtest|
∑

(x ,y)∈Dtest

(y − ŷ(x))2

is minimal.
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Note: Dtest has (i) to be from the same data generating process and (ii) not to be available
during training.



Machine Learning 1. Linear Regression via Normal Equations

Several predictors

Several predictor variables x.,1, x.,2, . . . , x.,M :

ŷ =β̂0 + β̂1x.,1 + β̂2x.,2 + · · · β̂Mx.,M

=β0 +
M∑

m=1

β̂mx.,m

with M + 1 parameters β̂0, β̂1, . . . , β̂M .
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Machine Learning 1. Linear Regression via Normal Equations

Linear form

Several predictor variables x.,1, x.,2, . . . , x.,M :

ŷ =β̂0 +
M∑

m=1

β̂mx.,m

=〈β̂, x.〉

where

β̂ :=


β̂0
β̂1
...

β̂M

 , x. :=


1
x.,1

...
x.,M

 ,

Thus, the intercept is handled like any other parameter, for the artificial
constant predictor x.,0 ≡ 1.
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Machine Learning 1. Linear Regression via Normal Equations

Simultaneous equations for the whole dataset

For the whole dataset Dtrain := {(x1, y1), . . . , (xN , yN)}:

y ≈ ŷ := X β̂

where

y :=

 y1
...
yN

 , ŷ :=

 ŷ1
...
ŷN

 , X :=

 x1
...
xN

 =

 x1,1 x1,2 . . . x1,M
...

...
...

...
xN,1 xN,2 . . . xN,M
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Machine Learning 1. Linear Regression via Normal Equations

Least squares estimates
Least squares estimates β̂ minimize

RSS(β̂,Dtrain) :=
N∑

n=1

(yn − ŷn)2 = ||y − ŷ ||2 = ||y − X β̂||2

The least squares estimates β̂ are computed via normal equations

XTX β̂ = XT y

Proof:
||y − X β̂||2 = 〈y − X β̂, y − X β̂〉

∂(. . .)

∂β̂
= 2〈−X , y − X β̂〉 = −2(XT y − XTX β̂)

!
= 0
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Machine Learning 1. Linear Regression via Normal Equations

How to compute least squares estimates β̂

Solve the M ×M system of linear equations

XTX β̂ = XT y

i.e., Ax = b (with A := XTX , b = XT y , x = β̂).

There are several numerical methods available:

1. Gaussian elimination

2. Cholesky decomposition

3. QR decomposition
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Machine Learning 1. Linear Regression via Normal Equations

Learn Linear Regression via Normal Equations

1: procedure
learn-linreg-NormEq(Dtrain := {(x1, y1), . . . , (xN , yN)})

2: X := (x1, x2, . . . , xN)T

3: y := (y1, y2, . . . , yN)T

4: A := XTX
5: b := XT y
6: β̂ := solve-SLE(A, b)
7: return β̂
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Machine Learning 1. Linear Regression via Normal Equations

Example

Given is the following data:

x1 x2 y

1 2 3
2 3 2
4 1 7
5 5 1

Predict a y value for x1 = 3, x2 = 4.
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Machine Learning 1. Linear Regression via Normal Equations

Example / Simple Regression Models for Comparison
ŷ =β̂0 + β̂1x1

=2.95 + 0.1x1

●

●

●

●

1 2 3 4 5

1
2

3
4

5
6

7

x1

y

●

●

●

data
model

ŷ(x1 = 3) = 3.25

ŷ =β̂0 + β̂2x2

=6.943− 1.343x2

●

●

●

●

1 2 3 4 5

1
2

3
4

5
6

7
x2

y

●

●

●

data
model

ŷ(x2 = 4) = 1.571
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Machine Learning 1. Linear Regression via Normal Equations

Example

Now fit

ŷ =β̂0 + β̂1x1 + β̂2x2

to the data:

x1 x2 y

1 2 3
2 3 2
4 1 7
5 5 1

X =


1 1 2
1 2 3
1 4 1
1 5 5

 , y =


3
2
7
1


XTX =

 4 12 11
12 46 37
11 37 39

 , XT y =

 13
40
24
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Machine Learning 1. Linear Regression via Normal Equations

Example

 4 12 11 13
12 46 37 40
11 37 39 24

 ∼
 4 12 11 13

0 10 4 1
0 16 35 −47

 ∼
 4 12 11 13

0 10 4 1
0 0 143 −243



∼

 4 12 11 13
0 1430 0 1115
0 0 143 −243

 ∼
 286 0 0 1597

0 1430 0 1115
0 0 143 −243


i.e.,

β̂ =

 1597/286
1115/1430
−243/143

 ≈
 5.583

0.779
−1.699
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Machine Learning 1. Linear Regression via Normal Equations

Example
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Machine Learning 1. Linear Regression via Normal Equations

Example / Visualization of Model Fit
To visually assess the model fit, a plot

residuals ε̂ := y − ŷ vs. true values y

can be plotted:
●

●

●

●

1 2 3 4 5 6 7

−
0.

04
0.

00
0.

02

y

y
−

ŷ
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Machine Learning 2. Minimizing a Function via Gradient Descent
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Machine Learning 2. Minimizing a Function via Gradient Descent

Gradient Descent
Given a function f : RN → R, find x with minimal f (x).

Idea: start from a random x0 and
then improve step by step, i.e.,
choose xi+1 with

f (xi+1) ≤ f (xi )

−3 −2 −1 0 1 2 3

0
2

4
6

8

x
f(

x)

●

Choose the negative gradient −∂f
∂x (xi ) as direction for descent, i.e.,

xi+1 − xi = −αi ·
∂f

∂x
(xi )

with a suitable step length αi > 0.
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Machine Learning 2. Minimizing a Function via Gradient Descent

Gradient Descent

1: procedure
minimze-GD-fsl(f : RN → R, x0 ∈ RN , α ∈ R, imax ∈ N, ε ∈ R+)

2: for i = 1, . . . , imax do
3: xi := xi−1 − α · ∂f∂x (xi−1)
4: if f (xi−1)− f (xi ) < ε then
5: return xi
6: error ”not converged in imax iterations”

x0 start value

α (fixed) step length / learning rate

imax maximal number of iterations

ε minimum stepwise improvement
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Machine Learning 2. Minimizing a Function via Gradient Descent

Example
Example:

f (x) := x2,
∂f

∂x
(x) = 2x , x0 := 2, αi :≡ 0.25

Then we compute iteratively:

i xi
∂f
∂x (xi ) xi+1

0 2 4 1
1 1 2 0.5
2 0.5 1 0.25

3 0.25
...

...
...

...
...

...

using

xi+1 = xi − αn ·
∂f

∂x
(xi )

−3 −2 −1 0 1 2 3

0
2

4
6

8

x

f(
x)

● x0

● x1

● x2● x3
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Machine Learning 2. Minimizing a Function via Gradient Descent

Step Length
Why do we need a step length? Can we set αn ≡ 1?

The negative gradient gives a direction of descent only in an infinitesimal
neighborhood of xn.

Thus, the step length may be too large, and the function value of the next
point does not decrease.

−3 −2 −1 0 1 2 3

0
2

4
6

8

x

f(
x)

● x0● x1
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Machine Learning 2. Minimizing a Function via Gradient Descent

Step Length

There are many different strategies to adapt the step length s.t.

1. the function value actually decreases and

2. the step length becomes not too small
(and thus convergence slow)

Armijo-Principle:

αn := max{α ∈{2−j | j ∈ N0} |

f (xn − α
∂f

∂x
(xn)) ≤ f (xn)− αδ〈∂f

∂x
(xn),

∂f

∂x
(xn)〉 }

with δ ∈ (0, 1).
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Machine Learning 2. Minimizing a Function via Gradient Descent

Armijo Step Length

1: procedure
steplength-armijo(f : RN → R, x ∈ RN , d ∈ RN , δ ∈ (0, 1))

2: α := 1
3: while f (x)− f (x + αd) < αδdTd do
4: α = α/2

5: return α

x last position

d descend direction

δ minimum steepness (δ ≈ 0: any step will do)
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Machine Learning 2. Minimizing a Function via Gradient Descent

Gradient Descent
1: procedure minimize-GD(f : RN → R, x0 ∈ RN , α, imax ∈ N, ε ∈ R+)
2: for i = 1, . . . , imax do
3: d := −∂f

∂x (xi−1)
4: αi := α(f , xi−1, d)
5: xi := xi−1 + αi · d
6: if f (xi−1)− f (xi ) < ε then
7: return xi
8: error ”not converged in imax iterations”

x0 start value

α step length function, e.g., steplength-armijo
(with fixed δ).

imax maximal number of iterations

ε minimum stepwise improvement
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Machine Learning 2. Minimizing a Function via Gradient Descent

Bold Driver Step Length [Bat89]

A variant of the Armijo principle with memory:

1: procedure steplength-
bolddriver(f : RN → R, x ∈ RN , d ∈ RN , αold, α+, α− ∈ (0, 1))

2: α := αoldα+

3: while f (x)− f (x + αd) ≤ 0 do
4: α = αα−

5: return α

αold last step length

α+ step length increase factor, e.g., 1.1.

α− step length decrease factor, e.g., 0.5.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 36



Machine Learning 2. Minimizing a Function via Gradient Descent

Simple Step Length Control in Machine Learning

I The Armijo and Bold Driver step lengths evaluate the objective
function (including the loss) several times, and thus often are too
costly and not used.

I But useful for debugging as they guarantee decrease in f .

I Constant step lengths α ∈ (0, 1) are frequently used.
I If chosen (too) small, the learning algorithm becomes slow, but usually

still converges.
I The step length becomes a hyperparameter that has to be searched.

I Regimes of shrinking step lengths are used:

αi := αi−1γ, γ ∈ (0, 1) not too far from 1

I If the initial step length α0 is too large, later iterations will fix it.
I If γ is too small, GD may get stuck before convergence.
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Machine Learning 2. Minimizing a Function via Gradient Descent

How Many Minima can a Funciton have?

I In general, a function f can have several different minima.

I GD will find a random one
(with small step lengths, usually one close to the starting point;
local optimization method).
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Machine Learning 2. Minimizing a Function via Gradient Descent

Convexity

I A function f : RN → R is called convex if

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2), ∀x1, x2 ∈ RN , t ∈ [0, 1]

I A two-times differentiable function is convex if its Hessian is positive
semidefinite, i.e.,

xT
(

∂2f

∂xi∂xj

)
i=1,...,N,j=1,...,N

x ≥ 0 ∀x ∈ RN

I For any matrix A ∈ RN×M , the matrix ATA is positive semidefinite.
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Machine Learning 3. Learning Linear Regression Models via Gradient Descent
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Machine Learning 3. Learning Linear Regression Models via Gradient Descent

Sparse Predictors

Many problems have predictors x ∈ RM that are

I high-dimensional: M is large, and

I sparse: most xm are zero.

For example, text regression:

I task: predict the rating of a customer review.
I predictors: a text about a product — a sequence of words.

I can be represented as vector via bag of words:
xm encodes the frequency of word m in a given text.

I dimensions 30,000-60,000 for English texts
I in short texts as reviews with a couple of hundred words,

maximally a couple of hundred dimensions are non-zero.

I target: the customers rating of the product — a (real) number.
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Machine Learning 3. Learning Linear Regression Models via Gradient Descent

Sparse Predictors — Dense Normal Equations

I Recall, the normal equations

XTX β̂ = XT y

have dimensions M ×M.

I Even if X is sparse, generally XTX will be rather dense.

(XTX )m,l = XT
.,mX.,l

I For text regression, (XTX )m,l will be non-zero for every pair of words
m, l that co-occurs in any text.

I Even worse, even if A := XTX is sparse, standard methods to solve
linear systems (such as Gaussian elimination, LR decomposition etc.)
do not take advantage.
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Machine Learning 3. Learning Linear Regression Models via Gradient Descent

Learn Linear Regression via Loss Minimization

Alternatively to learning a linear regression model via solving the linear
normal equation system one can minimize the loss directly:

f (β̂) := β̂TXTX β̂ − 2yTX β̂ + yT y

= (y − X β̂)T (y − X β̂)

∂f

∂β̂
(β̂) = −2(XT y − XTX β̂)

= −2XT (y − X β̂)

When computing f and ∂f
∂β̂

,

I avoid computing (dense) XTX .

I always compute (sparse) X times a (dense) vector.
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Machine Learning 3. Learning Linear Regression Models via Gradient Descent

Objective Function and Gradient as Sums over Instances

f (β̂) := (y − X β̂)T (y − X β̂)T

=
N∑

n=1

(yn − xTn β̂)2

=
N∑

n=1

ε2n, εn := yn − xTn β̂

∂f

∂β̂
(β̂) = −2XT (y − X β̂)

= −2
N∑

n=1

(yn − xTn β̂)xn

= −2
N∑

n=1

εnxn
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Machine Learning 3. Learning Linear Regression Models via Gradient Descent

Learn Linear Regression via Loss Minimization: GD

1: procedure learn-linreg-
GD(Dtrain := {(x1, y1), . . . , (xN , yN)}, α, imax ∈ N, ε ∈ R+)

2: X := (x1, x2, . . . , xN)T

3: y := (y1, y2, . . . , yN)T

4: β̂0 := (0, . . . , 0)
5: β̂ := minimize-GD( f (β̂) := (y − X β̂)T (y − X β̂),

β̂0, α, imax, ε)

6: return β̂
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Machine Learning 4. Case Weights
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Machine Learning 4. Case Weights

Cases of Different Importance
Sometimes different cases are of different importance, e.g., if their
measurements are of different accurracy or reliability.

Example: assume the left most
point is known to be measured with
lower reliability.

Thus, the model does not need to
fit to this point equally as well as it
needs to do to the other points.

I.e., residuals of this point should
get lower weight than the others.
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Machine Learning 4. Case Weights

Case Weights

In such situations, each case (xn, yn) is assigned a case weight wn ≥ 0:

I the higher the weight, the more important the case.

I cases with weight 0 should be treated as if they have been discarded
from the data set.

Case weights can be managed as an additional pseudo-variable w in
implementations.
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Machine Learning 4. Case Weights

Weighted Least Squares Estimates
Formally, one tries to minimize the weighted residual sum of squares

N∑
n=1

wn(yn − ŷn)2 =||W
1
2 (y − ŷ)||2

with

W :=


w1 0

w2

. . .

0 wn



The same argument as for the unweighted case results in the weighted
least squares estimates

XTWX β̂ = XTWy
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Machine Learning 4. Case Weights

Weighted Least Squares Estimates / Example
To downweight the left most point, we assign case weights as follows:

w x y

1 5.65 3.54
1 3.37 1.75
1 1.97 0.04
1 3.70 4.42
0.1 0.15 3.85
1 8.14 8.75
1 7.42 8.11
1 6.59 5.64
1 1.77 0.18
1 7.74 8.30
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●
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Machine Learning 4. Case Weights

Summary
I For regression, linear models of type ŷ = xT β̂ can be used to predict

a quantitative y based on several (quantitative) x .
I A bias term can be modeled as additional predictor that is constant 1.

I The ordinary least squares estimates (OLS) are the parameters
with minimal residual sum of squares (RSS).

I OLS estimates can be computed by solving the normal equations
XTX β̂ = XT y as any system of linear equations via Gaussian
elimination.

I Alternatively, OLS estimates can be computed iteratively via
Gradient Descent.

I Especially for high-dimensional, sparse predictors GD is
advantageous as it never has it never has to compute the large, dense
XTX .

I Case weights can be handled seamlessly by both methods to model
different importance of cases.
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Machine Learning

Further Readings

I [JWHT13, chapter 3], [Mur12, chapter 7], [HTFF05, chapter 3].
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Machine Learning
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